Isomorphic Star Decompositions of Multicrowns and the Power of Cycles

Chiang Lin
Department of Mathematics
National Central University
Chung-Li, Taiwan 320, R.O.C.
e-mail: lchiang@math.ncu.edu.tw

Jenq-Jong Lin
Department of Finance
Ling Tung College
Taichung, Taiwan 408, R.O.C.

Tay-Woei Shyu
Department of General Education
Kuan Wu Institute
Taipei, Taiwan 112, R.O.C.

ABSTRACT. For positive integers $k \leq n$, the crown $C_{n,k}$ is the graph with vertex set $\{a_1, a_2, \cdots, a_n, b_1, b_2, \cdots, b_n\}$ and edge set $\{a_ib_j: 1 \leq i \leq n, j = i+1, i+2, \cdots, i+k \pmod n\}$. For any positive integer λ , the multicrown $\lambda C_{n,k}$ is the multiple graph obtained from the crown $C_{n,k}$ by replacing each edge e by λ edges with the same end vertices as e. A star S_l is the complete bipartite graph $K_{1,l}$. If the edges of a graph G can be decomposed into subgraphs isomorphic to a graph H, then we say that G has an H-decomposition. In this paper, we prove that $\lambda C_{n,k}$ has an S_l -decomposition if and only if $l \leq k$ and $\lambda nk \equiv 0 \pmod l$. Thus, in particular, $C_{n,k}$ has an S_l -decomposition if and only if $l \leq k$ and $nk \equiv 0 \pmod l$. As a consequence, we show that if $n \geq 3$, $k < \frac{n}{2}$, then C_n^k , the k-th power of the cycle C_n , has an S_l -decomposition if and only if $l \leq k+1$ and $nk \equiv 0 \pmod l$.

1 Introduction and preliminaries

For positive integers $k \leq n$, the *crown* $C_{n,k}$ is the graph with vertex set $\{a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n\}$ and edge set $\{a_i b_j : 1 \leq i \leq n, j = i + 1, i + 2, \dots, i + k \pmod{n}\}$. For any positive integer λ , let $\lambda C_{n,k}$ denote the

multiple graph obtained from the crown $C_{n,k}$ by replacing each edge c by λ edges with the same end vertices as c. We call $\lambda C_{n,k}$ a multicrown. In this paper, we consider the edge decomposition of multicrowns into isomorphic stars. Edge decompositions of crowns have been investigated for isomorphic paths [4] and isomorphic complete bipartite graphs [2].

Let (p_1, p_2, \dots, p_m) , $(q_1, q_2, \dots q_n)$ be two sequences of nonnegative integers. We say that the pair $((p_1, p_2, \dots, p_m), (q_1, q_2, \dots q_n))$ is bigraphical if there exists a bipartite graph G with bipartition $(\{x_1, x_2, \dots, x_m\}, \{y_1, y_2, \dots y_n\})$ such that

$$\deg_G x_i = p_i$$
 for $1 \le i \le m$ and $\deg_G y_j = q_j$ for $1 \le j \le n$.

We need the following propositions for our discussions.

Proposition 1.1 [3, 6] Suppose that $l, m, r_1, r_2, \dots, r_n$ are nonnegative integers such that $r_i \leq m$ for $i = 1, 2, \dots, n$, and $r_1 + r_2 + \dots + r_n = ml$. Then $((l, l, \dots, l), (r_1, r_2, \dots, r_n))$ is bigraphical, where (l, l, \dots, l) is a sequence of m terms.

For a vertex x in a multiple graph G, let $\deg_G x$, the degree of x in G, denote the number of edges incident with x.

A star S_l is the complete bipartite graph $K_{1,l}$. A multiple star is a star with multiple edges allowed. We use $S(r_1, r_2, \dots, r_n)$ to denote the multiple star with respective edge multiplicities r_1, r_2, \dots, r_n . As an illustration, the multiple star S(2,3,3) is displayed in Figure 1. The vertex of degree $\sum_{i=1}^{n} r_i$ in $S(r_1, r_2, \dots, r_n)$ is called the center of the multiple star and the other vertices are called the terminal vertices of the multiple star.

Figure 1: Multiple Star S(2,3,3)

Proposition 1.2 The edges of the multiple star $S(r_1, r_2, \dots, r_n)$ can be decomposed into stars $S_{t_1}, S_{t_2}, \dots, S_{t_m}$ if and only if $((t_1, t_2, \dots, t_m), (r_1, r_2, \dots, r_n))$ is bigraphical.

