A family of 4-designs on 38 points

Dragan M. Acketa and Vojislav Mudrinski

Institute of Mathematics, University of Novi Sad, Trg D. Obradovića 4, 21000 Novi Sad, Serbia, Yugoslavia

Abstract

Using a modification of the Kramer-Mesner method, $4-(38,5,\lambda)$ designs are constructed with PSL(2,37) as an automorphism group and with λ in the set $\{6,10,12,16\}$. It turns out also that there exists a 4-(38,5,16) design with PGL(2,37) as an automorphism group.

Key words and phrases: t-designs, orbits, projective linear group, projective special linear group, Kramer-Mesner method

AMS Subject Classification: 05B15

1 Basic facts related to the constructions

A t- (v, k, λ) design [3] is an incidence structure on the v-ground-set, which consists of some k-subsets (called blocks) of the ground-set, without repetitions and which satisfies the property that each t-subset of the ground-set is contained in exactly λ blocks.

1.1 The Kramer-Mesner method

The well-known Kramer-Mesner method [4] for constructing $t-(v, k, \lambda)$ designs with a prescribed group G of automorphisms, works as follows:

Let λ_{ij} ([3], pp. 185) denote the number of elements of the *j*-th *k*-*G*-orbit, that contain a fixed arbitrary element of the *i*-th *t*-*G*-orbit, t < k. This notion is well-defined, since each *t*-set of a *t*-*G*-orbit is contained within the same number of *k*-sets of a *k*-*G*-orbit.

The matrix (λ_{ij}) will be denoted here as $\Lambda(G;t,k)$; the same matrix was denoted as A(G;H;t,k) in [4] and as $A_{t,k}$ in [5]; it can be called the orbit incidence matrix for t-G-orbits and k-G-orbits. If n(G,i) denotes the number of i-G-orbits, then the size of $\Lambda(G;t,k)$ is $n(G,t) \times n(G,k)$.

The row sums in
$$\Lambda(G;t,k)$$
 are uniform and equal to $\lambda_{max} = \begin{pmatrix} v-t \\ k-t \end{pmatrix}$.

The key idea of the method is to find a proper subset S (if exists) of the columns of $\Lambda(G;t,k)$ with uniform row sums λ . Blocks of the required design are all k-subsets of the v-ground-set that belong to the k-G-orbits corresponding to columns of S. In other words, a $t-(v,k,\lambda)$ design with G as a group of automorphisms can be recognized as a proper submatrix D of $\Lambda(G;t,k)$ consisting of whole columns and also has uniform row sums λ in all t rows. One can easily conclude by using complementary submatrices that it suffices to search λ for $\lambda \leq \frac{1}{2} \cdot \lambda_{max}$.

In this way, blocks of a $t-(v,k,\lambda)$ design are obtained as a union of several k-G-orbits.

A modification of the Kramer-Mesner method is applied here to the case t=4, k=5, G=PSL(2,37); it follows that v=38 and $\lambda_{max}=34$. We have applied some other modifications of the Kramer-Mesner method in the papers [1] and [2].

A construction of PGL(2,37) and PSL(2,37)

A computer aided construction begins with considering action of the linear group GL(2,37) upon the 2-dimensional vector space V(2,37)over the field GF(37). This action is implemented as a multiplication of a row vector from V(2,37) with a 2×2 matrix from GL(2,37). Next step is constructing PGL(2,37) by introducing projectivity in this action; this requires replacement of matrices by their representatives of homotethy classes and transition from vectors to their corresponding points on the projective line (ground-set) $\{0, 1, ..., 36\} \cup \{\infty\}$.

