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Abstract

We show that there exists an isomorphic factorization of a com-
plete bipartite graph K (m,n) into forests without isolated vertices if
and only if m + n — ¢ divides mn and m,n > c.

1 Introduction

A subgraph H of G is called a factor of G if V(H) = V(G), and a factor-
ization of G is a decomposition of G into the edge disjoint factors. If each
factor is isomorphic to some graph H, it is called the isomorphic factoriza-
tion, and we say “H divides G” or “G is divisible by H”. If H divides G,
the number of edges of H divides that of G. This necessary condition is
called the divisibility condition.

Let K(m,n) be a complete bipartite graph with two partite sets having
m and n vertices. Shibata and Seki[6] have investigated the isomorphic
factorizations of complete bipartite graphs into trees. Since any spanning
tree of K (m,n) has m+n—1 edges, the divisibility condition means m+n—1
divides mn. They have introduced the notion of the interlaced graph, and
shown that interlaced trees dividing K(m,n) are constructed if m +n —1
divides mn.

Theorem 1.1 (Shibata, Seki[6]) A complete bipartite graph K(m,n) is di-
vistble by a tree if and only if m +n — 1 divides mn.

In that paper, the divisibility of mn by m + n — 1 has been studied.
Shibata, Araki and Kogure[1] have investigated the generalization of the
study, which is the divisibility of mn by am + bn + c. For integers m,n,
(m,n) stands for the greatest common divisor of m and n. Other number
theoretic terminology, we refer Shapiro[5).
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Theorem 1.2 ([1]) For integer a,b,c, if am +bn +c # 0 or mn # 0, then

(m,bn + c)(n,am + c)
0 b

(am + bn + ¢,mn) =

where
(dm,dn)

~ (dmydn, a0 + o, 08 + £’
dm = (m,bn +c¢), d, =(n,am+c),
m=dma, n-_—dnﬁ:
n+c=dnd am+c=d,f.

6

From Theorem 1.2, a necessary and sufficient condition for the divisi-
bility is obtained as follows.

Theorem 1.3 ([1]) For integer a,b, c and a pair [m,n] such that am +bn+
c #0, am + bn + ¢ divides mn if and only if

(m, bn + c)(n,am + c)
o )

Theorem 1.3 enables us to present the necessary and sufficient conditions
for am + bn + c dividing mn using parameters defined in Theorem 1.2.

lam +bn +¢| =

Lemma 1.4 ([1]) The following three statements are equivalent.
1. (am + bn + c) divides mn,
2. d, =0|b8 + B,
3. dn =0laa +o|.
The following lemma is used later in this paper.

Lemma 1.5 Let am+bn+c divide mn. If m =m0, n =n,8 andc = c46,
then my +n; —c; divides myn; and 6; = (mq,bny+c1)(ny, amy +c¢1)/lamy +
i +al=1.

Proof. Let dy,, = (m1;bn; + ¢1) and d, = (n1,amy + ¢;). Since dp, =

(6m,,8(bn; + ¢1)) = 0dr,, and dy, = (6n,,0(am; + c1)) = 6d,,, we have
dm;dn, = dmdnlozs

6lam + bn + c|/62,

= |a,m1 +bn; + Cl|.

Further we have

mn dn
mumy = 2t = I 05 = 4, 0B,
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Hence am +bn, +¢; divides mn. 8, is equal to dp, dy, /lamy +bny +c1| = 1.

|
By generalizing the form of the number of edges m+n—1 to am+bn+c,

it is expected that the structure of factors can be considered more widely.
A forest with ¢ > 1 components has m + n — ¢ edges. Thus, the divisibility
condition for K(m,n) divided by a forest is equivalent to m +n —c dividing
mn. The purpose of this paper is to prove the condition is also sufficient,
that is, the following theorem holds.

Theorem 1.6 A complete bipartite graph K(m,n) is divisible by a forest
with ¢ components and without isolated vertices if and only iff m +n —c
divides mn and m,n > c.

2 Isomorphic factorizations

2.1 Isomorphic factorizations of complete bipartite
graphs

Studies on the existence of isomorphic factorizations have been often con-
sidered using specific permutations on the vertex set(e.g., Harary(3]), and
we follow this method.

Let the bipartition of K(m,n) be UUV, where U = {uo,u1,.-- yUm—1}
and V = {vg,v1,...,vn-1}. For a positive integer ¢, permutations o and T
on U and V, respectively, are defined as follows.