Proof: (Necessity) Let u be the center and v_1, v_2, \dots, v_n the terminal vertices of the multiple star $S(r_1, r_2, \dots, r_n)$. Suppose that the edges of $S(r_1, r_2, \dots, r_n)$ is decomposed into subgraphs G_1, G_2, \dots, G_m where each G_i is isomorphic to the star S_{t_i} , and G_i has center u and terminal vertices $v_{i_1}, v_{i_2}, \dots, v_{i_{t_i}}$. Let G be a bipartite graph with bipartition (X, Y), where $X = \{x_1, x_2, \dots, x_m\}, Y = \{y_1, y_2, \dots, y_n\}$ such that $E(G) = \{x_i y_j : 1 \le i \le m, j = i_1, i_2, \dots, i_{t_i}\}$. Clearly,

$$\deg_G x_i = t_i, \quad 1 \le i \le m,$$

$$\deg_G y_j = r_j, \quad 1 \le j \le n.$$

Thus $((t_1, t_2, \dots, t_m), (r_1, r_2, \dots, r_n))$ is bigraphical. (Sufficiency) Let G be a bipartite graph with bipartition $(\{x_1, x_2, \dots, x_m\}, \{y_1, y_2, \dots, y_n\})$ such that $\deg x_i = t_i, 1 \leq i \leq m$ and $\deg y_j = r_j, 1 \leq j \leq n$. Let H be the multiple graph obtained from G by identifying the vertices x_1, x_2, \dots, x_m . Obviously H is the multiple star $S(r_1, r_2, \dots, r_n)$. Since G can be decomposed into stars $S_{t_1}, S_{t_2}, \dots, S_{t_m}$, the multiple star $S(r_1, r_2, \dots, r_n)$ can also be decomposed into stars $S_{t_1}, S_{t_2}, \dots, S_{t_m}$. \square Suppose that G and H are graphs and that the edges of G can be decomposed into subgraphs isomorphic to H. Then we say that G has an H-decomposition. The following proposition follows immediately from Propositions 1.1 and 1.2.

Proposition 1.3 Suppose that $l, m, r_1, r_2, \dots r_n$ are nonnegative integers such that $r_i \leq m$ for $i = 1, 2 \dots, n$, and $r_1 + r_2 + \dots + r_n = ml$. Then the multiple star $S(r_1, r_2, \dots r_n)$ has an S_l -decomposition.

2 Main result: isomorphic star decomposition of the multicrown

In this section we give a necessary and sufficient condition for the multicrown $\lambda C_{n,k}$ to have an S_l -decomposition. We begin with the following lemma.

Lemma 2.1 Let $\{a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n\}$ be the vertex set of the multicrown $\lambda C_{n,k}$. Suppose that q, l are positive integers such that $q < l \le k$ and $\lambda nq \equiv 0 \pmod{l}$. Then there exists a spanning subgraph G of $\lambda C_{n,k}$ such that $\deg_G b_j = \lambda q$ for $1 \le j \le n$ and G has an S_l -decomposition.

Proof: Let $g = \text{g.c.d.}(\lambda n, l)$. Then $\lambda n = gb$, l = gc for some positive integers b, c with g.c.d.(b, c) = 1. Since $\lambda nq \equiv 0 \pmod{l}$, we have $bq \equiv 0 \pmod{c}$, which implies that $q \equiv 0 \pmod{c}$. Let d be the integer with q = cd. Since cd = q < l = gc, we have d < g.

Let B be a subset of $\{1,2,\cdots,\lambda n\}$ such that $B=\{i_1g+i_2:i_1,i_2 \text{ are integers, } 0\leq i_1\leq b-1,1\leq i_2\leq d\}$ (note that $\lambda n=gb,\ d< g$). Let G_1 be the bipartite graph with bipartition $(\{x_1,x_2,\cdots,x_{\lambda n}\},\{y_1,y_2,\cdots,y_{\lambda n}\})$ and edge set $\{x_iy_j:i\in B,j=i+1,i+2,\cdots,i+l\pmod{\lambda n}\}$ (note that l=gc). For $i\in B$, let $G_{1,i}$ be the subgraph of G_1 induced by the vertices $x_i,y_{i+1},y_{i+2},\cdots,y_{i+l}$. Obviously G_1 is decomposed into subgraphs $G_{1,i}$ ($i\in B$), and each $G_{1,i}$ is isomorphic to the star S_l . Also obviously, $\deg_{G_1}x_i=0$ or l for $i=1,2,\cdots,\lambda n$. Since $l\equiv 0\pmod{g}$, it is not hard to see that $\deg_{G_1}y_j=(l/g)d=q$ for $j=1,2,\cdots,\lambda n$.

