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Abstract

The shares in a (k, n) Shamir threshold scheme consist of n points
on some polynomial of degree at most & — 1. If one or more of the
shares are faulty, then the secret may not be reconstructed correctly.
Supposing that at most ¢ of the n shares are faulty, we show how a
suitably chosen covering design can be used to compute the correct
secret. We review known results on coverings of the desired type,
and give some new constructions. We also consider a randomized al-
gorithm for the same problem. and compare it with the deterministic
algorithm obtained by using a particular class of coverings.
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1 Introduction

Suppose we have a (k. n) threshold scheme. say a Shamir scheme (see. e.g..
[6:) implemented in F,. Let

S={(v.y):1<i<n}CF, xF,

be the set of n shares. and assume that at most ¢ of the shares are faulty. In
other words. there exists a polynomial po(x) € F, [x] of degree at most &k — 1
such that y, = po(x;) for at least n — ¢ of the n shares. The secret, which
can be reconstructed from any &k non-faulty shares. is the value py(0). The
problem we consider in this note is to find an efficient algorithm to compute
po. given that some unspecified subset of ¢ of the n shares are faulty.

Denote G = {i @ yi = po(,)} (the good shares) and B = {1,...,n}\G
(the bad shares). Then |G| =n —t and |B| = ¢.

For any T C {1,....n} such that |T| = k, there is a unique polynomial
pr of degree at most k& — 1 such that pr(x;) = y; forall i € T. The
polynomial pr can easily be computed by Lagrange interpolation. The
following two facts are obvious:

1. If T C G, then pr = pg.
2. I TNB # 0, then pr # po.

Now, for T C {1,...,n}, |T| = k, define Cr = {i : pr(zi) = y;}. Then
it is clear that |Cr| > n—t if T C G. On the other hand, if TNB # @, then
[Crl <k+t—1,since [CrNB| < |B|<tand [CrNG| <k -1.

If n —t < k+t—1, then there could exist a polynomial pr # py of
degree at most £ — 1 such that at least n — ¢ shares lie on pr. Therefore,
in order to guarantee that our problem can be solved, it must be the case
that n —t > k4t -1, or n > 2t + k. We will assume that this inequality
holds for the rest of this note.

In the remaining sections of this paper, we show how a suitably chosen
covering design can be used to compute the correct secret. We review known
results on coverings of the desired type, and give four new constructions —
two direct constructions and two recursive constructions. We also consider
a randomized algorithm for the same problem, and compare it with the
deterministic algorithm obtained by using a particular class of coverings.

2 An algorithm to find the polynomial p,

Let 7 be a set of k-subsets of {1,...,n}, called blocks. The following
algorithm will compute the polynomial pg if the set system 7 is chosen
appropriately.
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Algorithm 1

Input 7.5 n.k and t.
For each T" € 7. performn the following steps:
. compute pr

1
2. compute Cr
3. if |Cy] > n = t. then set pp = pr and QUIT

In order for Algorithm 1 to succeed, we require the following property
(*) to be satisfied by the set system 7

For any B C {1,...,n}, |B} < t, there exists a block T € T
such that BNT = 0.

A collection 7 of k-subsets of {1....,n} (called blocks) is an (n, k,t)-
covering if every t-subset of {1,...,n} is contained in at least one block.
The following lemma is obvious.

Lemma 1 A set system T satisfies (*) if and only if the set system

{(n,....n\T:TeT}

is an (n,n — k.t)-covering.

3 Coverings

Let C(v, k,t) denote the minimum number of blocks in a (v, k, t)-covering.
Then, C(n,n — k,t) provides an upper bound on the number of iterations
required by Algorithm 1. Some results on covering numbers of this form
can be found in Mills [2], Sidorenko [3, 4, 5] and Todorov [7]. We briefly

summarize some known results now.
Theorem 2 (2, eq. (2.16), p. 221) Ifn > k(t+1), then C(n,n—k,t) = t+1.

For n > k(t + 1), the set 7 can be taken to be t + 1 disjoint k-subsets
of {1,...,n}. It is clear that this collection of subsets satisfies property
(*), since any element of a t-subset is contained in at most one of the given
blocks.