T =%71:Vdmn-1> dm = (m,n—c),
T=¢0¢1--'¢d,.—11 dn=(n,m—c).

7:’s and ¢;’s are disjoint cyclic permutations having length « and B, re-
. N 0,1 a-1
spectively. Label the vertices in the cycles as v; = (u?,u},...,u; ") and

¢; = (v?,v,‘-,...,vf‘l). Let ['; and ®; be
i = {ud,ul,...,uf ™}, (0<i<dn - 1),

&; = {%0),...,80 7}, (0S5 <dn—1).

For a bipartite graph G with bipartition U UV and edge set E(G), let Gy;
be a bipartite graph with partite sets U and V' and edge set

E(Gy) = {a*(u)rf(vnw € E(G), uel, ve V}.

Then we have G 2= G;jfor (0 <i<a-1, 0<j<B-1)and Geo=G. If
Ui; E(G;;) is a partition of E(K(m,n)), then G is an isomorphic factor of
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K(m,n) under o and 7, and we say “G divides K(m,n) under ¢ and 7”.
Let Bjj = {wv|u €Ty, v € 8}, (0<i<dmn—1, 0<j <d,—1). Then
Ui ; Ei; is a partition of E(K(m,n)).

Lemma 2.1 A bipartite graph G with bipartition U U V divides K(m,n)
under ¢ and 7 if and only if |[E(G)NE;;| =1 for alli,0< i< dm —1,
0 <j <d,-1. IfG divides K(m,n) under o and 7, then |E(G)| = dpnd, =
6(am + bn + c), where dr,, d,, and 8 are defined in Theorem 1.2.

Proof. If G divides K(m,n) under o and 7, G has just one edge of E;; in
common. The converse holds obviously. Since K(m,n) has d,,, I';’s and d,,
®,’s, G has d,d, edges. 3

Corollary 2.2 If G divides K(m,n) under o and 7, then

> deg(u) =dn, (0<i<dm—1),
uel",-

D deg(v) =dm, (0<j<d,—1)
vE@j

2.2 Isomorphic forest factors

Let us consider an isomorphic factorization of K(m,n) such that the iso-
morphic factors are forest. Let G be a forest with c components and without
isolated vertices. If G divides K (m,n), then m,n > cand |E(G)| = m+n—c
divides mn. Hence, by Theorem 1.3, we have m+n—c = (m,n—c)(n,m —
c)/6, where 6 is a divisor of c. Assume that the pair [m, n| satisfies 6 > 1.
By Lemma 1.5, putting m = m;8, n = n,0, ¢ = c;0, we obtain a new
pair [my,n,] such that m; + n; — ¢; divides myn; and 6, = 1. Hence,
if K(m;,n;) has an isomorphic forest factor G with ¢; components and
6 times

without isolated vertices, then a graph GU---UG is a forest which has
m +n — c edges and ¢ components, and it divides K(m,6,n,8) = K(m,n).
Thus, if we can show that there exists isomorphic forest factors dividing
K(m,n) when 6 = 1, the proof of Theorem 1.6 is completed.

Shibata and Seki[6] have introduced a notion of the interlaced graph.
Ng(v) is a set of vertices adjacent to v in G.

Definition 2.3 Let G divides K(m,n) under o and 7, and let [m,n] sat-
isfies @ = 1. G is called interlaced if

No(®;) =U,ep;Na(v) = {(0<i<dn-1}, 0<j<a-1.
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So, if G is an interlaced graph, then Uo<j<a—1Ng(®;) = Uo<i<dm -1l = U.

Assume that G = (U UV, E) is an interlaced forest. We now construct
a bipartite graph G; from G as follows. Let the bipartition of V(G,) be
U = Uogj<a-1®; and Vi = Uagjcd.—1%;. (Uy U V; is a partition of V.)
A vertex u € U; and v € V; are adjacent if and only if Ng(u) N Ng(v) # 0
in G.

Lemma 2.4 If G is an interlaced forest, then G, is a forest such that

Z degg,(v) =dm, a<j<dn— 1L
vé@j

Moreover, the number of connected components of G is equal to that of G;.

