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We start with two simple card sorting problems. Cards numbered 1,2,3,...,n
are arranged in a certain order and held face up in your hand. Then the top card
is placed face up on the bottom of the deck and the next card is placed face up
on a table. This process is continued until all » cards are face up on the table.

Problem 1A. If the cards on the table are in order from n on the bottom
to 1 on top, what was the original order of the cards in your hand?

Problem 2A. What is the number, ¢(n), of the top card in the original
deck of n cards, forn = 1,2,3,...?

Concerning the solution of Problem 2A, it is easy to check that the sequence ¢
begins with
1,1,2,1,3,2,4,1,5,3,6,2,7,4,8,1,9,5,10,3 )]

and that this sequence contains the solutions of Problem 1A. For n =5, for
example, start at the front of sequence ¢, and go down to the first term after the
first 5. From there read back 5 terms, obtaining 3, 5, 1, 4, 2 as the required initial
ordering of the 5-card deck. Continuing to read backwards yields the extended
order of the cards: 3,5,1,4,2,3,1,2,1,1 Similarly, for n =  we find from
(1) the initial ordering 2,6,3,5,1,4, and for n =7, the initial ordering
4,7,2,6,3,5,1.

Before deriving (1) or proving anything, we generalize the two problems:
instead of selecting the 2nd, 4th, 6th, ... cards for placement on the table, let
o = (0(1),0(2),0(3),...) be any increasing sequence of positive integers. We
shall call such a sequence a selection sequence. (Throughout this paper, the
word “sequence” will mean a finite sequence or infinite sequence, depending on
context.) The two problems can now be stated in terms of .
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Problem 1. What initial ordering of the n cards results in the reverse
ordering, n,n — 1,n — 2,..., 1, if cards in positions o(1), o(2), o(3), ...
are placed on the table and the others are retained as in Problem 1A?

Problem 2. What is the number £(n) of the top card in the original
deck of n cards?

Dispersions

In order to prepare for a proof, we consider another example, in which the
selection sequence

o=(2,3,6,8,9,12,14,15,18, 20, 21, 24, 26, 27, 30, 32, ...)

is determined (after inserting an initial 0) by its periodic sequence of first
differences,

2,1,3,2,1,3,2,1,3,....
We call this the gap sequence of o and derive from it three reversal sequences:

3,1,2,3,1,2,3,1,2, ...
2,3,1,2,3,1,2,3,1,...
1,2,3,1,2,3,1,2,3,.....

Each of these sequences, we shall see, yields a sequence comparable to (1), from
which some of the solutions (one-third of them, asymptotically speaking) of the
two problems can be obtained.

Write the first of these gap sequences as g(1), g(2), g(3), ..., and generate a
sequence c of numbers c(z) as follows:

c(l)=1
c(2)=c(l)+g(1)=1+3=4
c(3) =¢(2) +.g(2) =44+1=5
e(i) = c(i — 1) + g(i — 1)

Let ¢’ be the sequence obtained by ranking in increasing order the
complement of c; e.g., the first ten terms of ¢’ are 2,3,6,8,9,12, 14,15, 18, 20.
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Let Ap be the dispersion, as defined in [Kim1], of ¢’. That is, Ay is an array
consisting of all the positive integers, each occurring exactly once, with row 1
consisting of

a1,1)=1, a(1,2)=c1), a(1,3)= c(a(l,2),...,
a(l,7) =d(a(1,j-1)), ...,

row 2 consisting of

a(2, 1) = least positive integer not in row 1,
a(2,2) = ¢'(a(2,1)),
a(2,3) = d(a(2,2)),...,

row 3 consisting of

a(3,1) = least positive integer not in row 1 or row 2,
a(3,2) = (a(3,1)),
a(3,3) = (a(3,2)),...,

and so on. A helpful way to write out terms of a dispersion is to write the
numbers from 1 to 30 or more, and beneath each, the matching term of ¢/, like
this:

1(2)|3|4]|5|6]|7|8)]9]|10[11]12|13(14]|15
213|6|8|9]12|14|15]18 (20|21 (2426|2730

1611718 |19(20]21 |22 (23|24 (25|26 |27 |28([29]30
323313638 [39|42|44|45|48 (50|51 |54|56|57]60

