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ABSTRACT. We investigate whether replicated paths and repli-
cated cycles are graceful. We also investigate the number of
different graceful labelings of the complete bipartite graph.

1 Introduction

Let G be a graph (without loops and without multiple edges) with set of
vertices V(G) = {vy,...,v,} and set of edges E(G) where |E(G)| =e. Let
P, and C,, be a path and a cycle with n edges respectively and let K, be
the complete graph on n vertices.

A labeling (or waluation) of a graph G is an assignment f of labels to
the vertices of G that induces for each edge {u, v} a label depending on the
vertex label f(u) and f(v).

Let f be an injection from the vertices of G to the set {0,...,e}. A.Rosa
[5] called f a B- wvaluation of G if, when we assign to each edge {u,v} the
label | f(u) — f(v)], the resulting edge labels are distinct (and thus, the edge
labels are 1,2,...,e). Golomb [3] subsequently called such labeling graceful
and this terminology is now the most commonly used. The graph G is said
to be graceful if it has a graceful labeling.

A caterpillar is a tree with the property that the removal of its endpoints
leaves a path while a lobst is a tree with the property that the removal of its
endpoints leaves a caterpillar. It has been shown that all caterpillars are
graceful [5], and J.C.Bermond [1] conjectured that lobsters are graceful;
see [2] not only for an extensive survey but also for open problems and
conjectures.
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We are interested in the following construction. Given a graph G with n
vertices vy, ..., v, and a vector X= (zy,...,Z,) of positive integers define
the corresponding replicated graph of G, Rx(G), as follows: For each v; €
V(G) form a stable set S; consisting of z; new verticesi=1,...,n (recall
that a stable set S consists of a set of vertices such that there is not edge
{w;,v;} for all pair v;,v; € S); two stable sets S;, Sj i # j form a complete
bipartite graph if the edge {v;,v;} € E(G) and otherwise there are no edges
between S; and S;.

In section 2, we show that the replicated path R, (P,) is graceful for all
z and n > 1. In on 3, w prove that some replicated cycles are graceful.
Among other results we show that R.(C,) is graceful for:

1) z=(2,...,2) with n even,

2)z=(m,1,...,1) withn=0 (mod 4) and m > 1,

Nz=(21,...,1)forall n > 8 and

4)z=(2,2,1,...,1) withn =0 (mod 4) and n > 12.

Finally, in section 4 we study the number of different graceful labelings
of the complete bipartite graph K, ».

2 Replicated Paths

Let Rx(P,) be a replicated graph of the path with n + 1 vertices. R.(P;)
with £ = (m1, mg) is just the complete bipartite graph Ky, m, which is
known to be graceful [3]; we may extend this result as follows:

We say that G is a consecutively orderable bipartite graphif G = (S, T; E)
is a bipartite graph such that the sets S and T' (with |S| =1{ and |T'| = m)
may be ordered sg, 51,...,51-1 and ¢1,...,%y, so that for each vertex ¢ in T
the neighbours N(t) of t, are consecutive, (thisis N(t) = {s;, 8i41,.. ., Sitr}
for some i and 7, i+r < I—1) with N(¢;_1)NN(t:) #O@foreachi=2,...,m
and sp € N(¢,) and s;_; € N(¢,,) (see for example figure 2).

Define a graph H on vertex set {ti,...,tm} by letting ¢; and ¢; © #
7 be adjacent if they have a common neighbour in G. Then for G to
be consecutively orderable, we insist that H is an énterval graph, with
t1,...,tm giving a Hamilton path, and that say ¢, corresponds to a leftmost
interval and t,, to rightmost.

Lemma 2.1 Let G = (S, T; E) be a consecutively orderable bipartite graph.
Then G is graceful.

Proof: Let e = |E(G)|, ; = |N(t;)| and v; = min{j|s; € N(¢;)} for each
i=1,...,m.
Label s; with number % for each ¢ = 0,...,1 — 1. Number t; with label

i—1
I(t;) = e and t; with label i(t;) = e~ ) rj+v; foreachi=2,...,m.
j=1
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i
Since N(ti_l) N N(&;) # @ then v;y; < v; +7; so l(ti-f-l) =e— Z T +
Jj=1

i-1
viy1 < e— 3 7;+v; = I(t;). Hence, the labels [(¢;) are strictly decreasing
3=1
m—

1
with I(tm) = e — Y rj +m = m + vm = |. Thus all the vertex labels

i=1
are distinct and are in {0,1,...,e}. Further, it is easy to see that the edge

labels are precisely {1,2,...,¢}. o
Note that this labeling . kes O(e) steps.

Lemma 2.2 R,( . consecutively orderable bipartite gragh for alln >
1 and all .