Matrices $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ of the group PGL(2,37) can be constructed using the following two loops:

** choosing $a_{11} = 1$ and arbitrary $a_{12}, a_{21}, a_{22} \in \{0, ..., 36\}$ so that $a_{22}-a_{12}\cdot a_{21}\neq 0;$

** choosing $a_{11} = 0$, $a_{12} = 1$, and arbitrary $a_{21} \in \{1, ..., 36\}$ and $a_{22} \in \{0, ..., 36\}.$

The group PSL(2,37) is constructed from the group SL(2,37) of 2×2 matrices over GF(37) with determinant 1, reducing by the group of SL(2,37) of the form $\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$ and $\begin{pmatrix} 36 \cdot b_{11} & 36 \cdot b_{12} \\ 36 \cdot b_{21} & 36 \cdot b_{22} \end{pmatrix}$ — is included into PSL(2,37); denote the included matrix by $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$. homotethies. This is done so that precisely one of any two matrices from The matrices $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ of PSL(2,37) can be constructed by using the following two loops: choosing $a_{11} \in \{1,...,18\}$ and $a_{12},a_{21} \in$

 $\{0,...,36\}$ in all possible ways and determining each time a_{22} as the solution of the equation $a_{11} \cdot a_{22} - a_{12} \cdot a_{21} = 1$ within GF(37); choosing $a_{12} \in \{1,...,18\}$ and $a_{22} \in \{0,...,36\}$ in all possible ways and each time taking $a_{11} = 0$ and determining a_{21} as the solution of the equation $-a_{12} \cdot a_{21} = 1$ within GF(37).

When applying matrices of PSL(2,37) or PGL(2,37), points of the projective line are represented by their homogeneous coordinates as row vectors; that is, x = (x, 1) for $x \in \{0, 1, ..., 36\}$ and $\infty = (1, 0)$.

1.3 Reduced orbits

It is well-known (a consequence of two statements in [3], pp. 171 and 169) that PSL(2,37) and PGL(2,37) are respectively a 2-homogeneous and a 3-homogeneous group; any of these two groups will be denoted by G. When constructing k-G-orbits, it suffices to use those k-subsets of the projective line that are supersets of $\{0,\infty\}$ (respectively $\{0,1,\infty\}$); we call these k-subsets "special". "Special" k-subsets within a k-G-orbit constitute a reduced k-G-orbit. An analogous reduction is applied to t-G-orbits.

Reduced k-G-orbits are constructed by applying elements of G to their representative k-subsets; the image k-subsets are recorded iff they are "special". Together with the ordinal numbers of these k-subsets in the lexicographic order, it suffices to keep the ordinal numbers of k-G-orbits containing "special" k-subsets in computer memory.

Reduced t-G-orbits and reduced k-G-orbits are sufficient for construction of the matrix $\Lambda(G;t,k)$, since the set-inclusion preserves the "speciality"; that is, all k-supersets of a "special" t-subset are "special" k-subsets.

2 4-designs arising from PSL(2,37)

Throughout this section, "n-orbits" will be an abbreviation for n-G-orbits, where G = PSL(2, 37).

The main result of this paper reads:

Theorem 1 There exist 4-(38,5, λ) designs with PSL(2,37) as an automorphism group and with each λ in the set $\{6,10,12,16\}$.

Proof. The proof will be given by exhibiting four 4- $(38, 5, \lambda)$ designs with PSL(2,37) as a group of automorphisms and with the four values of λ above, accompanied with the necessary data for documenting the constructed designs. These data include:

a) data for identification of 4- and 5-orbits of of PSL(2,37); (Tables 1 and 2)

- b) matrix $\Lambda(PSL(2,37);4,5)$; (Table 3)
- c) column combinations (sets of columns) of $\Lambda(PSL(2,37);4,5)$ corresponding to the designs.

It turns out that there are 9 4-orbits and 29 5-orbits. In accordance with discussion held in Subsection 1.3., the representatives of all 4-orbits and 5-orbits may be assumed to be supersets of $\{0,\infty\}$.

In order to enable the identification of 4-orbits and 5-orbits, associated with rows and columns of the matrices, the following data will be given in Tables 1 and 2:

- the ordinal number of an orbit, associated to the corresponding row (column) of the matrix $\Lambda(PSL(2,37);4,5)$.
- the elements of the lexicographically first "special" representative, apart from the compulsory elements 0 and ∞ .
- the number of "special" subsets within the orbit.