Theorem 3 [2, eq. (2.17), p. 221) If k(t + 1) > n > k(t + 1/2), then
C(n,n—kit)=t+2.
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For k(£ +1) > n > k(t +1/2) and k even. we can construct the set 7 as
follows. First. take t — 1 disjoint A-subsets of {1.....n}. Then. construct
three further A-subsets on a disjoint set of 3k/2 points. such that cach
of the 3k/2 points oceurs in two of the three blocks. (This can be done
since n > k(t + 1:2) = k{t = 1) + 3k/2.) We show that this collection
of blocks satisfies property (*). First. £ — 1 points are required to hit the
t — 1 disjoint blocks. Then. since any additional point hits only two of the
renaining three blocks. (*) is satisfied.

In general, from {2. Theorem 2.4] we have the following result.

Theorem 4 Suppose s and t are integers such that 3 < s < (t+3)/2. and

suppose that
s—3 s—4
k(t— 3 )Sn<k(f—T). (1
If k is odd and

s~3 s—3 s=3
k(t— 5 )Sn<k(t— 5 )+ 5

then C(n,n —k.t) >t + s + 1. Otherwise, C(n.n —k,t) =t +s.

If (1) is satisfied and & is even. then we can construct the set 7 by
generalizing the construction given after Theorem 3. as follows. First, take
t —2s+3 disjoint k-subsets. say Ay, ..., Ai—2s43. Next, for1 <i < s-1, let
B, C;, D; be disjoint (k/2)-subsets, and construct blocks B; UC;, C; U D,
and D; U B,. We have a collection 7 of t — 25+ 3+ 3(s — 1) =t + s blocks
of size k. Further, the cardinality of the union of these blocks is

k(t—23+:3)+w=k(t—s;3> <n.

2

We show that 7 satisfies property (*). First, ¢ — 2s + 3 points are required
to hit the blocks A;...., A;—2s43. Then, for 1 < ¢ < s — 1, we require two
points to hit the three blocks B; U C;, C; U D;, and D; U B;. Hence, any
set of t —2s+ 3 +2(s — 1) — 1 = ¢ points is disjoint from at least one block
in 7.

Remarks:

1. Theorems 2, 3 and 4 were proved independently by Sidorenko [3],
using the terminology of Turédn systems.

2. There are more known results about the covering numbers C(n,n —
k,2) in [2]. For example, it is shown there that C(n,n —k,2) =5 for
:g-k >n> %k; and C(n,n — k,2) =6 for %k >n> %k.
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3. Sidorenko {4} shows that C(n.n—4.4) = 3t+3-| 2| whenever 3t +4 <

n< At + 4. )

Observe that Theorems 20 3 and 4 leave a finite interval of covering
wnnbers undetermined for any fixed values of & and ¢. For "small™ values
of k and t. the missing numbers can be found in the tables presented in [1].
As an example. consider the case t = & = 3. We have that C(n.n-3.3) = 4
for n > 12, by Theorem 2. C(11.%.3) = 5 by Theorem 3. C(10.7.3) = 6
by Theorem 4. The remaining values of C(n.n — 3,3) arc found in [1]:
C(9.6.3) = 7. C(8.5.3) = 8, C(7.4.3) = 12 and C(6,3,3) = 20.

For the case & = 4 and t = 3. we have C(n,n — 4,3) = 4 for n > 16
from Theorem 2: C(n.n — 4,3) = 5 for n = 14,15 from Theorem 3; and
C(n.n -3,3) =6 for n =12.13 from Theorem 4. The remaining covering
numbers can be found in [1]: C(11.7.3) = 8,C(10,6, 3) = 10.

4 New constructions of coverings

In this section. we present some new constructions for coverings. These
constructions will not, in general. produce optimal coverings. However,
they provide a simple, uniform method of obtaining coverings which are
often reasonablely close to being optimal.

Our first construction is described in the following theorem.

Theorem 5 Suppose n > k + st. Then
k
t+[ ;]).
H
Proof. Let A = {A;. Aa,..., A, (51} be aset of disjoint subsets of {1,...,n}

such that |4;] = s — 1 for i = 1.2.---,s[%] — k and |4;| = s otherwise.
This is possible because

vk (s[5 -8) v ([ weo[E] +8).

Now, let T be formed by taking all unions of |'§] subsets in A. We
show that 7 satisfies property (*). In fact, a set B of ¢ points hits at most ¢
subsets in A. Hence, at least [-ﬁ-’] subsets in A are disjoint from B, so there
is a block T € 7 which is disjoint from B.