Now we define the required spanning subgraph G of $\lambda C_{n,k}$ as follows. First, define a graph G_2 from G_1 . For each j $(j=1,2,\cdots,n)$ we identify the vertices y_j , y_{j+n} , y_{j+2n} , \cdots , $y_{j+(\lambda-1)n}$, and let b_j be the new vertex obtained. Let G_2 be the graph thus obtained from G_1 . Since G_1 is a simple graph and $l \leq n$, we can see that G_2 is also a simple graph. Since $\deg_{G_1} y_j = q$ for $1 \leq j \leq \lambda n$, we have $\deg_{G_2} b_j = \lambda q$ for $1 \leq j \leq n$. Next we define a graph G from G_2 . For each i $(i=1,2,\cdots,n)$ we

Next we define a graph G from G_2 . For each i $(i = 1, 2, \dots, n)$ we identify the vertices $x_i, x_{i+n}, x_{i+2n}, \dots, x_{i+(\lambda-1)n}$ and let a_i be the new vertex obtained. Let G be the graph thus obtained from G_2 .

Now we show that G can be viewed as a spanning subgraph of $\lambda C_{n,k}$. Since G_2 is a simple graph, each edge in G has multiplicity $\leq \lambda$. Each edge $x_i y_{i+t}$ in G_1 , where $i \in B$, $1 \leq t \leq l$, and the index of y is taken modulo λn , is converted into an edge joining $a_{i'}$ and $b_{i'+t}$ in G, where i' = i - vn for some integer v such that $1 \leq i' \leq n$ and the index of b is taken modulo a. Hence, from the facts that $V(G) = \{a_1, a_2, \cdots, a_n, b_1, b_2, \cdots, b_n\}$, each edge in G joins $a_{i'}$ and $b_{i'+t}$ for some $1 \leq i' \leq n$, $1 \leq t \leq l$ where $l \leq k$ and each edge in G has multiplicity $\leq \lambda$, we can view G as a spanning subgraph of $\lambda C_{n,k}$.

We show that G has the required properties about decomposition and degrees. Recall that G_1 is decomposed into $G_{1,i}$ ($i \in B$). Since $l \le n$, we see that $G_{1,i}$, which is a star S_l in G_1 , is converted into a star S_l in G. Thus G has an S_l -decomposition. Furthermore, since $\deg_{G_2} b_j = \lambda q$ for $1 \le j \le n$, we have $\deg_G b_j = \lambda q$ for $1 \le j \le n$.

We are now ready to prove the main result of this section. For vertices x, y in a multiple graph G, we use $m_G(x, y)$ to denote the number of edges joining x and y.

Theorem 2.2 The multicrown $\lambda C_{n,k}$ has an S_l -decomposition if and only if $l \leq k$ and $\lambda nk \equiv 0 \pmod{l}$.

Proof: (Necessity) The fact that S_l is a subgraph of $\lambda C_{n,k}$ implies $l \leq k$. Since $\lambda C_{n,k}$ has an S_l -decomposition, the size of $\lambda C_{n,k}$ is a multiple of the size of S_l . Thus $\lambda nk \equiv 0 \pmod{l}$.

(Sufficiency) Suppose that p and q are nonnegative integers such that k = pl + q where $0 \le q < l$. Since $l \le k$, we have $p \ge 1$. Consider two cases.

Case 1. q = 0.

Since $k \equiv 0 \pmod{l}$, it is trivial that $C_{n,k}$ has an S_l -decomposition. Hence so does $\lambda C_{n,k}$.

Case 2. 0 < q < l.

