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Abstract

Using a modification of the Kramer-Mesner method, 4-(38,5,))
designs are constructed with PSL(2,37) as an automorphism group
and with X\ in the set {6,10,12,16}. It turns out also that there
exists a 4-(38,5,16) design with PGL(2,37) as an automorphism

group.
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1 Basic facts related to the constructions

An n-set is a set of cardinality n. Given a group G acting on a
ground-set the n-G-orbit is an orbit of n-subsets of the ground-set, which
arises by action of G. It will be sometimes convenient to to write ” n-orbit
of G ” or only ” n-orbit ” or ” G-orbit ”, instead of ¥ n-G-orbit ”.

A t-(v,k,X) design [3] is an incidence structure on the v-ground-
set, which consists of some k-subsets (called blocks) of the ground-set,
without repetitions and which satisfies the property that each t-subset of
the ground-set is contained in exactly A blocks.

1.1 The Kramer-Mesner method

The well-known Kramer-Mesner method [4] for constructing t-(v, k&, A)
designs with a prescribed group G of automorphisms, works as follows:

Let X;; ([3], pp. 185) denote the number of elements of the j-th k-G-
orbit, that contain a fixed arbitrary element of the i-th ¢-G-orbit, t < k.
This notion is well-defined, since each t-set of a {-G-orbit is contained
within the same number of k-sets of a k-G-orbit.

The matrix (X;;) will be denoted here as A(G;t,k); the same matrix
was denoted as A(G; H;t,k) in [4] and as A, in [5]; it can be called the
orbit incidence mairiz for t-G-orbits and k-G-orbits. If n(G,%) denotes
the number of i-G-orbits, then the size of A(G;t,k) is n(G,t) xn(G,k).
v—t

The row sums in A(G;t, k) are uniform and equal to Apaz = k—t |
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The key idea of the method is to find a proper subset S (if exists) of
the columns of A(G;t,k) with uniform row sums A. Blocks of the required
design are all k-subsets of the v-ground-set that belong to the k-G-orbits
corresponding to columns of S. In other words, a t-(v,k,A) design with
G as a group of automorphisms can be recognized as a proper submatrix
D of A(G;t,k) consisting of whole columns and also has uniform row
sums A in all £ rows. One can easily conclude by using complementary

submatrices that it suffices to search A for A < = - A\paz.

In this way, blocks of a t-(v,k,)) design are obtained as a union of
several k-G-orbits.

A modification of the Kramer-Mesner method is applied here to the case
t=4, k=5, G= PSL(2,37); it follows that v = 38 and An.. = 34.
We have applied some other modifications of the Kramer-Mesner method
in the papers [1] and [2].

1.2 A construction of PGL(2,37) and PSL(2,37)

A computer aided construction begins with considering action of the
linear group GL(2,37) upon the 2-dimensional vector space V(2,37)
over the field GF(37). This action is implemented as a multiplication of
a row vector from V/(2,37) with a 2 x 2 matrix from GL(2,37). Next
step is constructing PGL(2,37) by introducing projectivity in this action;
this requires replacement of matrices by their representatives of homotethy
classes and transition from vectors to their corresponding points on the
projective line (ground-set) {0,1,...,36} U {c0}.

Matrices ( Z;i Z;z ) of the group PGL(2,37) can be constructed
using the following two loops:

*+ choosing a;; =1 and arbitrary a;3,a2,as; € {0,...,36} so that
azy —aa -az ¥ 0;

** choosing a;; = 0, aj2 = 1, and arbitrary ap € {1,...,36} and
asn € {0, ,36}

The group PSL(2,37) is constructed from the group SL(2,37) of
2x 2 matrices over GF(37) with determinant 1, reducing by the group of
homotethies. This is done so that precisely one of any two matrices from

b1y b2 36-b11 36-b12 \ .
SL(2,37) of the form (b” bzz) and (36-b21 36-b22) is

included into PSL(2,37) ; denote the included matrix by ( Z;: :;z

The matrices ( Z” le ) of PSL(2,37) can be constructed by us-
21 Q22
ing the following two loops: choosing a;; € {1,...,18} and aj3,as €
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{0, ...,36} in all possible ways and determining each time a22 as the
solution of the equation aj; -az; — @j2-az =1 within GF(37); choos-
ing a;2 € {1,...,18} and ay € {0,...,36} in all possible ways and each
time taking a;; = 0 and determining a3; as the solution of the equation
— G312 -G21 = 1 within GF(37)

When applying matrices of PSL(2,37) or PGL(2,37) , points of the
projective line are represented by their homogeneous coordinates as row
vectors; that is, = = (z,1) for z € {0,1,...,36} and oo =(1,0).

1.3 Reduced orbits

It is well-known (a consequence of two statements in (3], pp. 171 and
169) that PSL(2,37) and PGL(2,37) are respectively a 2-homogeneous
and a 3-homogeneous group; any of these two groups will be denoted by
G. When constructing k-G-orbits, it suffices to use those k-subsets of the
projective line that are supersets of {0,00} (respectively {0,1,c0}); we
call these k-subsets ”special”. ”Special” k-subsets within a k-G-orbit
constitute a reduced k-G-orbit. An analogous reduction is applied to
t-G-orbits.