From this arrangement, read 1 +2—+3—+6-12—+24+48— ... ; then come back
to the least unassigned number, 4, and read 4—+8—-15—+30— 60—--- ; return
again to find 5+9—-18—-+36—--- ; and so on. The numbers in successive rows
of Ay are thereby identified. A few terms in the northwest corner of Ay are
shown here:

1 2 3 6 12 48
4 8 15 30 60

5 9 18 36

7 14 27 54

10 20 39

11 21 42

13 26 51
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16 32
17 33
19 38

Fractal sequences
Now let s be the fractal sequence of Ag, defined by
s(k) = the number of the row of Ay that contains k.
The first twenty terms of s are
1,1,1,2,3,1,4,2,3,5,6,1,7,4,2,8,9,3,10,5.

For n =3,6,9,..., the sequence s provides solutions to Problem 1. For
example, the initial deck order forn = 6 is 1, 6, 5, 3,2, 4 and the extended order
is 1,6,5,3,2,4,1,3,2,1,1,1. Clearly, the given selection sequence
2,3,6,8,9,12, applied to the extended order, does, in fact, leave cards
6,5,4,3,2,1 on the table, in this order, as desired. Forn =3,6,9,..., certain
terms of s also provide a subsequence of the top-card sequence of Problem 2.
Indeed, taking the first number after the first occurrence of 3h, for h =
1,2,3,... yields t(3) =1, t(6) =1, t(9) =3, ... .

One may anticipate that the other two reversal sequences lead to solutions
for the remaining values of n. Explicitly, the second reversal sequence
generates a dispersion A, having fractal sequence

1,1,2,1,2,3,4,1,5,2,3,6,7,4,8,1,5,9,10,2,...,
and the third generates A, with fractal sequence
1,2,1,3,2,1,4,5,3,6,2,1,7,8,4,9,5,3,10,11,1,....
It is easy to check that these fractal sequences provide solutions to the two
problems for » =1mod3 and n = 2mod3, respectively. We turn now to

lemmas concerning fractal sequences.

Lemma 1. Suppose A = A(3, j) is the dispersion of a fractal sequence s, and
i>1,j>1 Let

r=alt,j+ 1) — a(z, 7).
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If1 < h <1, then there exists exactly one k > 1 such that
a(i, j) < a(h,k) < a(i,j+1).

In other words, in s, between consecutive appearances of i (including only the
Jirst), the greatest number that occurs is r, and each of the numbers 1,2, ...,r
occurs exactly once.

Proof. (This lemma is essentially Theorem 1 of [Kim2], where a proof is
given.) a

Lemma 2. Suppose n > 2 and
s(m+1),s(m +2),...,s(m +n), )

where m > 0, are n consecutive terms of a fractal sequence s. Suppose that
one of the numbers in (2) is n itself, and that

sky#n fork =1,2,...,m ?3)
and

sky<n fork=12,....m+n. )]
Then the numbers in (2) are, in some order, 1,2, ... ,n.
Proof. We use induction on n. For n =2, segment (2) cannot be 2,2, by
Lemma 1, and so it must be 1,2 or 2, 1, as desired. Suppose n’ > 2, and assume

that the statement of Lemma 2 is valid when n' is written for n. Further,
suppose that

s(m' +1),s(m' +2),...,s(m +n' +1), (5)
are 7’ + 1 consecutive terms of s, one of which is »’ + 1, and that

s(k)y#n' +1 fork =1,2,...,m
and

s(ky<n'+1 fork=1,2,...,m+n'+1.

Let¢ < = n’ + 1 be a number satisfying s(m’ 4+ q) = n’ + 1. The segment

s(m'+q—-n'),s(m' +q—-n'+1),...,s(m' +q-1)
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of length n' satisfies the induction hypothesis and so consists of the numbers
1,2,..., ' in some order. Consequently, the segment

s(m' +g—n'), s(m' +q—n'+1),...,5(m' + ¢ —1),s(m’ +q)

consists of the numbers 1,2,...,7n,n'+1 in some order. Thus, if
m' +q=m' +n'+ 1, then (5) consists of the numbers 1,2,...,n',n'+1 in
some order, as desired. On the other hand, if m' + ¢ < m' +n' + 1, then, we
shall show,

s(m'+qg+1)=s(m' +q—7n') 6.1)
s(m'+qg+2)=s(m +q—n'+1) 6.2)
s(m' +n' +1) = s(m’ +1), (6.)

