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Abstract

A set X of vertices of a graph is said to be dependent if X is not
an independent set. For the graph G, let Pi(G) denote the set of
dependent sets of cardinality k.

In this paper, we show that if G is a connected graph on 2n ver-
tices where n > 3 then | Pa(G)] > | Pn+1(G)|. This study is motivated
by a conjecture of Lih.

1 Introduction

We assume that the reader is familiar with the basic terminology of graph
theory and Sperner theory of partially ordered sets (posets). Any definitions
not stated here may be found in [1], [2], or [3].

Let B, be the Boolean algebra of order n, that is, the poset consisting of
all subsets of [n] = {1,2,...,n}, ordered by inclusion. In 1928, Sperner (7]
showed that the maximum size of an antichain in B, is (l n/2 J). In general,
a poset P is said to have the Sperner property if the maximum size of an
antichain in P equals the size of the largest rank of P.

Let F be a nonempty collection of subsets of [n] = {1,2,...,n}, each
having cardinality t. Denote by Pr the poset consisting of all subsets of [n]
which contain at least one member of F, ordered by set-theoretic inclusion.
Ko-wei Lih [6] showed that if F is any nonempty collection of singleton
subsets of [n] then Pr has the Sperner property. Moreover, Lih made the
following conjecture.

Conjecture 1.1 (Lih [6]) Let1 <t < n be an integer. If F is a nonemply
collection of t-subsets of [n] then Pr has the Sperner property.
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This conjecture, while true in the case { = 1, is false in general. For
counterexamples for ¢ > 4, see [4] and [8]. Our focus here is on the case
i

A subset of vertices in a graph is said to be dependent if it is not inde-
pendent. Now let F be a nonempty collection of 2-sets of [r]. It will be
convenient to associate with F, a graph, as follows. Let G be the graph
with vertex set [n] and edge set F, and let Pg; denote the poset consisting
of all dependent sets of V((G), ordered by inclusion. Clearly, the poset Pg
is isomorphic to Pr.

For the case t = 2, Lih’s conjecture has been established. Using the
graph theoretic viewpoint, we state this result as follows.

Theorem 1.2 For every graph G having at least one edge, lhe posel Pg
has the Sperner property.

Theorem 1.2 was proved in the case that i has an odd number of vertices
by Zhu [9], and for the case of an even number of vertices by Horrocks [5].

For any graph GG with at least one edge, P is a ranked poset. Although
the minimal elements in Py are 2-sets, we take the rank of H € Pg to be
|H|, as in B,,. The following theorem concerning the unimodality of the
rank numbers of P was obtained by Zha [8].

Theorem 1.3 Let G be a graph on n vertices and let Py, Py, ..., P be the
ranks of Pg. Then Pg is rank unimodal with largest rank P4y tfr = 2n+1,
and P, or P,y ifr =2n.

In this paper, we focus on the problem of determining the largest rank
in P; where GG has an even number of vertices. The following partial results
are known.

Let (G be a graph on 2n vertices.

e If the maximum degree of a vertex in G is at least n+1 then |P,(G)| >
|Pn+1(G)l . (Zha [8])

o If [Pa(G)] < 27, (71) then [Po(G)] < [Paya (G)] - (Zha [8])

e If there is a vertex in G which is incident with every edge except
possibly one then |P,(G)| < |Pas1(G)| . (Horrocks [5])

e If (7 contains six disjoint edges then |P,(G)| = |Pu+1(G)| . (Horrocks
[5]) ?

In this paper, we prove the following result.\

Theorem 1.4 Let n > 3 be a posilive integer. If G is a connected graph
on 2n verlices then

| Pa(G)| 2 |Prsar(G)]
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2 Spanning Subgraphs and Forests

The main idea in the proof of Theorem 1.4 is to exhibit a spanning sub-
graph H of G such that |P,(H)| > |Pat1(H)| . Provided that H satisfies
an additional condition, it may be shown that the desired result follows,
namely |P,(G)| 2 |Pat1(G)] -

We require the following lemma found in [5].

