THE EDGE COVERING NUMBER OF ORDERED SETS

JEH GWON LEE

ABSTRACT. The edge covering number e(P) of an ordered set P is the minimum
number of suborders of P of dimension at most two so that every covering edge
of P is included in one of the suborders. Unlike other familiar decompositions we
can reconstruct the ordered set P from its components. In this paper we find some
familiar ordered sets of edge covering number two and then show that e(2") — oo
as n gets large .

1. Introduction

In this paper we introduce a new parameter, edge covering number, for finite
ordered sets related to their decompositions. We begin with basic definitions and
notations for ordered sets.

The elements of an ordered set P are called vertices and an ordered pair (a, b)
of elements of P is called an edge if b covers a, i.e., @ < b and there no vertex z
such that a < z < b. In fact, vertices and edges are just the vertices and directed
edges of the (Hasse) diagram of P as a directed graph. An ordered set is called
a tree if its diagram has no cycle as a (undirected) graph. For an ordered set P,
a suborder is a subset Q together with a subrelation of the ordering of P which is
itself an ordering of Q. An induced suborder is a subset Q with the restriction of the
ordering of P to the set Q as its ordering. A linear eztension L of P is a linearly
ordered set with the same underlying set as P such that z < y in P implies z < y
in L.

Let [n] = {1,2,---,n}. Then n and n denote the chain and the antichain,
respectively, on [n]. For ordered sets Py,...,P, , the product P, x -+ x P, is
the ordered set defined by the condition that (ai,...,as) < (b1,...,b) & a1 <
by,...,an < b, for any elements a,,b, € P, ...,a,,b, € P,. Given an ordered set P,
the notation P™ is used as shorthand for the n-fold product P x --- x P. If P([n])
is the power set of [n], then (P([n]),C) = 2".

For an antichain A, we define the disjoint (cardinal) sum, denoted by 3_(P;|i €
A), of a family {P;|i € A} of disjoint ordered sets to be the set |J(P;|i € A) on
which no new order relations are added, that is, z < y <= z < y in some P, .
When A = {1,2,-- ,n}, we write }_(P;|i € A) = P, + P+ --- + P,. For a chain
C, the linear (ordinal) sum, denoted by @(P;|i € C), of a family {P;|i € C} of
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disjoint ordered sets is defined to be the set (J(P:|i € C) onwhichz <y <z <y
insome P;orz € Piandy € P withi<jinC. WhenC={1<2<---<n}, we
write @(P;|i € C) =P, ® P, ®---® P,. An ordered set is an interval order if no
4-vertex induced order is a disjoint sum of two length-2 chains, and is a semiorder
if no 4-vertex induced order is a disjoint sum of two nonempty chains.

Ordered sets are assumed to be finite throughout this article. We now define
some familiar parameters of an ordered set P as follows (cf.[6]) :

The width w(P) of P is the maximum size of an induced antichain of P.
The length I(P) of P is the maximum size of an induced chain of P.

The dimension d(P) of P is the minimum number of linear extensions the inter-
section of whose orderings is the ordering of P itself.

Examples. w(n) = 1,!(n) = n,d(n) = 1, w(@) = n, I(z) = 1, d@) =
2, w(2") = ([n';ﬂ), {(2") =n+1and d(2") =n.

In 1950, Dilworth [2] proved the celebrated chain decomposition theorem that
the width w(P) of an ordered set P is the minimum number of chains whose vertices
cover P. Motivated by this result, Fishburn [3] recently defined another parameter
of describing the structure and complexity of an ordered set. To do this he con-
sidered relatively simple ordered sets, called semichains, which are ordered sets of
dimension at most 2. For example, chains, antichains, upward rooted trees (con-
nected ordered sets with no induced suborder of the form 2®1 ), downward rooted
trees (connected ordered sets with no induced suborder of the form 1 2 ), prod-
ucts of two chains, complete bipartite ordered sets (m & n, for some m,n > 1) and
ordered sets of width 2 are semichains. For more information refer to [3] and [4].
The following is Fishburn’s new parameter.

The thickness t(P) of an ordered set P is the minimum number of induced
semichains of P whose vertices cover all vertices of P.