Proof: This is ¢ - by figure 1 (whether the path has an even or odd
number of vertices, . O

S0 t

tm

Figure 1

Theorem 2.3 R, (P,) is graceful for all n > 1 and z.

Proof: By lemmas 2.1 and 2.2. 0

Example 1: We illustrate in figure 2 how the labeling given in lemma 2.1
works for the replicated path R.(Ps) with z = (3,3,2,4,2,1,5).
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Figure 2

Lemma 2.4 All caterpillars are consecutively orderable bipartite graphs.

Proof: The natural plane bipartite drawing yields orderings as required,
see figure 3. m]

Figure 3

260



Theorem 2.5 All caterpillars are graceful.

Proof: By lemmas 2.1 and 2.4. D

3 Replicated cycles

Let Rx(Cy) be the replicated graph of a cycle with n vertices. It is known
[5] that R;(C,) (that is, Cy,) is graceful if and only if n = 0 or 3 (mod 4);
we partially extend this result.

Theorem 3.1 Let n be any positive integer n > 2 and let = (2,...,2).
Then Ryx(C2n) is graceful.

Proof: Case 1. n even. Consider the vertex labeling given in figure 4.

7L 5:1 T, S Sp_2Tg_y Sgy Ty
{o.l}< > {4n,4n + 1}
u i U; ‘;2 o Va_a Up_y V3, 'Ug
Figure 4

where U; = {8(n — i)+ 8,8(n —4)+ 6} fori=1,..., 5,

T:={8(n—1)+4,8n—-i)+2}fori=1,..., %,

S;={8i—4,8i} fori=1,...,% and

V= {8i+ 1,8i+5} for : = l,...,%.

Note that all the vertex labels are different. The pairs of vertex labels
({0,1},T1) and ({0, 1}, U;) form the edge labels {8n,8n—1,...,8n—7} and
the pairs of vertex labels ({4n,4n+1},T3) and ({4n,4n+1},Usz) form the
edge labels {1,2, ..., 8}; hence, just remain the edge labels {9, 10,...,8n —
9,8n — 8}.

Consider each triple E; = (T3, S;, Ti41) for 1 <7 < 5 —1. The edge labels
in each E; are the numbers 8n — 16: 4+ p with p = —6, -4, -2,0,2, 4,6, 8;
note that, the minimal label in E; is strictly bigger than the maximal
label in E;. ;. Hence there are not repeated edge labels among the triples
E;. Moreover, these edge labels are al the even numbers between 10 (with
i=%—1andp=—6)and 8n — 8 (withi=1and p = 8).

Similarly, consider each triple O; = (U, V;,Uiyy) for 1 < i < 3 —
1. The edge labels in each O; are the numbers 8n — 167 + p with p =
-7,-5,-3,-1,1,3,5,7; again, the minimal label in O; is strictly bigger
than the maximal label in O;; ;. Hence there are not repeated edge labels
among the triples O;. Moreover, these edge labels are all the odd numbers
between 9 (withi=% —landp=-7) and 8n—9 (withi=1and p=7).
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Case 2. n odd. Consider the vertex labelings given in figure 5 and 6.
Forn=3

{0,1}
{22,24} {18,20}
{13,9} {12,4}
{14,16}
Figure 5
Forn > 5
Ty 5 T S T"T"—rg&;-‘--l TLF Sn-1

{0.1}< ) ) >{:;-+2.4n+4]

Vo~
U W U W =

Un-l_lvn-l -1 Un—l 2

Figure 6

where U; = {8(n — 1)+ 8,8(n — i) + 6} for i = 1,..., 25%,
T;={8(n—1)+4,8(n—1)+2} fori=1,...,"T'1,
S;={8i—4,8i}fori=1,...,25:1 -1,

Saz1 = {4n —8,4n} and

Vi={8i+1,8i+5} fori=1,.., 25

The triples (Tn_;_l, SnT—l, {4n+2,4n+4}) and (Unnél, VnT—l, {4n+2,4n+

4}) form the edge labels {1,2,...,16}.

The remaining edge labels {17,18, ...,8n} are formed by the rest of the
triples as the case before.