Example. The denotations $\begin{bmatrix} 8 & 2 & 8 & 54 \end{bmatrix}$ in Table 1 and $\begin{bmatrix} 18 & 1 & 3 & 17 & 180 \end{bmatrix}$ in Table 2 mean that the 8th 4-orbit contains the representative $\{0,2,8,\infty\}$ and a total of 54 "special" 4-subsets, while the 18th 5-orbit contains the representative $\{0,1,3,17,\infty\}$ and a total of 180 "special" 6-subsets.

1	1	2	54	2	1	3	108 108 54	3	1	4	54
4	1	5	108	5	1	6	108	6	1	8	108
7	1	11	18	8	2	8	54	9	2	17	18

Table 1. Data describing 4-orbits of PSL(2,37)

1	1	2	3	180	2	1	2	4	180	3	1	2	5	360
4	1	2	6	360	5	1	2	7	180	6	1	2	8	360
7	1	2	9	360	8	1	2	11	360	9	1	2	14	360
10	1	3	4	180	11	1	3	7	360	12	1	3	9	180
13	1	3	12	360	14	1	3	13	360	15	1	3	14	180
16	1	3	15	180	17	1	3	16	360	18	1	3	17	180
19	1	3	22	180	20	1	3	26	360	21	1	3	29	360
22	1	4	5	180	23	1	4	11	60	24	1	4	17	180
25	1	5	8	180	26	1	5	22	180	27	1	5	24	180
28	1	6	8	180	29	2	8	22	60					

Table 2. Data describing 5-orbits of PSL(2,37)

```
| 1 2 3 4 5 6 7 8 910 111213 14151617181920212223242526272829
```

```
4 4 0
                   000
                        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 | 4 4 4 4 2
           4 4
             0 2 2
                  422
                        4 2 1 2 2 1 2 2 0 0 0 0 0 0 0 0
2 1 2 2 0 2 0
           0 0
          00 404 008 0000004042200000
3 | 0 2 4 0 0
              021
                   2 1 0
                         2020022220022200
4 1 0 0 4 2 0
           0 4
              220 202
                         2022022210201020
 100024
          2 0
 100220
          2 2
             220 002
                        0 3 0 2 3 0 2 2 0 0 2 2 0 2 2 0
                         0 0 0 0 0 0 0 0 0 4 0 6 0 0 0 0
7 | 0 0 0 0 0
          0 0 12 0 0 12 0 0
8 | 2 0 0 0 0 4 4 0 0 0 0 4 0
                         0 0 0 8 0 0 0 4 0 0 0 0 4 0 2 2
```

Table 3. The 9×29 matrix $\Lambda(PSL(2,37);4,5)$

The existence of a 4-(38,5, λ) design will be proved in each particular case by exhibiting a proper subset P of the column-set (a combination of columns) of matrix $\Lambda(PSL(2,37);4,5)$, satisfying that the sum of elements of any row within the columns of P is equal to λ .

Let C denote the set of ordinal numbers of those columns of $\Lambda(PSL(2,37);4,5)$ that constitute a required proper subset P. Four possible sets C are listed below, for λ within the set $\{6,10,12,16\}$:

```
\begin{array}{lll} \lambda = 6: & C = \{1,5,10,12,24,25,27\}; \\ \lambda = 10: & C = \{1,4,5,10,12,20,23,25,27,28,29\}; \\ \lambda = 12: & C = \{4,6,7,11,13,20,21\}; \\ \lambda = 16: & C = \{3,4,6,9,10,11,12,20,21,23,24,28,29\}. \end{array}
```

On the other hand, it immediately follows from the last row of $\Lambda(PSL(2,37);4,5)$ that no column combination has uniform row sums λ , with λ odd or with λ in the set $\{2,8,14\}$. A straightforward combinatorial argument related to entries 4 in 7th and 9th row, possible entries 2 in 3rd and 6th row and their consequences — implying that $\lambda=4$ is also not possible.

