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ABSTRACT. A finite ordered set is upper levellable iff it has a diagram in which, for each
element, all upper covers of the element are on the same horizontal level. In this note we
give a method for computing a canonical upper levelling, should one exist.

AMS subject classification 06A07.

1 Introduction

A finite ordered set is upper levellable iff there exists a diagram of the order
in which, for each element, all the upper covers of the element are on the
same horizontal level. The ordered set is lower levellable iff its dual is upper
levellable. These notions were introduced in [1] where it was shown that a
finite ordered set is upper levellable iff it contains no alternating cover cycle.
Since alternating cover cycles are self dual it follows that upper levellable
and lower levellable are equivalent conditions. As the authors remark in [1],
this equivalence does not seem obvious without the alternating cover cycle
theorem. The purpose of this note is to present a (greedy) algorithm which
computes an upper levelling of an ordered set should one exist and which
makes this self duality fairly clear and does not rely on the alternating cover
cycle theorem. However, we do use the alternating cover cycle theorem to
give a stopping condition should the ordered set fail to be upper levellable.
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2 Results

Let P be a finite ordered set and Ny the natural numbers with 0. An isotone
function f: P Ny is an upper levelling of P iff p < q,7 (< is the covering
relation) implies f(p) < f(q) = f(r), for all p,q,7 € P. Dually, an isotone
function g : P — Ny is a lower levelling of P iff q,r < p implies g(p) >
g(g) = g(r), for all p,q,7 € P. P is upper (lower) levellable iff it possesses
an upper (lower) levelling.

Define hy : P — Ny by,

0 if z is minimal,
sup{ho(y) + lly <z} otherwise.

ho(z) = {
and h;,; : P— Ny by,

hini(z) = sup({his1(y) + Uy < 2} U {hi(¥)lz =1 9}).

where z =, y iff z = y or there is a w € P with w < z and w < y. We'll also
use the dual notion; z =, y iff z = y or there is a w € P with z < w and
y<w

We observe,
Lemma 2.1 Fori < j, h; < hj, z < y implies hi(z) < hi(y), and hi(z) =0

iff = is minimal.

If the sequence h; of functions is bounded then we set h = sup{h;}i € Ny}
and call this the up-function for P. By considering the existence of an up-
function for the dual of P we obtain the increasing sequence of anti-isotone
functions d; : P — Np and, if these are bounded, the down-function, d, of P.

Let f be an upper levelling of P and let m be the maximum value that f
attains. For each i € Ny, set df = m ~ d;.

Lemma 2.2 For eachi € Ny, h; < f and f < d}.

Proof. We'll prove h; < f by contradiction. Let i be minimal with
hiy1 £ f and let £ be minimal with ki, (z) > f(z).
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If there exists y < x with k4 (z) = hiya(y)+1 then f(y) < f(z) < hipi(z) =
hisi(y) + 1 and thus f(y) < hiyi(y), contradicting the minimality of z.

Otherwise, there exists y with z =; y and A, (z) = hi(y). Since z and y have
a common lower cover, f(z) = f(y). and f(y) = f(z) < hisi(z) = hi(¥),
contradicting the minimality of i.

The proof of d; > f is very similar, but more complicated. Let 7 be minimal
with d} 2 f, and let z be maximal with d}(z) < f(z).

We define sequences (y;)7_, and (w;)}-o, where n € Ny is defined below, as:

(0) yo = z.

(1) If there exists w so that y; < w and d;_;(y;) = d;_;(w) — 1, then set
w; =wand j =n.

(2) Otherwise, there exist w;, yj+1 with y; < w;, Yj+1 < wj so that
Yj Su Yj+1, and d:—j(yj) = d('i—j)—](yj+l)'
Each time we apply (2) we are working with a smaller value of i — j until,

at the latest, we are calculating with dj and then only (1) can apply. In
particular, n < i.

If n = 0 then dj(z) = df(wo) — 1, dj(z) < f(z) and f(z) < f(w). Thus,
di (wo) = df(z) + 1 < f(z) < f(wo), which contradicts the maximality of z.