Theorem 3.2 Let m,n be positive integers with m > 1, n = 0 (mod 4)

and let z = (m,1,...,1). Then Ry(C,) is graceful

Proof: Let v/ = |[V(Rx(Cn))| = n+m —1 and € = |E(R(Cpr))| =

n + 2(m — 1) where z = (m, 1,...,1); consider the following labeling.
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I A Bo1
_n
fize =Bl ae =B +2 242 pe-3+1
e-52+3 |
e —2+1 3 .en g ¥
fa=e'—3-2 2-1 ! -3
e-2-1

fm=e'-§—2(m-1)

Figure 7

The vextex labels are formed by the sets {e’,e’ —1,...,¢' — % + 1},
{0,1,...,%—-1}\{%} and the numbers ¢’ — 3 —2(i—1) foreachi = 1,...,m.
Since e’ — § —2(m —1) = % > 5 —1 then all the vertex labels are different.
The paths P, and P contain the edge labels {¢/,e’ — 1,...,¢' — 5 + 2}
and {e' - %,...,¢ —n+3 = 2m+ 1} respectively; and the edge {a, d} has
the label ¢/ — %+ 1. Finally, it is easy to check that the edge labels formed
by the vertices ¢, d and f; for i =1,...,m are the numbers {1,...,2m}. O

Example 2: A graceful labeling of Rx(C12) with z = (3,1,...,1) given
by Theorem 3.2 is shown in figure 8.

0 6 1 15 2

10
14

11\ 8 712 5 13

Figure 8

Theorem 3.3 Let n be a positive integer n > 8 and let z = (2,1,...,1).
Then Rx(C,) is graceful.

Proof: Let v’ = |V (R<(Cr))| =n+1 and € = |E(Rx(Cn))| = n+ 2 where
z = (2,1,...,1). By theorem 3.2, it remains to prove the following three
cases.

[[] n=1 (mod 4) where n > 9. Consider the following labeling.
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Figure 9

The vextex labels are formed by the sets {e/,e’—1,...,e'—(251)—1} and
{0,1,..., 2 1\ {251 +1}. Since &' —(25})-1 = 21 4+1 > 231 then all the
vertex labels are different. The paths P,; and P, contain the edge labels
{6', 6’—1, (R el_(l;—l')} and {el_(nT—l)_2, ey el_(n_;ll)_i_z_(n__;l) = 5}
respectively; and the edge {a, d} has the label ¢’ — (23=) — 1. Finally, the
edge labels formed by the vertices ¢, d and f; for ¢ = 1,2 are the numbers

{1,...,4}.
[lI] n =2 (mod 4) where n > 6. For n = 6 take the following labeling.

0 8
1
5 7
3
Figure 10

For n > 10 consider the following labeling.

Figure 11
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The vextex labels are formed by the sets {e’,e’ —1,...,¢' — % + 2} and
{0,1,...,2+2}\ {252 +1}. Since &’ ~ 2 +2= 2 +4 > 2 + 2 then all the
vertex labels are different. The paths P,; and Py, contain the edge labels
{¢e—-1,...,¢-%3+1=%+3tand{e'- 5 -1=5%+1,....¢/ -5 +
2 — (% — 1) = 5} respectively; and the edge {a,d} has the label 3§ + 2.
Finally, the edge labels formed by the vertices ¢, d and f; for i = 1,2 are
the numbers {1,...,4}.

(III) n = 3 (mod 4) where n > 11. For n = 11 take the following labeling.

Figure 12

For n > 15 consider the following labeling.

4
e 1 e-12 24l _2
0 — R TS R
a

e -2 41

Figure 13

The vextex labels are formed by the sets {¢/,e'—1,...,¢'— ('}3)}\ {e’-
(—"‘—) 1} and {0,1,..., 251 + 3} \ {25 + 2} Since ¢’ — (2R) =21 =

a-lia>21y3 then all thes are different. The paths P,; and Py, contain

the edge labels {¢/,e'~1,..., 21} and {2 -2,.. . e —(“'3) (2t-1) =

5} respectively; and the edge {a, d} has the la.bel "; = 2 — 1. Finally,

the edge labels formed by the vertices ¢, d and f; for i = 1,2 are the

numbers {1,...,4}. O

We already proved that R.(Cay,) is graceful for z = (2,2,...,2) and n
even; we present now a close result.

265



Theorem 3.4 Let n be a positive integer n =.0 (mod 4), n > 12 and let
z=1(2,2,1,...,1). Then R,(C,) is graceful.

Proof: Let v’ = |[V(Ry(C,))| = n+2 and ¢’ = |E(Rx(C,))| = n+5 where
z=(2,2,1,...,1). Consider the following labeling.