It can be verified that the size of any block in 7 is at least &; this follows

o ()

We can delete points from any blocks in 7 that have size greater than k,
obtaining a set of blocks of size k that satisfies property (*). a

Cnn—-kit)< (
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In general. Theorem 5 does not produce optimal coverings. However,
one case in which Theorem 5 does yvield optimal coverings is s = k. when
the covering resulting from Theorem 5 is the same as that of Theorem 2.

Next. we present a variation on the above construction.

Theorem 6 Supposc k =l mod s.0 <!l <s <k. Then

t+ & t+ &) -1
Cn.n-k.t)< ( kt""l>+( LiJ )x,
L5l 15
wherex =t —1ifn>k+s+1t andxz =1t otherwise.
Proof. Take a set A =A'U{A} of t + | %] disjoint subsets of {1,2,---,n},
where each set in A’ has s clements and A has s + [ elements. We can do
this because

(f+ [EJ —1)S+(s+l)=st+k5n.

since s = ["%"'J. Let T consist of two types of k-subsets of {1,2,---,n},

as follows:

Type I The unions over all ([% ] = 1)-subsets of A’ together, in turn, with
the set A.

Type II For each subset S C A’ with [S]| = [%J, choose t + 1 disjoint

{-subsets of
{L2.---,.a\( | 40
A€S
We can do this because

{ng+(t+l)l=k+lt<k+st§n.

Then take the unions of each of these l-subsets, in turn, with the
elements of U4, esA; as the required k-subsets.

We show that 7 satisfies property (*). Let T be a t-subset of {1,2,---,n}.
If TN A = 0, then one of the k-subsets of Type I must be disjoint from
T, since T hits at most t sets in A'. If TN A # @, then T hits at most
t — 1 sets in A’. Thus there is a subset S C A’ with [S| = | £] such that
TN(Ua,esAi) = 0 and there is also an [-subset disjoint from T. Therefore
there is a k-subset of Type II disjoint from 7T". The number of the k-subsets
of Types I and II is

(e () ()

Now suppose that n > k£ + s + lt. Then we can modify the Type II
blocks to Type II' blocks, as follows.
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Type II' For cach subset § € A’ with |§] = [éj choose ¢t disjoint {-subscts

of
{L2.aa\(J Aua).

‘4IE$
Then take the unions of each of these [-subsets, in turn, with the
elements of U4, s, as the required k-subsets.

A similar argument shows that he collection 7 of all the blocks of Type I
and Type II" satisfies property (*). The number of total subsets in Type I
and IT' is

) ()= () e

1]

We also can use recursive constructions to build the coverings, as in the
following theorems.

Theorem 7 Suppose k =l mod s.0 <!l <s < k. Then
t+ %1
5] -1
Proof. Let A and the blocks of Type I be the same as in the proof of
Theorem 6. Let the blocks of Type II be the complements of blocks in an

(n—1—-s,n—1—-s—k,t— 1)-covering based on the set Ua,ca A;. It is
readily checked that the set system satisfies the property (*). a

C(n,n—k.t)s( )+C(n-l—s‘n—l—s—-k,t—1).

When n > k + s +lt, it is sometimes better to use the following variant
of the previous theorem.

Theorem 8 Suppose k =l mod 5,0 <! <s< k. Then
t+15]
H
Proof. This time we slightly modify the sets described in the proof of
Theorem 6 as follows: Let A be divided into two sets of size s and {. The
set of size s becomes a set in .A’ and the set of size ! becomes the new set
A. The blocks of Type I are now unions over all |_§j subsets of A’ together,
in turn, with the set A. The blocks of Type II are complements of blocks
inan (n —{,n—1{ — k,t — 1)-covering based on the set Us,ea-A;. Again it
is readily checked that the set system satisfies the property (*). |

C(n,n—k,t)s( )+C(n—l,n—l—k,t—1).
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Let s=n =k and A =l wmod s. If{ =0, then from Theorem 5 we have
Cln.n=k.1) < . If1 > 0. then from Theorem 6 we have C(n.n—k.1) <
221, These numbers are optimal according to the result of (2], and could
be used as the base cases for a recursive algorithin based on Theorvems 7
and 3.

For t = 2 and t = 3. we list values of |7| in Tables 1 and 2 for small &
and n. In a similar way. we list values of |T| for £ = 3 in Table 3. In these
tables. we only list the values for 2t + k < n < k(t + 1).