Assume n > 0 and observe that f(wo) = f(wy) = ... = f(w,). Since f is
an upper levelling of P, we also have d;(z) = d}_,(11) = ... = d}_,(va) by
(2), and hence, d;(z) = di_,(ya). Now, d;(z) < f(z) < f(wo) = f(wy). The
first inequality by assumption, the second because f is an upper levelling
function. Hence, dj(z) +1 < f(w,). Finally, combining these obsevations,
we have, d;_,(w,) = d_,(ya) + 1 = dj(z) + 1 < f(wy,). This contradicts the
minimality of ¢ and completes the proof of the lemma.

It is perhaps worth elaborating on the comment made in the proof. The ex-
istence of an upper levelling function guarantees the existence of a canonical
upper levelling, or up function, in a simple direct manner. It also guarantees
the existence of a canonical lower levelling, but the reasons for this, I believe,
are intrinsically more complicated.

Proposition 2.3 For a finite ordered set P the following are equivalent:
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1. P is upper levellable.
2. h exists.
3. d exists.
4. P is lower levellable.

Prouf. 2 implies 1 and 3 implies 4 are trivial. The first part of lemma 2.2
gives 1 implies 2, and its dual gives 4 implies 3. The last part of lemma 2.2
gives 1 implies 3 and its dual gives 4 implies 2.

Propositions 2.3 tells us how to calculate an upper (lower) levelling should
one exist, but it doesn’t tell us when to stop if one doesn’t. It is here that
we make direct use of the main result of [1].

An alternating cover cycle of length n in an ordered set P is a sequence
(coy @0, €1, @y, -y €ac1, Gny) SO that ¢ > @i, a; < iy, for all 7, where indices

are computed modulo n, and there exists z € P with a,_; < z < cp.

Lemma 2.4 Let yy, ..., yn—1 be a sequence in P so that either yiy1 < y; or
Yi =t Vis1, and so that, for at least one i, yiy1 < ¥ (again indices are
computed modulo n). Then P contains an alternating cover cycle.

Proof. For convenience let us assume y > y. Let ¢, cx—1,Ck-2,...,€1,
be the subsequence of the sequence yp, ..., ¥n—1 consisting of those elements
y; such that y; =; yi—) but y; # yi-1. The sequence ¢, Ck—1,Ck-2,...,C1 i5
non-empty because yo, ..., yn-1 cannot be a chain, remember we are working
modulo n. Again for convenience, let ¢o = y; where y; = yo or ¥i > Y >
... > yo. With ¢, = y;, set a; to be a common lower cover of y;_; and y;. Now
set £ =y, to obtain that (co, ao, ..., Ck—1,an-1) is an alternating cover cycle.

Proposition 2.5 Let P be an upper levellable ordered set. Then, for each
ieNO: hlSlPI

Proof. By proposition 2.3, h exists. Let x € P, and ¢ € Ng. The
calculation of h;(z) determines a sequence (y;) as, yo = z and yj1 < ¥,
if hi_Gany (i) + 1 = hij(y;) 5 of, gim =t Y5, i hicGany(yin) = hisj(y;)
Notice that the value of h;_;(y;) in this calculation only drops in the first
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case, ie. yj41 < y;. Thus, if hi(z) > |P| then there must be some element
a € P which is repeated as the top element of two such covers. Let a = Yk
be the first time this happens and let the next occurence be a = y- Then
Ye+1 < Yk and it follows from lemma 2.4 applied to the sequence (Yks or 1)
that P contains an alternating cover cycle, contradicting corollary 2 of (1.

3 Concluding Remarks

An algorithm to compute the canonical upper levelling h of an ordered set
is provided by recursively computing the h;’s until they cease to change.
Proposition 2.5 provides a simple stopping condition should the ordered set
fail to be upper levellable. The time complexity of the algorithm is at most
O(|PJ®). This does not compare well to the algorithm outlined in (1], which
is O(|P|+m), where m is the number of covers (which in most instances will
be the length of the input file). On the other hand, our algorithm has the
advantage of being extremely easy to implement and in practice it seems to
run quite quickly. A more detailed analysis might provide a better bound on
the time complexity of the algorithm. Implementations of the algorithm are
available from the author.

I would like to thank Thomas Tran! for writing the programs mentioned
above and for his assistance in revising this paper. I would also like to
acknowledge the valid criticisms of an earlier version of this paper by a referee.
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