The following are some of the results in [3].

1. ¢(P) < I(P) for any ordered set P.

2. t(P) < (w(P) + 1)/2 for any ordered set P.

3. t(P) < 2 for any semiorder P.

4. t(2™) — oo as n gets large.

5. t(n3) = co as n gets large.

Unfortunately, in this decomposition we cannot reconstruct the original ordered
set P from its semichain components. For example, any bipartite ordered set can be
decomposed into two antichains, maximal vertices and minimal vertices, and so it
has thickness two. But we cannot see its original ordering from the antichains. Here
we introduce our new parameter of an ordered set P related to a decomposition of

edges in which we can reconstruct P from its components. In fact, the ordering of
P is the transitive closure of the union of the orderings of the components.

The edge covering number e(P) of an ordered set P is the minimum number of
suborders of P of dimension at most two (semichains) so that every edge of P is
included in one of the suborders.
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2. Examples of Edge Covering Number 2

In this section we exhibit some familiar ordered sets of edge covering number at
most 2.

Proposition 2.1. Every ordered set can be embedded into an ordered set of edge
covering number at most 2.

Proof. Let P be an ordered set. Put a newvertex on each edge of P to obtain an
ordered set P'. Then the downward edges and the upward edges in P/, respectively,
from the original vertices of P form two semichains which in fact are disjoint sums
of downward rooted trees and upward rooted trees, respectively, of length 2. O

For a vertex z in an ordered set P, let 6(z,y) = min{n:zx=2,21, -, 2, =y,
and (z;, zi41) or (2i41,2;) is anedgeof P for 0 <i<n —1}.

Proposition 2.2. Every tree has edge covering number at most 2.

Proof. Pick a vertex z in a tree T. Now, E; = {(y,2) : (y,2) is an edge of T and
{6(z,y),d(z, 2)} = {2i,2i + 1} for some i > 0} and E; = {(y,2) : (v,2) is an edge
of T and {6(z,y),6(z,2)} = {2i — 1,2i} for some i > 1} form semichains which
realize T'. In fact, E; and E; are disjoint sums of ordered sets of the form m&1®n,
for some m,n>0. O

For a natural number n > 2, consider S, = ({4 € P([n]) : |4] € {1,n—-1}},Q),
which is usually called the standard ordered set (of degree n).

Proposition 2.3. Every standard ordered set has edge covering number 2.

Proof. In the standard ordered set Sp,n > 2, let a; = {i} and b; = [n] — {i},
the complement of the set {i}, for each i € [n]. Then the sets of edges E;, =
{(ai,bj) :1<i<n-landi<j<n}and By = {(a;,d;) : 1 <j<n-1
and j < i < n} form semichains which realize S,,. In fact, E, is represented by
two linear extensions {@n—1 < @p—2 < **- < @1 < bp < bpoy < --- < by} and
{e1r < b2 < a2 < +++ € by) < @n—1 < bn} and E; by two linear extensions
{az <a3<---<ap <by <by <+ <bpy}and {@y < bpoy < @py < -+ <
b2 < az < b1}. On the other hand, we know that d(S,) = n > 2 (cf. [4]), whence
e(Sp)=2. 0O

Bogart, Rabinovitch and Trotter [1] has shown that there is no upper bound
on the dimension of interval orders. But the edge covering number does better for
certain interval orders. An ordered set P is called ranked if all maximal chains in
1 P have the same finite length. For a subset S of an ordered set P, we denote
by min S the set of all minimal elements of S.

Proposition 2.4. Every ranked interval order has edge covering number at most
2

Proof. Let P be a ranked interval order. Set P, = min P and, for £ > 1, P = min
(P = U;ck Pi)- Since P is finite, P, # 0 and Pny; = @ for some n. Observe that,
for 1 < k € n—1, the induced suborder Ax on PyUP,4, is of length 2. Rabinovitch
showed implicitly in {5] that an interval order with length at most 2 has dimension
at most 2. Hence, the disjoint sums A; + A3 + --- and A, + A4 + --- form two
semichains which realize P. O
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3. Main Theorem

In this section we prove that there is no bound on the edge covering number of
the Boolean lattice 2®. First we consider an induced suborder of 2". For an odd
number 7, consider My, = ({A € P([n]) : 231 < |4| < &H},C). In fact, this is
just the middle two layers of 27,

Lemma 3.1. e(M,) > 2L for any odd number n.