Lemma 2.1 Let G be a graph on 2n vertices, and let H be a spanning
subgraph of G. If

1. for any two isolated vertices z and y of H, H \ {z,y} has no more
than 07} (*71) independent sets of size n — 1, and

i=2 i

|Pa(H)| 2 |Payi(H)| and,
3. Py has the Sperner property,
then Pg has the Sperner property, and |Po(G)| > |Pat+1(G)]

In each connected graph G, it will be convenient to identify a particular
spanning subgraph, namely a spanning forest, each component of which is
a star graph. We now show that G admits such a spanning forest.

Definition 2.2 Forn > 2, let S, be the complete bipartite graph Ky n_;.
A graph is called a star graph if it is isomorphic to S, for some n > 2.

Lemma 2.3 If G is a connecled graph having at least 2 vertices then G
has a spanning forest, each component of which is a star graph.

Proof: The proof is by induction on n = |V(G)|. Let T be a spanning
tree of G.

For n = 2, the tree T is isomorphic to S, so the lemma holds.

Suppose now that the lemma is true for all graphs having fewer than n
vertices.

Now T has at least two leaves by Corollary 2.2 on page 26 of [2]. Let.
z be one of these leaves and let y be the vertex adjacent to z. By the
induction hypothesis, T'\ z admits a decomposition C;, Cs, ..., C, into star
graphs. Without loss of generality, let Cy be the component of the spanning
forest of T \ z which contains y. Now Cy = Sy, for some m > 2.

If y is adjacent to every vertex in Cy then Cy' = C) + (z,y) = Sm+41
and Cy’,C,,...,C;. is a spanning forest of T'.

Otherwise, ¥ is not adjacent to every vertex in C; and thus m > 3.
Let Cp consist of the vertices z and y and the edge (z,y) and let C;’' =
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C1\ {y}. Since Cp = S, and C| = Sp,—1, we have that Co,Cy’,Cy,...,C:
is a spanning forest for 7.

In either case, T, and therefore also G, has a spanning forest which is
composed of star graphs and the proof is complete. O

3 Proof of Theorem 1.4

This section is devoted to proving our main result, Theorem 1.4.

To this end, let G be a connected graph on 2n vertices where n > 3. By
Lemma 2.3, G has a spanning forest I, each component of which is a star
graph.

We now consider six cases, according to the number of components of
F. In each case, we show that G contains a spanning subgraph H which
satisfies the first two conditions of Lemma 2.1. That Py has the Sperner
property follows from Theorem 1.2. Now applying Lemma 2.1, we obtain
|Pa(G)| 2 |Pat1(G)| as desired.

In this section, the notation Z,, is used to refer to the graph having
m vertices and no edges. The independent set generating function for the
graph G is defined to be the polynomial f(G) = }_;5, aiz’ where a; is the
number of independent sets in G of cardinality . Note, for example, that
F(Sn)=(+z)" 4z

3.1 F has exactly one component

In this case, F' is isomorphic to Sz,. For k > 2, the number of independent

sets of size k in Sy, is (2";1) so

P = 1Bna(P = (1) = (1) - {(x)-C l=o

Moreover, as F' has no isolated vertices, it satisfies the first two conditions
of Lemma 2.1.

3.2 F has exactly two components

The following lemma will be required.

Lemma 3.1 Lei m > 2 be an integer. Fort=1,2,...,2m—1,

()2t ) omcoof),
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Proof: By symmetry, we need only consider ¢t = 1,2,...,m. We will
consider two cases; i =mand 1 <t < m.

First, for ¢ = m, the right hand side becomes 2(m + 1). For m > 2,
(*™) > 2(m + 1) so the result holds.