It follows from $\lambda nk \equiv 0 \pmod{l}$ and k = pl + q that $\lambda nq \equiv 0 \pmod{l}$. By Lemma 2.1, there exists a spanning subgraph G of $\lambda C_{n,k}$ such that $\deg_G b_j = \lambda q$ for $1 \leq j \leq n$, and G has an S_l -decomposition. Let G' be the graph $\lambda C_{n,k} - E(G)$. Then $\deg_{G'} b_j = \lambda k - \lambda q = \lambda pl$ and $m_{G'}(b_j, a_i) \leq \lambda$ for $1 \leq i, j \leq n$. For $1 \leq j \leq n$, let $a_{j_1}, a_{j_2}, \cdots, a_{j_t}$ be the vertices adjacent to b_j , and let G'_j be the subgraph of G' induced by the vertices $b_j, a_{j_1}, a_{j_2}, \cdots, a_{j_t}$. We see that G'_j is a multiple star with center b_j , terminal vertices $a_{j_1}, a_{j_2}, \cdots, a_{j_t}$. and edge multiplicities $m_{G'_j}(b_j, a_{j_v})$ $(v = 1, 2, \cdots, t)$. Now we apply Proposition 1.3 to the multi-

ple star G_j' . We have $\sum_{v=1}^t m_{G_j'}(b_j, a_{j_v}) = \sum_{v=1}^t m_{G'}(b_j, a_{j_v}) = \deg_{G'} b_j = \lambda pl$, and $m_{G_j'}(b_j, a_{j_v}) = m_{G'}(b_j, a_{j_v}) \le \lambda \le \lambda p$ for $v = 1, 2, \dots, t$. By Proposition 1.3, each G_j' has an S_l -decomposition, which implies that G' has an S_l -decomposition. Since both G and G' have S_l -decompositions, $\lambda C_{n,k}$ has an S_l -decomposition.

3 Isomorphic star decomposition of the power of a cycle

For a graph G and a positive integer k, let G^k denote the graph with $V(G^k) = V(G)$ and $E(G^k) = \{uv : u, v \in V(G), u \neq v, d_G(u, v) \leq k\}$ where $d_G(u, v)$ denotes the distance between u and v in G. We call G^k the k-th power of G (for example, see [5, p.228]) Let C_n denote the cycle on n vertices. In this section we will obtain a necessary and sufficient condition for C_n^k , the k-th power of C_n , to have an S_l -decomposition where $k < \frac{n}{2}$. A multiple bipartite graph is a bipartite graph with multiple edges allowed. The following lemma is trivial.

Lemma 3.1 Suppose that G is a multiple bipartite graph with bipartition $(\{a_1, a_2, \dots, a_n\}, \{b_1, b_2, \dots, b_n\})$ such that a_i is not adjacent to b_i for i =

 $1, 2, \dots, n$. Let H be the multiple graph obtained from G by identifying a_i and b_i for each i. If G has an S_i -decomposition then so does H.

For any positive integer λ , let λC_n^k denote the multiple graph obtained from C_n^k by replacing each edge c by λ edges with the same end vertices as e. Let $\{a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n\}$ be the vertex set of the multicrown $\lambda C_{n,k}$ as defined in the beginning of Section 1. Assume that $n \geq 3$, $k < \frac{n}{2}$. The multiple graph obtained from $\lambda C_{n,k}$ by identifying a_i and b_i $(i = 1, 2, \dots, n)$ is λC_n^k . Combining Theorem 2.2 with Lemma 3.1, we have the following result.

Corollary 3.2 Suppose that λ, n, k, l are positive integers such that $n \geq 3$, $l \leq k < \frac{n}{2}$ and $\lambda nk \equiv 0 \pmod{l}$. Then λC_n^k has an S_l -decomposition.

Given a graph G, we use s(G) to denote the minimum number of stars (not necessarily isomorphic) needed to decompose the edges of G. A subset S of V(G) is called an *independent set* of G if no two vertices in S are adjacent in G. Let $\alpha(G)$ denote the number of vertices in a maximum independent set of G. A subset K of V(G) is called a *covering* of G if every edge of G has at least one end in K. Let $\beta(G)$ denote the number of vertices in a minimum covering of G. It is well known [1] that $\alpha(G) + \beta(G) = |V(G)|$. Also it is easy to see that $\beta(G) = s(G)$ if G is a simple graph. Now we determine $s(C_n^k)$. For the following discussions, we let $V(C_n) = \{x_1, x_2, \dots, x_n\}$ and $E(C_n) = \{x_i x_{i+1} : i = 1, 2, \dots, n\}$ where $x_{n+1} = x_1$.

Lemma 3.3 Suppose that n, k are positive integers such that $n \geq 3$ and $k < \frac{n}{2}$. Then $\alpha(C_n^k) = \left\lfloor \frac{n}{k+1} \right\rfloor$ and $s(C_n^k) = \beta(C_n^k) = \left\lceil \frac{nk}{k+1} \right\rceil$.