Proof. Let vn = ((,,7)/,)- Then the number of all vertices of My is 2v, and

so the number of all edges is e, = ";"-lv,.. Suppose that the edges of M,, are
decomposed into at most k suborders. Then there exist at least [>] edges in one
of the suborders, say A. A simple fact in graph theory is that if a graph has no
cycles then it has fewer edges than vertices. Now & = Ztly, and we have

n+1 n+1 n+1
> —_—

ok Up 2 20, &= 2K >2&=

Hence we conclude that if ﬂfl > k then A as a graph has a cycle and thus A contains

an induced suborder of the form Cp (Figure 1). But M, clearly does not contain

C) and each C, with p > 1 is well known to be of dimension 3 (cf. (4]). Therefore

A is not a semichain, whence e(My) > k, which implies that e(My) > 2L, O

>k

bo b by b
g @ a4z - Gy
Cy
Figure 1.

An induced suborder Q of an ordered set P is said to be convez if a,b € Q and
a <z <bin P imply that z € Q. Now we have a simple but useful observation.

Lemma 3.2. If Q is a convez induced suborder of an ordered set P, then e(Q) <
e(P).

Theorem 3.3. ¢(2") = oo as n gets large .

Proof. Since M, is a convex induced suborder of 2", the proof follows from Lemmas
3.1 and 3.2.

4. Concluding Remarks

In this final section we consider the edge covering number of products of chains
and apply this to compute e(2¥) for some k. We begin with an observation on the
edge covering number of products of ordered sets.
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Proposition 4.1. For ordered sets P and Q, e(P x Q) < e(P) + ¢(Q).

Proof. Let e(P) = m and e(Q) = n. Suppose that we use m colors for the edges
of P and other n colors for the edges of @ to realize their respective edge covering
numbers. We now want to show that these m + n colors are enough to realize the
edge covering number of P x Q. Observing that ((a, b), (a’,b')) is an edge of P x Q
if and only if either (a,a’) is an edge of P and b = ¥ or (b,}') is an edge of Q
and a = @', color the edge ((a, ), (2',4")) of P x Q according to the color of (a,a’)
or (b,b'). Then the suborder of P x Q with the edges of one color is in fact the
disjoint sum of the copies of the semichain of P or @ with the edges of the same
color, indexed by the elements of the other order. Hence e(P x Q) <m +n. 0O

Since the product of two chains is a semichain, we immediately have the following
corollary.

Corollary 4.2. For natural numbers k,ny,ng,--- ,ng,

e(ny xnzx---xnk)g%.

Especially, e(n*) < &-}1 for natural numbers n and k.

We first show that e(2%) = 2. In fact, the set of all edges of 2° is divided into two
semichains which are represented by solid and broken line segments, respectively,
in Figure 2.

Figure 2.

31



We now can compute e(27). By the preceding result and Proposition 4.1, we have
e(27) = e(2° x 22) < e(2%) +¢(2?) = 3. On the other hand, M- is a convex induced
subset of 27 and then it follows from Lemma 3.1 that e(27) > 2. Consequently,
¢(27) = 3. But ¢(2%) remains to be unknown at the moment. However, we know
that 3 < e(2%) < 4 for i = 8,9,10 and 4 < e(2%) < 6 for i = 11,12,13, 14, 15.

There is no simple relation between the parameters e and ¢ since

e(n®) =2 and t(n®) = oo as n gets large;
e(M,) = oo as n gets large and t(M,) < I(My) =2.

However, we compare the parameters d, ¢t and e for some familiar ordered sets
in the following table which remains the symbols ? to be determined.

d t e
2" n -+ 0 — 00
Sn n 2 2
22 2 1 1
23 3 2 2
24 4 2 2
25 5 ? 2
28 6 ? ?
27 7 ? 3
3 3 2 2
34 4 2
43 3 ? 2
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