Secondly, for t < m, as (r:‘) = 0 it suffices to show that ("Z‘) >+
1)(2":;‘). Now

2m __2m2m—1 2m—t+1/2m—1t
m/) m m-1 m—t+1 m

> o (2mm- t) > (t+ 1)<2mm— t)

for ¢t > 1 which completes the proof. O

In this case, F = 5,45+ San-r—1 for some 1 < r < 2n—3. The indepen-
dent set generating function for F'is f(F) = [(1 + )" +z][(1 + 2)*" ™"~ *+4]
so Py(F) = (%) = (%) = 1) = (77) for k> 3.

The inequality |P,(F)| > |Pn+1(F)| may be seen to be equivalent to

2n — 2 m—r—2 r
(n_l)Z(r+1)< ne1 )+(2n—r—l)(n_1).
This latter inequality holds for n > 3 and 1 < r < 2n — 3 by Lemma 3.1.

Therefore, |P,(F)| > |Pa+1(F)| and F satisfies the first two conditions of
Lemma 2.1.

3.3 F has exactly three components

The number of components of F which are isomorphic to S2 is 0, 1,2, or 3
so we consider 4 subcases.

3.3.1 F contains 3 copies of S;

In this subcase, F' is isomorphic to 3S2. Since G is connected, one of the
graphs Fy or F» shown below is a spanning tree for G.

v—O—L
F] F2

Now f(F1) = 1+ 6z + 1022 + 423 so |Pa(F)| = (§ -4> () -0 =
|Pa(Fy)|, and f(F2) = 146z + 1022 +52% so | P3(F)| = (§)-5= () -0=
| P4(F2)|- Thus, both Fy and F satisfy the first two conditions of Lemma 2.1.
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3.3.2 F contains 2 copies of S,

In this case, F' 2 253+ S25,—4 where n > 4. The independent set generating
function for F is therefore f(F) = (1+ 2z)[(1 +z)*"~° + z] so Pu(F) =
(> +4(3 %) + 4(%7)) for k > 4. Therefore

an(F)I - IPn+l(F)| =
2n _ 2n—-5 _4 2n—5 _4 2n—5
n n n—1 n—2
2n 2n-5 (2n—5) (2n— 5)}
- - -4 -4
n+41 n+1 n n—1
_ [(2n-=5) _ 2n—5) >0
“\n-2 n—1
and F satisfies the first two conditions of Lemma 2.1.

3.3.3 F contains 1 copy of S,

If G has 8 vertices then F' = S, + 2S5. The independent set generating
function for F is then f(F) = (1 + 2z)(1+ 3z + z2)° = 1 + 8z + 2322 +
2823 + 13z% + 225 so

P = (5) =135 (F) -2 = 12P)

and thus F satisfies the first two conditions of Lemma 2.1.

Otherwise, G has 10 or more vertices and thus F, and therefore G,
contains the subgraph H = S, + S3 + S4 + Z2n_9 where n > 5. We now
show that H satisfies the hypotheses of Lemma 2.1.

First, f(H) = (14 2z)(1 + 3z + 22)(1 + 4z + 322 + 23)(1 + z)>*~°.
The inequality |P,(H)| > |Pp+1(H)| may be verified to be equivalent to
n3 + 16n% — 107n + 140 > 0 which holds for n > 5.

To verify the second condition in the lemma, we need to show that

on — 11 on —11 2n — 11 2n — 11
(n_l)+9(n_2)+3°(n_3)+45(n_4)+
o2n —11 m—11\ "1 /2i-1
29(1—5)”(11—6)3;( i )

for all n > 6. This follows from the fact that 120(*73') < (*'=) for all
n > 6, and the unimodality of the binomial coefficient.
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3.3.4 [ contains 0 copies of S,

In this subcase, F', and therefore G, contains H = 3S3+ Z2,_g wheren > 5
as a subgraph. We now show that H satisfies the hypotheses of Lemma 2.1.
First, we have f(H) = (1+3z+22)°(1+ )% . The inequality
|Pa(H)| > |Pat1(H)| may be verified to be equivalent to n® + 16n2 —
107n + 140 > 0 which holds for n > 5.
To verify the second condition in the lemma, we need to show that

on — 11 o9n — 11 11 11
(n_l)+9(n_2)+30( _3)+45( _4)+
o9n — 11 9 —11 m—11\ a1
(" 25)+o(nze)+ (o) <2 ()

for all n > 6. This follows from the fact that 125(**~11) < (*"=7) for all
n > 6, and the unimodality of the binomial coefficient.