Reduced k-G-orbits are constructed by applying elements of G to
their representative k-subsets; the image k-subsets are recorded iff they
are ”special”. Together with the ordinal numbers of these k-subsets in the
lexicographic order, it suffices to keep the ordinal numbers of #&-G-orbits
containing ”special” k-subsets in computer memory.

Reduced ¢-G-orbits and reduced k-G-orbits are sufficient for construc-
tion of the matrix A(G;t,k), since the set-inclusion preserves the ”special-
ity”; that is, all k-supersets of a "special” t-subset are ”special” k-subsets.

2 4-designs arising from PSL(2,37)

? n-orbits” will be an abbreviation for n-G-

Throughout this section,
orbits, where G = PSL(2,37).

The main result of this paper reads:

Theorem 1 There ezist 4-(38,5,)) designs with PSL(2,37) as an auto-
morphism group and with each X in the set {6,10,12,16} .

Proof. The proof will be given by exhibiting four 4-(38,5,A) designs
with PSL(2,37) as a group of automorphisms and with the four values
of A above, accompanied with the necessary data for documenting the
constructed designs. These data include:

a) data for identification of 4- and 5-orbits of of PSL(2,37); (Tables 1
and 2)

285



b) matrix A(PSL(2,37);4,5); (Table 3)

¢) column combinations (sets of columns) of A(PSL(2,37);4,5) corre-
sponding to the designs.

It turns out that there are 9 4-orbits and 29 5-orbits. In accordance
with discussion held in Subsection 1.3., the representatives of all 4-orbits
and 5-orbits may be assumed to be supersets of {0,00}.

In order to enable the identification of 4-orbits and 5-orbits, associated
with rows and columns of the matrices, the following data will be given in
Tables 1 and 2:

— the ordinal number of an orbit, associated to the corresponding row
(column) of the matrix A(PSL(2,37);4,5).

— the elements of the lexicographically first "special” representative,
apart from the compulsory elements 0 and oo.

— the number of ”special” subsets within the orbit.

Example. The denotations [8 [2 8[54 | in Table 1 and
[18]1 3 17 180 | in Table 2 mean that the 8th 4-orbit contains the
representative {0,2,8,00} and a total of 54 ”special” 4-subsets, while the
18th 5-orbit contains the representative {0,1,3,17,00} and a total of 180
”special” 6-subsets.

111 2| 5421 3([108(3}1 4| 54
4|1 5|108(| 5|1 6108 6|1 8|108
711 11| 188 |2 8| 54([9{2 17| 18

Table 1. Data describing 4-orbits of PSL(2,37)

1(1 2 3(180(f 211 2 41180} 31 2 5360
411 2 6360 5|1 2 7|180) 6|1 2 8360
711 2 9360 8|1 2 11(360ff 91 2 14| 360
1011 3 4|18 j11|1 3 7(360(f12(1 3 9180
1311 3 12360141 3 13|360¢15|1 3 14180
6|1 3 15180171 3 16(360)18|1 3 17| 180
191 3 22(180(f20(1 3 26360211 3 29|360
22|11 4 5]180{23|1 4 11| 60(124|1 4 17180
25|11 5 8180 26(1 5 22(18027|1 5 24180
2811 6 81180292 8 22| 60

Table 2. Data describing 5-orbits of PSL(2,37)

286



910 111213 14151617181920212223242526272829

-
N
w
»
[4)]
-]
~
[}

1144442 44 440 000 0000000000000000
2122020 00 022 422 4212212200000000
3102400 00 404 008 0000004042200000
4100420 04 021 210 2020022220022200
5100024 20 220 202 2022022210201020
6100220 22 220 002 0302302200220220
7100000 0012001200 0000000004060000
8120000 44 000 040 0008000400004 022
9100000120 000 00012000000000000604

Table 3. The 9 x 29 matrix A(PSL(2,37);4,5)

The existence of a 4-(38,5,A) design will be proved in each particular
case by exhibiting a proper subset P of the column-set (a combination of
columns) of matrix A(PSL(2,37);4,5), satisfying that the sum of elements
of any row within the columns of P is equal to A.

Let C denote the set of ordinal numbers of those columns of
A(PSL(2,37);4,5) that constitute a required proper subset P. Four
possible sets C are listed below, for A within the set {6, 10,12, 16}:

A= 6: C={1,510,12,24,25,27};

A=10: C={1,4,5,10,12,20,23,25,27,28,29};

A=12: C={4,6,7,11,13,20,21};

A=16: C=1{3,4,6,9,10,11,12,20,21,23,24,28,29}. O

On the other hand, it immediately follows from the last row of
A(PSL(2,37);4,5) that no column combination has uniform row sums
A, with X odd or with A in the set {2,8,14}. A straightforward
combinatorial argument related to entries 4 in 7th and 9th row, possible
entries 2 in 3rd and 6th row and their consequences — implying that A =4
is also not possible.