To establish these, we first abbreviate s(m'+q-—n') as =z If
s(m' + g + 1) # =z, then some z < n occupies position ' + ¢ + 1 in s, and the
next occurrence of x comes after this occurrence of z. But z has already occurs
between positions m’ + ¢ — n and m’ + g + 1, so that there are two occurrences
of z between consecutive occurrences of . This contradicts Lemma 1. With
(6.1) now established, (6.2),...,(6.u), where uw=n'—qg+1, follow
inductively. Therefore (5) consists of the numbers 1,2,...,n' +1 in some
order, and the induction on n is now complete. O

Lemma 3. Suppose s(1),s(2),...,s(m),s(m+1),...,s(m + q) is the initial
segment of length m + q of a fractal sequence s, that the numbers in the
segment

s'=(s(m+1),...,s(m+q)) @)
are, in some order, the numbers 1,2, ...,q, and that the number u of numbers in

s’ that are not in the segment (s(1),5(2),...,s(m)) satisfies u > 1. If these u
numbers are removed from s', then the remaining numbers form the segment

(s(m—qg+u+1),...,s(m)) 8
of s.

Proof As a fractal sequence, s satisfies the upper self-similarity property

[Kim2, Theorem 3]. That is, if the first occurrence of each n is removed from s,
then the remaining sequence is s. Moreover, by Lemma 2, the u numbers are
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necessarily consecutive. Thus, the removal operation maps every segment of
the form (7) onto the immediately preceding segment (8). O

Solving the two problems
In order to state Theorem 1, it will be expedient to define o(0) = 0.

Theorem 1. Suppose o is a selection sequence with periodic gap sequence G.
Let
G(1)=0(1), G2)=0(2)-0(1),..., G(p)=0(p)—0a(p-1)

where p > 1, be the fundamental period of G. Define p reversal sequences g;
by
(95(1),95(2),...,9i(p) = (GG +p),G(i—1+p),...,G(i +1)),

Jor 7=0,1,...,p—1, and g;(i+ hp) =g;(3) for h=1,2,..., for i=1,
2,...,p forj=0,1,...,p— 1. Let c; be the sequence given by c;(1) = 1 and

cj(i) = ¢;(i —1) +g;(: — 1) ©)

Jori=23,..., for j=0,1,...,p— 1. Let C; be the complement of the set of
terms of c;, and let c; be the sequence of elements of C; arranged in increasing
order. Let s; with terms sj(1), sj(2),..., be the fractal sequence of the
dispersion, A;, of ¢;. Supposen > (1) andn = jmodp. Then the solution of
Problem 1 is the sequence

sj(a(n)), sj(a(n) - 1)1 ey sj(a(n) -n+ 1) (10)

Using the notation of Theorem 1, we shall state and prove two more
lemmas before turning to the main body of proof of Theorem 1.

Lemma4. [f0<1i<mn,then
ciin+1—i)=o0(n)+1-0(i). (11)
Proof  Starting with c;(1), the recurrence relation (9) gives

ci(n+1—14) =1+g;(1) +g;(2) +--- + gj(n — 1)
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=1+ 5600 =% o)

T=n—1¢
n 3
=14+YGn+1-t)-YGn+1-1t)
t=1 t=1

=o(n)+1—a(z). ]
Lemma 5. sj(o(n)+1)=n+1.