Proof: First determine $\alpha(C_n^k)$. Let

$$U = \{x_{i(k+1)}: i = 1, 2, \dots, t\} \text{ where } t = \left\lfloor \frac{n}{k+1} \right\rfloor.$$

It is easy to see that U is an independent set of C_n^k . Thus $\alpha(C_n^k) \geq |U| = \left\lfloor \frac{n}{k+1} \right\rfloor$. Now we show the reverse inequality. Suppose $S = \{x_{i_1}, x_{i_2}, \cdots, x_{i_{|S|}}\}$ is an independent set of C_n^k where $1 \leq i_1 < i_2 < \cdots < i_{|S|} \leq n$. For $1 \leq j \leq |S|$, we have $i_{j+1} - i_j \geq k+1$ where $i_{|S|+1} = i_1 + n$.

Thus
$$|S| \leq \left\lfloor \frac{n}{k+1} \right\rfloor$$
, which implies $\alpha(C_n^k) \leq \left\lfloor \frac{n}{k+1} \right\rfloor$. Therefore $\alpha(C_n^k) = \left\lfloor \frac{n}{k+1} \right\rfloor$ and hence $s(C_n^k) = \beta(C_n^k) = n - \alpha(C_n^k) = n - \left\lfloor \frac{n}{k+1} \right\rfloor = \left\lceil \frac{nk}{k+1} \right\rfloor$.

We conclude the paper with a necessary and sufficient condition for isomorphic star decompositions of C_n^k .

Theorem 3.4 Let n, k be positive integers such that $n \ge 3, k < \frac{n}{2}$. Then C_n^k has an S_l -decomposition if and only if $l \le k+1$ and $nk \equiv 0 \pmod{l}$.

Proof: (Necessity) Let \mathscr{D} be an S_l -decomposition of C_n^k . Since $|E(C_n^k)| = nk$, $|E(S_l)| = l$, we have $nk \equiv 0 \pmod{l}$ and $|\mathscr{D}| = \frac{nk}{l}$. By Lemma 3.3, $s(C_n^k) = \left\lceil \frac{nk}{k+1} \right\rceil$. Since $|\mathscr{D}| \geq s(C_n^k)$, we have $l \leq k+1$.

(Sufficiency) We consider two cases.

Case 1. $l \leq k$.

By Corollary 3.2 (with $\lambda = 1$), C_n^k has an S_l -decomposition.

Case 2. l = k + 1.

In this case, $nk \equiv 0 \pmod{k+1}$, which implies $n \equiv 0 \pmod{k+1}$. Let

$$n_1 = \frac{n}{k+1}$$
,
 $A = \{j \text{ is an integer} : i(k+1) < j < (i+1)(k+1),$
for some integer $i, i = 0, 1, 2 \cdots, n_1 - 1\}$.

For each $j \in A$ with i(k+1) < j < (i+1)(k+1) for some $0 \le i \le n_1-1$, let G_j be the star with center x_j and terminal vertices $x_{i(k+1)}, x_{j+1}, x_{j+2}, x_{j+3}, \dots, x_{j+k}$ where the indices are taken modulo n. Obviously, G_j is a star with k+1 edges and it is not hard to see that C_n^k is decomposed into stars G_j $(j \in A)$. Thus C_n^k has an S_l -decomposition.

Acknowledgment

The authors would like to thank Shuei-Tyang Tseng for his helpful suggestions.

References

- [1] J. A. Bondy and U. S. R. Murty, Graph theory with applications, North Holland, New York (1976), 101.
- [2] C. Lin, J.-J. Lin, and T.-W. Shyu, Complete Bipartite Decomposition of Crowns, with Applications to Complete Directed Graphs, Lecuture Notes in Computer Science 1120 (1996), 58-66.
- [3] H. J. Ryser, Combinatorial Mathematics, Carus Math. Monograph 14 (1963), 63.
- [4] T.-W. Shyu, The Decomposition of Complete Graphs, Complete Bipartite Graphs and Crowns, Ph.D. Thesis, Department of Mathematics, National Central University, Taiwan (1997).
- [5] D. B. West, Introduction to Graph Theory, Prentice-Hall (1996).
- [6] S. Yamamoto, H. Ikeda, S. Shige-eda, K. Ushio, and N. Hamada, On Claw-decomposition of Complete Graphs and Complete Bigraphs, Hiroshima Math. J. 5 (1975), 33-42.