Proof. Since G is interlaced, a vertex v in V} is adjacent to some vertex u
in Uy. If |INg(v) N Ng(u)| > 2, then G has a cycle. Thus, we have |[Neg(v)n
Ng(u)| = 1. Hence degg(v) = degg, (v), and we obtain Zver degg, (v) =
dm, fora<j<d,-1.

By the definition of the interlaced graph, if v and v are adjacent in G,
there exists a path from u to v in G (since Ng(u) N Ng(v) # @). Thus, if
G, has a cycle, then G also has a cycle. This contradicts that G is a forest.
Hence, G, is a forest.

Finally, we show the number of connected components of G is equal to
that of G;. It is sufficient to prove that if G has a path of length three
v;,u,v;(u € U, v;,vj € V), thereis a path from v; to v; in Gy. Ifv;,v; €Uy,
then both v; and v; must be in the same cyclic permutation in 7 by the
definition of the interlaced graph. This contradicts Lemma 2.1. Hence,
without loss of generality, it is sufficient to consider the following two cases
arise.

1. Case for v; € U; and v; € V}.
By the definition of Gy, viv; € E(G1)-

2. Case for v;,v; € V1.
By the definition of the interlaced graph, there is a vertex v; € U
adjacent to u. Since v;vg,vkv; € E(G,) from the definition of Gi,
there is a (v;,v;)-path in G;.
Therefore, if G has a (v;,v;)-path, G; has also a (vi,v;)-path. From the
construction method of Gy, if G has no (vi,v;)-path, G, also has no paths
from v; to v;. Hence the number of connected components of G is equal to
that of G;. g
Remaining object is to construct an interlaced forest from G,. Let Gy
be a forest with partite sets U; = UOSjsa-IQj and V] = UaSden—IQja
and G, satisfies Zuei’j degg,(v) = dm, (@ £ j < dn — 1). Construct G2

from G, as follows.
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1. The edge set of Gy is e, €1,...,eqd, ~1-

2. Subdivide the edges of G; and let w; be the added vertex on the edge
€;.

The resulting graph is G3.
Next, construct a graph K(G;) from G, as follows.

V(K(G1)) = {wo,‘wl,---,wa'dm-l},

w,w’ € Ng,(®;), a <j<d,—1
or

w € Ng,(v), w' € Ng,(v'),

v,V €®;, v#V,0<j<a-1

E(K(G1)) ww'

Consider a vertex coloring of K(G; ) such that adjacent vertices have dif-
ferent colors. For some coloring of K(G 1), the vertices wo, wy, ..., Werd,, —1
of G are allowed the same coloring as K(G;). Since |Ng, (®;)] = dm,
a < j < d, — 1, the chromatic number x(K(G,)) satisfies x(K(G1)) > dm.

Lemma 2.5 If vertices Wo,W1,...,Ward,,—1 0f Ga are colored with the
same coloring of K(G,), then G satisfies the following conditions:

1. for a < j <d, — 1, vertices in Ng,(®,) have different colors,

2. for0<j<a-1,ifv,v € ®;, v#, then each vertez in Ng,(v)
has a different color from any vertez in Ng,(v').

When x(K(G1)) = dm, let us define a graph G3 from G as follows.

1. For a given dp,-coloring of K(G,), give the same color to the ver-
tices wo,wy, ..., Ward,,—1 of Ga. This d,,-colors are referred to C =
{CO)clv see acdm—l}-

2. Repeat the following procedure for all vertex in U; = Uogi<a—1®;
and all colors in C:

(a) for v € Uy, let S;(v) be the set of vertices in Ng, (v) colored with
Ci,

(b) if S;(v) # 0, delete the vertices in S;(v) and add a vertex 8;i(v),
and join edges to s;(v) and vertices adjacent with S;(v) in Gs.

Lemma 2.6 If x(K(G1)) = dm, then Gj is a forest satisfying the following
conditions,

1. for a < j < dn, — 1, [Ng,(®;)| = di and vertices in Ng,(®;) have
different colors,
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2 for0<j<a-1,ifv,o' € ®;, v#v, then each vertez in Ng,(v)
is colored with a different color from any verter in Ng,(v').

3 for0<j<a-1, |N03(Qj)| <dp.

If x(K(G,)) = dmm, we can construct an interlaced graph from the above
graph G3.

Theorem 2.7 If x(K(G1)) = dn, an interlaced forest is constructed from
Gs.