Proof.  sj{(o(n)+ 1) = (number of the row of A; that contains o(n) + 1)

= (number of the row that contains cj(n+ 1), by
Lemma 4, with ¢ = 0)

=n+1,sinceaj{n+1,1) =cj(n+1). O

Proof of Theorem 1. By the definition of s;, we have
s;(cj(t)) = number of the row of A; that contains c;(t),

which is ¢, since ¢;(¢) is the number in row ¢ and column 1 of A;. In other
words, ¢;(t), for t =1,2,..., n, is the position in s; of the first occurrence of ¢.
Consequently, by (11), the positions of first occurrences of cards
n,n—1,...,2,1 are as indicated by the following table, for which row 1 gives
the card number, row 2 the position of the card in s;, and row 3 the reversed
position:

n n—1 2 1
o(n)+1—0c(1) |o(n)+1-0(2)| ... |o(r)+1-0(n—-1)|a(n)+1-0a(n)
o(1) o(2) o(n—1) o(n)

Here, column i consists of entries n — i+ 1, 1+ o(n) — o(2), o(z), so that,
starting from position o(n) + 1 in the fractal sequence s; and counting back to
5;(1), the number n — ¢ + 1 is in position o (%).

This shows that the selection sequence o(1),0(2),...,0(n) applied to the
sequence

sj(a(n)), sj(a(n) - 1)7 AR) s,-(a(n) -n+ 1))
sjlo(n) —n), ..., si(1) =1 (12)

yields the same sequence, (n,n — 1,...,2,1) as is required for Problem 1.
Next, partition the reversal of (12) into adjoining segments
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1,..., sj(o(n) —n) (13)
and
sj(a(n) -n+ 1)’ (XX sj(a(n) - 1)’ s,-(a(n)). (14)

Note that (14), as the reversal of (10), has the form (2) with m = g(n) — n. We
shall show that segment (14) satisfies the hypotheses of Lemma 2. First, from
1 < (1) < n follows

on)-n+1<o(n)+1-0(1) < o(n),

and since g(n)+1 —o(1) is the position occupied by n in s;, one of the
numbers in (14) is n. Hypothesis (3) holds since o(n)+ 1 — a(1), which
exceeds m, is the position in s; of the first occurrence of n. That hypothesis (4)
holds is a clear implication of the identity s;(c(n) + 1) =n+ 1 of Lemma 5.
Thus, by Lemma 2, the numbers in (14) are, in some order, 1,2,...,n.

Let u be the number of numbers removed from (14) when cards selected by
o are removed from (10). If u > 1, then by Lemma 3, the numbers remaining
form a subsegment

si(lo(n) —2n+1+u),...,sj(o(n) — n) (15)

as in (13). (The possibility that « = 0 poses no difficulty in what follows.)
Clearly, the card-sorting procedure removes u cards bearing the same numbers
as those removed from (14), leaving a hand of cards bearing the same
consecutive numbers, in the same order, as in (15). This removal process is
repeated until the fractal sequence and matching cards are exhausted by the final
selection, s;(1) = 1. Since the successive subsegments of (12) exactly match
the successive hands of cards, the extended order of cards — that is, the numbers
on the cards in your hand, in order, from the beginning until you have tabled all
the cards — is given by (12), and the original hand of n cards is given by (10).00

Corollary 1.  The solution of Problem 2 is given by t(n) = sj(o(n)) for
n=123....

Proof. This follows immediately from the expression for the first term of the
sequence (10). a
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Explicit solution of Problems 1A and 2A

As a final consideration, let c(n,h) denote the hth card in a deck of n cards
ordered as in the solution of Problem 1. We have already seen that
c(n,h) = s(2n — h + 1), where s is the fractal sequence associated with a
certain dispersion. For Problems 1A and 2A, this dispersion — call it A with
general term a(%, j) — is especially simple. In fact,

a(i,j) = (2i — 1)27-1.
We seek from this an explicit formula for c(n,h). First,
¢(n,2w) = s(2n — 2w + 1) = the number of the row of A that contains
2n — 2w + 1. Since column 1 of A consists of all the oldd positive integers, in
increasing order, the required row numberis n + 1 — w.
Subtler is the case for odd h. We have
cn,2w—1)=s(2n— 2w—-1)+1) =s(2(n +1 - w)),

which is the number of the row of A that contains 2(n + 1 — w). We seek,
therefore, the number 7 satisfying

(2i — 1)2! = 2(n—w+1)

for some j. Clearly, 2 — 1 must be the largest odd divisor of n —w+1. To
summarize, explicity solutions to Problems 1A and 2A are given by

c(n,2w)=n+1-w,
c(n,2w—1) =1,

where 27 — 1 is the largest odd divisor of n — w + 1.
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