Results of a computer search show that there exist 2, 4, 6, 11 column
combinations of A(PSL(2,37);4,5) corresponding to A equal to 6, 10, 12,
16, respectively.

3 About orbits and 4-design(s) from
PGL(2,37) and PSL(2,37)
We recall that the group PSL(2,q9) is a subgroup of index 2 of

PGL(2,q), for each prime power g¢. This fact, combined with the following
lemma, implies a number of consequences listed below.
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Lemma 1 If H is a subgroup of indez k of a group G, then a G-orbit
includes at most k H-orbits.

k
Proof. Let G = U giH Dbe the partition of G into left cosets

el

modulo H. Then the b-orbit determined by a set X can be represented
E

as {Xg € G} = |J{X*"|h € H}. Theset S; = {X%"|h € H}

is an H-orbit det,em;inled by X9:. Therefore, the number of H-orbits
within the considered G-orbit cannot be greater than k. It may happen
that H-orbits determined by X9 and X9 coincide (this happens iff
X% € {X%hh e H}). O.

Consequence 1. A low homogeneous subgroup H of a highly ho-
mogeneous group G may be useful for searching designs. All designs
composed of H-orbits are also composed of G-orbits. The subgroup H,
although possibly less homogeneous, preserves all A-values found with G
and leaves a possibility for finding some new A-values. This is exactly what
happened with G = PGL(2,37) and H = PSL(2,37).

Consequence 2. Each orbit of PGL(2,q) consists of either one or
two orbits of PSL(2,q).

Consequence 3. All designs that have PGL(2,q9) as a group of
automorphisms can be obtained by applying the Kramer-Mesner method
to the group PSL(2,q).

Using the fact that PGL(2,q) is 3-homogeneous, one also has
Consequence 4. The application of the Kramer-Mesner method to
the group PSL(2,q) produces 3-designs, for each prime power q.

Let PG(n,i) (resp., PS(n,t)) denote the i-th n-orbit of PGL(2,37)
(resp., PSL(2,37)). Inclusion relationships among orbits PG(n,i) and
PS(n,j) are listed in Table 4:
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PG(4, 1) = PS(4, 1); PG(4, 2) = PS(4, 2);

PG(4, 3) = PS(4, 3) + PS(4, 8);  PG(4, 4) = PS(4, 4);

PG(4, 5) = PS(4, 5); PG(4, 6) = PS(4, 6);

PG(4,7) = PS4, 7) + PS(4,9);  PG(5, 1) = PS(5, 1) + PS(5, 2);
PG(5, 2) = PS(5, 3) + PS(5,7);  PG(5, 3) = PS(5, 4) + PS(5, 9);
PG(5, 4) = PS(5, 5); PG(5, 5) = PS(5, 6) + PS(5, 8);
PG(5, 6) = PS(5,10) + PS(5,12); PG(5, 7) = PS(5,11) + PS(5,14)
PG(5, 8) = PS(5,13) + PS(5,17); PG(5, 9) = PS(5,15) + PS(5,18)
PG(5,10) = PS(5,16) + PS(5,19); PG(5,11) = PS(5,20) + PS(5,21)
PG(5,12) = PS(5,22) + PS(5,26); PG(5,13) = PS(5,23) + PS(5,29)
PG(5,14) = PS(5,24) + PS(5,28); PG(5,15) = PS(5,25) + PS(5,27)

Table 4. Inclusion relationships among 4-orbits and 5-orbits
of PGL(2,37) and PSL(2,37)

Theorem 2 There ezists a 4-(38,5,16) design with PGL(2,37) as an
automorphism group.

Proof. Joining together those orbits of PSL(2,37) that belong to the
same orbit of PGL(2,37) (Table 4), one transforms the matrix
A(PSL(2,37);4,5) (Table 3) into the matrix A(PGL(2,37);4,5) (Table
5):

818 8128 0lo olo o o0 o000 010
410 410 0 4|18 414 2 4 0j{0 01O
214 0]l0 4 40 810 0 4 42 210
0/8 410 0 214 0/0 4 4 4]0 0] 4
010 414 4 0}4 410 4 4 2|0 410
0l4 410 4 0|0 416 0 4 0]0 414
010 01012 0112 010 0 0 0| 4 O 6

Table 5. The 7 x 15 matrix A(PGL(2, 37);4,5)
and a corresponding 4-(38,5,16) design

The column combination of A(PGL(2,37);4,5), consisting of the 2nd,
3rd, 7th, 8th, 13th and 14th column (rounded columns in Table 5) is the
only one that corresponds to a 4-design. This column combination can be
also recognized in Section 2; it is equivalent to one of the mentioned 11
combinations of A(PSL(2,37);4,5) corresponding to A = 16; precisely to
the combination containing the 3rd, 4th, 7th, 9th, 11th, 13th, 14th, 17th,
23rd, 24th, 28th and 29th column. O
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Remark. Note that the family F of -blocks of a 4-(38,5,16) design
exhibited in Section 2 cannot be represented as the union of whole orbits
of PGL(2,37). For example, the orbit PS(5,3) is included into F', but
PS(5,7) is not; consequently, the orbit PG(5,2) is only partly included
into F.
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