3.4 F has exactly four components

If G has exactly 8 vertices then Fis isomorphic to 45;. Since G is con-
nected, the following graph H is a spanning subgraph of G.

H

Now f(H) = (1 +22)°(1+4z+3z%) so |Py(H)|= () - 12> (§) -0 =
|Ps(H)| and H satisfies the first two conditions of Lemma 2.1.

Otherwise, G contains 10 or more vertices and thus either H; = 253 +
283 + Zop_10 or Hy = 353 + Sq+ Z2n—10 is a subgraph of G. We now show
that both H; and H satisfy the hypotheses of Lemma 2.1.

We have that f(H;) = (1 + 2z)%(1 + 3z + z2)*(1 + z)**~'° and it may
be shown that the inequality |Pn(H1)| > |Pn+1(H1)| is equivalent to 49n?+
66n3 — 3781n2 + 14586n — 15120 > 0 which holds for n > 5.

To verify the second condition in the lemma, we need to show that

2n — 12 +10 2n — 12 +39 2n — 12 474 2n — 12 +
n-—1 n—2 n—3 n—4
2n — 12 -12 0 —12) - (2i-1
o(52s) () (o) <5 ()
for all n > 6. It is easily verified that the inequality holds for n = 6. For

n > 17, it may be shown that 225(**Z;?) < (**~?) which implies the truth
of the desired inequality.
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For Hy, we have f(Hz) = (1 + 2z)3(1 +4z + 322 + 23)(1 + 2)>*~*° and
it may be shown that the inequality |Po(H2)| > |Pa+1(H2)| is equivalent
to 5n? + 54n3 — 857n% + 2982n — 3024 > 0 which holds for n > 5.

To verify the second condition in the lemma, we need to show that

2n - 12 +10 2n—12 439 2n — 12 +75(2n—-12)+
n—1 n—2 n—3 n—4
n-1 .
2n— 12 2n —12 2n — 12 2t —-1
74(n—5)+36<n—6)+8<n—7)5,§( )

for all n > 6. It is easily verified that the inequality holds for n = 6,7. For
n > 8, it may be shown that 243(2::é2) < ("’:_'13). Once again, the desired
inequality follows from the unimodality of the binomial coefficient.

3.5 F has exactly five components

If G has exactly 10 vertices then F is isomorphic to 5S2. Now

|Py(F)] = (150) ~2> (160) ~ 0= |Po(F)]

and so F satisifes the first two conditions of Lemma 2.1.

Otherwise, either Hy; = 255 + 253 + Z2n_10 or Hy =352+ Sa + Zan_10
is a subgraph of G. It was verified in Section 3.4 that both H; and H,
satisfy the first two conditions of Lemma 2.1.

3.6 F has six or more components

In this case, F' contains H = 6S2 + Zn-12 as a subgraph. We now show
that H satisfies the hypotheses of Lemma 2.1.

First, f(H) = (1+22)%(1 + z)**~'2. It may be verified that the in-
equality |Po(H)| > |Pat+1(H)| is equivalent to 451n° — 4276n* — 379n3 +
111664n? — 364500n + 332640 > 0 which holds for n > 6.

To verify the second condition in the lemma, we need to show that

2n—14) o (2 —14) o (2n—14) o (2014 N
n-1 n—2 n—3 n—4
9 — 14 9 — 14 on—14\  l/2i-1
240(n—5)+192<n—6)+64(n—7)$§( . )

for all n > 7. It is easily verified that the inequality holds for n = 7. For
n > 8, it may be shown that 729(*2 2% < (**~7%) and the desired inequality
follows.
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