Proof. For v € Uy, let CS(v) be a set of colors of vertices in Ng,(v). By
Lemma 2.6, CS(v)NCS(¥') =0 forv,v' € ;,v#v and 0 < j< a— 1

For 0 < j < a - 1, since |Ng,(®;)| £ dm, the set of colors C' can be
partitioned such that

0 Al B-1 i P
C=CinCjn---nC;™", CS(v;)CCj, j=0,1,....,8-1

For each 4,5 (0 < i < dm—1,0 < j < a—1), add |C} — CS(v})] vertices
to Gy and add edges connecting these vertices to vJ. Color these vertices
with different colors in C; — CS(v}). Then, give a label u? to the vertex in
Ng,(®;) colored by c;.

The resulting graph G is a forest which divides K(m,n) under o and 7.
Moreover, since

No(®;)={ull0<i<dn—1}, (0<j<a-1),

G is an interlaced forest. g

2.3 Existence of interlaced forests
From the results of the previous section, if a bipartite graph G, with a
bipartition U; UV} satisfies

Z degG;(v) = dm: a S] S dn - 1:
ueéj

and x(K(G1)) = dm, an interlaced forest is constructed from G;. In this
section, we show the existence of such a forest G;.
Construction Algorithm of G,

Step 1. Determine integers ao, @1,...,8q, B and by, b,,...,b. such that

1. ao=b0=0,
2.a.>22(1<r<adB),b21(1<r<0),

277



. B
3. Za‘ﬂ+j=dm=ﬂ+,3', (0<i<a —1),

=1
[+
bj = Cl’ﬁ.
j=1
Step 2. Determine integers h;;, (0 <7 <¢, 0 < j < b;) such that
1. hoj = hjo =0,
2. hij=ar, wherek= | Y b |+j.
0<I<in~1

Step 3. Construct graph H;;.
The graph H;;,1 <1< ¢, 1 < j<b;, is a complete bipartite graph
K(1, hi;) which has vertex sets U;; = {vg; k = B+ (P o<kgiot be) +

j—1} and
i-1 J
s.-+zh.~k—j+1STSSi+Zhik‘j’
Vij = vr k=0 i—1 by i—1 F=0
where s; = Zzhkl - Zbk +(-1)
k=0 =0 k=0

Step 4. Gl = UIS‘SCJSJ'SM‘ H,;j.

Lemma 2.8 The graph G, constructed by the above algorithm satisfies
X(K(Gl )) = dm.

Proof. Subdivide the edges of G;, and give a label u;;; for the added
vertex on the edge v, BV The resulting graph is Gs.

Let ®; = {vjﬂ’vjﬁ+l’ - vjﬂ+(ﬂ—1)}’ 0<j<Ld, - 1.
Then, NGz(Qj) = {ujdm,ujde, N ,ujdm+(dm_1)}, for 0 < ] < o —1.

Let j = ¢ mod d,,, and give the color c; to the vertex u;. Then Ng, (®;),
0 € j £ d, — 1, contains d,, vertices, which have different colors each
other. Further, vertices in N¢,(®;), (0 < j < a — 1) have different colors.
Therefore, x(K(G1)) =dm. &

From the above theorem, an interlaced forest can be constructed for
m,n such that m + n — ¢ divides mn and § = 1. Therefore, Theorem 1.6 is
proved.

Putting ¢ = 1, we obtain the following corollary on the isomorphic
factorization of complete bipartite graphs into trees.

Corollary 2.9 ([6]) A complete bipartite graph K(m,n) is divisible by a
tree if and only if m + n — 1 divides mn.
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2.4 Example

Based on the algorithm described in Section 2.3, an example of the con-
struction of G in the case of ¢ = 2, [m,n] = [27,20] is shown. In this case,
dm=9,0=3,a'=2,andd, =5,8=4,8 =5.

AALA

Vo I V2 V2 V‘@"s\’s

Hyp;
A WA WA
B % W VYo Yo i1

Hy  Hp Hj3

1. H;

2. Gy
12 w3 Vi4a V5 Vi6 iz is M9

NI

Vo v V2 w vs % v % % Vo i
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3. G2

iz V3 Ve Vis Vi6 iz 18 W19
( ) ( )

Vo v V2 W% Y Vs ¥ V7 % W% Vo Vu

4. Coloring of G»

iz W13 Ve Vs Y6 iz 18 W9
( ) ( )
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