The entries in these tables can be interpreted as follows:

e Values in parentheses are the exact covering numbers C(n,n — k.t)
from (2, 5] and the covering tables at the web page
http://sdcc12.ucsd.edu/ ~xm3dg/cover.html

e In the upper right corner of each entry, a “1” means that the con-
struction follows from Theorem 6, and a “2” means from Theorem 7
or Theorem 8. Otherwise the construction comes from Theorem 5.

o Optimal coverings produced by our constructions are marked by stars.

An easy computer program will produce covering designs with the number
of blocks listed on the left in our tables.

5 A randomized algorithm
Next, we provide a randomized algorithm to compute pg.

Algorithm 2

Input S, n,k and ¢.
REPEAT the following steps:

. Let T be a random k-subset of {1,2,...,n}.
. compute pr
compute Ct

N

. if |Cr| = n — ¢, then set pgp = pr and QUIT; otherwise, proceed
to the next iteration of the REPEAT loop.

Note that Algorithm 2 is a Las Vegas type algorithm, since it terminates
if and only if the correct polynomial pp has been found. In any iteration,
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Table 2: Covering numbers C(n.n — k,3)

n\k 3 4 5 6

9 10(7)"

10 | *6(6)% | *10(10)

11 [ «5(5) [ 10(8) | 17(11)?

12 3(6)° [13(11)% | 20(15)
13 7(6)% | 11(10)* | 20(13)
14 «5(5)° | 9(8)° | 16(11)"
15 «5(5)2 | 8(6)*> | *10(10)
16 7(6)° | 10(8)
17 x6(6)%Z | 9(7)°
18 x5(5)2 | 7(6)°
19 *5(5)2 | 7(6)%
20 x6(6)°
21 *5(5)%
22 *5(5)°
23 ¥5(5)2

Table 3: Covering numbers C(n,n — 3,t)

n\t 2 3 4 5 6

7 | *5(5)"

8 [ *4(4)°

9 10(7)"

10 +6(6)2

11 +¥5(5) | 11(9)

12 10(8)°

13 9(7)% | 16(11)°

14 9(6)% | 11(10)

15 10(9)% | 18(13)°
16 9(8)% | 16(12)2
17 9(7)7 [ *11(11)°
18 +10(10)°
19 +9(9)
20 9(8)*
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the algorithm is successful if 7 contains no bad shares. If there are exactly
¢t bad shares. this happens with probability

(5
Q)

Hence. the expected number of iterations of Algorithm 2 is

p=

1 () _ nn—1)---(n—k+1)
p~(";') (n=-t)n—t-1)---(n—t—k+1)

3, =

6 Comparison of the two algorithms

The value i3, derived above is an average computed over all possible random
choices made in Algorithm 2. In order to compare this with Algorithm 1, we
should compute the average-case complexity of Algorithm 1. This requires
specifying a particular set system 7, and we will use the set system from
Theorem 2. Since Algorithm 1 is a deterministic algorithm, we compute
the average number of iterations over all possible ¢-subsets. B.

Suppose n > k(t + 1), and Let 7 = {T}, T2, ..., Ti4+1} be the set system
containing ¢ + 1 disjoint k-subsets of {1,...,n}, in which 7; = {( - 1)k +
1,...,tk} for 1 <i <t + 1. For a t-subset B, define

ig = min{i : BNT; = 0}.

Let ¥(j) denote the number of ¢-subsets B such that ig = j. Then the
average number of iterations required for Algorithm 1 is

I . .
Sl iv()
=
(*)
By a simmple application of the inclusion-exclusion principle, we have

B0) = g(—l)‘“ "0

for 1 < 7 < t+ 1. Therefore, it follows that

iéﬂp(ﬂ = gji(_l)iﬂ(n:ik)(g::)

i=1
t+1 . t+1 .
- 3o ()00
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= %(—l)tﬂ('l—tik)i‘i({)

=1 J=ti
_ i(_l),“ n—ik ; tE+2
B — ¢ i+1/)

Hence. the average number of iterations required for Algorithm 1 is
(=) (=3

w=Fer (/)

i=1

Table 4 lists some of the values of 3, and 34. These values are very close,
especially for large n. Also, observe that 34 < 3, for all values computed.
Thus the average-case complexities of the two algorithms are similar, and
indeed, there is no real advantage in using the randomized algorithm, at
least when n > k(t + 1). For n < k(¢ + 1), the randomized algorithm
could be considered since the required coverings become more difficult to
construct and there is no uniform description of “good” coverings for all
parameters in this range.
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66 3 4 1.196 1.210 .989
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