Figure 14

The vextex labels are formed by the sets {¢/,e'~1,...,e/'=2—5}\{e'— %~
l,e'—3%,¢/~5-2}and {0,1,..., 5 -1}\{+1}. Sincee'-53-5=3% > 2-1
then all the vertex labels are different. The paths P,; and P4 contain the
edge labels {¢/,e’'~1,...,¢'~3} and {¢'~ 5 ~4,...,¢'-5+1-(5-1) =7}
respectively; and the edges {a, f1}, {b,c}, {a, f2}, {d, fs} and {d, f4} have
the labels ¢’ — 2 ~1, ¢’ — 3 — 2, ¢’ — 2 — 3, 5 and 6 respectively. Finally
the edge labels formed by the vertices f; for ¢ = 1,...,4 are the numbers
{1,...,4}. o

It is clear that R (C4) with x= (z1,...,24) is always graceful since it is
equivalent t0 Ky, tzy 204z, '

Given a graph G consider the join graph G + K, (called the ¢ point
suspension of G) which consist of the graph G, t independent vertices and
all the edges between the vertices of G and K;. It is known [4] that if the
tree Ty, is graceful then T, + K, is also graceful (just consider the graceful
labeling of T;, with vertex labels 0,1, ...,n and label the vertices of K; by
{2n+1,3n+2,...,(t + 1)n + ¢} and an easy computation shows that the
labeling is graceful). Hence R; ;,(C3) is graceful since it is equivalent to
P+ K,.

Theorem 3.5 Let G be a graceful graph with |V(G)| = |E(G)| = ¢, and
suppose that there is a graceful labeling such that either label 1 or e—1 does
not appear in its vertex labels (we say that G is graceful balanced). Then
G + K, is graceful.

Proof: Note that |E(G + K.)| = e(t+ 1) and suppose that label e — 1 does
not appear. Let l; =0,lo =1,...,l.—y = e — 2,1, = e be the vertex labels
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of G . Relabel the vertices of G with numbers I;(¢ + 1) for all ¢ and label
the vertices of K, by {e(t +1) —1,e(t+1) —2,...,e(t +1) —¢}.

Clearly, all the new vertex labels of G in G + K, are different. The vertex
label et + 1) together with all the vertex labels of K, produce the edge
labels {1,...,t} which are unique since I; # e — 1 for all 1.

Each vertex label /;(t + 1) of G form ¢ different edge labels with the
vertices of K; and no two vertex labels lx(t + 1) and L (t + 1), k # m of
G produce the same edge label, otherwise there exist 1,7, 1 < ¢,7 <t such
that e(t+1) -t —lk(t+1) = e(t+1)—F —ln(t+1) withe—1 >l > 1, >0
then (¢t + 1)(lx — lm) = j —is0 j —i >t + 1 which is impossible. Hence
G + K, is graceful.

Finally, for the case when [; # 1 for all 7, we change the vertex labels of
K to {1,...,t}. u}

K3 is graceful balanced, then by theorem 3.5 the graph K2 + K, is
graceful, hence R, (C3) with z = (2,2, n) is also graceful.

4 Distinct graceful labeling

In this section we discuss whether or not a graceful labeling for some graphs
G is unique. It is clear that given a graceful labeling {1, ..., I of any graph
G a new graceful labeling is given by e —[; for all 7 with e = [E(G)| (name
it its complement).

Two graceful labelings f; and f of G are isomorphic if there exists an
isomorphism 9 : V(G) — V(G) such that fi(v) = fo(¥(v)). We say that
two graceful labelings f; and f, are equivalent if they are isomorphic or one
is isomorphic to the complement of the other.

We focus our attention in finding the number of distinct (this is, non-
equivale) graceful labelings of Ky, m, With my,mg > 2.

Let g(G) be the number of distinct graceful labelings of G and let w(m)
be the number of different factors of the integer m.

Theorem 4.1 For the complete bipartite graph Ko\ m,,

Hlmayms) 2 { S0+ 00m) =2) 4 72

Proof: Let s be a positive integer such that s|my (that is, exists an integer
p such that sp = my). For each s we give a graceful labeling L and its
complement L’ in figure 15.
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. mymo

. mima —~ 1
. mimg — (s—1)
0 e . mimz — smp
mimz —smy — 1
s e H
. mimz —smy — (s —1)
25 ¢
O mimz —my — (p — 1)smy
. mimgz —my — (p—1)smy —1
(m1—1)s e e muma—my —(p-1)smy —(s—1)
L
. 0
[ 1
e s5-1
mimz e [ ] smy
smi +1
mim2—38 e :
o smp+(s-1)
mipmz — 23 e H
o (p-1)sm
e (p—1)sm;+1
mimas —mys+3s e e (p-1)smy +(s-1)
Ll
Figure 15

We have also similar labelings for each ¢ with ¢|m,;. Note that in the case
my # mg all labelings L and L’ for each s and ¢ are distinct except when
s = my the corresponding labelings L and L’ are the same as the labelings
L/ and L when ¢ = 1 respectively and the same when s=1and ¢t =m,. O

There are strange graceful labeling of K., m, other than those considered
in the proof of theorem 4.1, as is shown in figure 16.
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2 9
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