Results of a computer search show that there exist 2, 4, 6, 11 column combinations of $\Lambda(PSL(2,37);4,5)$ corresponding to λ equal to 6, 10, 12, 16, respectively.

3 About orbits and 4-design(s) from PGL(2,37) and PSL(2,37)

We recall that the group PSL(2,q) is a subgroup of index 2 of PGL(2,q), for each prime power q. This fact, combined with the following lemma, implies a number of consequences listed below.

Lemma 1 If H is a subgroup of index k of a group G, then a G-orbit includes at most k H-orbits.

Proof. Let $G = \bigcup_{i=1}^k g_i H$ be the partition of G into left cosets modulo H. Then the G-orbit determined by a set X can be represented as $\{X^g|g\in G\}=\bigcup_{i=1}^k \{X^{g_ih}|h\in H\}$. The set $S_i=\{X^{g_ih}|h\in H\}$ is an H-orbit determined by X^{g_i} . Therefore, the number of H-orbits

is an H-orbit determined by X^{g_i} . Therefore, the number of H-orbits within the considered G-orbit cannot be greater than k. It may happen that H-orbits determined by X^{g_i} and X^{g_j} coincide (this happens iff $X^{g_j} \in \{X^{g_ih} | h \in H\}$). \square .

Consequence 1. A low homogeneous subgroup H of a highly homogeneous group G may be useful for searching designs. All designs composed of H-orbits are also composed of G-orbits. The subgroup H, although possibly less homogeneous, preserves all λ -values found with G and leaves a possibility for finding some new λ -values. This is exactly what happened with G = PGL(2,37) and H = PSL(2,37).

Consequence 2. Each orbit of PGL(2,q) consists of either one or two orbits of PSL(2,q).

Consequence 3. All designs that have PGL(2,q) as a group of automorphisms can be obtained by applying the Kramer-Mesner method to the group PSL(2,q).

Using the fact that PGL(2,q) is 3-homogeneous, one also has Consequence 4. The application of the Kramer-Mesner method to the group PSL(2,q) produces 3-designs, for each prime power q.

Let PG(n,i) (resp., PS(n,i)) denote the *i*-th *n*-orbit of PGL(2,37) (resp., PSL(2,37)). Inclusion relationships among orbits PG(n,i) and PS(n,j) are listed in Table 4:

```
PG(4, 1) = PS(4, 1);
                                  PG(4, 2) = PS(4, 2);
                                  PG(4, 4) = PS(4, 4);
PG(4, 3) = PS(4, 3) + PS(4, 8);
PG(4, 5) = PS(4, 5);
                                  PG(4, 6) = PS(4, 6);
PG(4, 7) = PS(4, 7) + PS(4, 9);
                                  PG(5, 1) = PS(5, 1) + PS(5, 2);
PG(5, 2) = PS(5, 3) + PS(5, 7);
                                  PG(5, 3) = PS(5, 4) + PS(5, 9);
PG(5, 4) = PS(5, 5);
                                  PG(5, 5) = PS(5, 6) + PS(5, 8);
                                  PG(5,7) = PS(5,11) + PS(5,14)
PG(5, 6) = PS(5,10) + PS(5,12);
PG(5, 8) = PS(5,13) + PS(5,17);
                                  PG(5, 9) = PS(5,15) + PS(5,18)
PG(5,10) = PS(5,16) + PS(5,19);
                                  PG(5,11) = PS(5,20) + PS(5,21)
                                  PG(5,13) = PS(5,23) + PS(5,29)
PG(5,12) = PS(5,22) + PS(5,26);
PG(5,14) = PS(5,24) + PS(5,28);
                                  PG(5,15) = PS(5,25) + PS(5,27)
```

Table 4. Inclusion relationships among 4-orbits and 5-orbits of PGL(2,37) and PSL(2,37)

Theorem 2 There exists a 4-(38,5,16) design with PGL(2,37) as an automorphism group.

Proof. Joining together those orbits of PSL(2,37) that belong to the same orbit of PGL(2,37) (Table 4), one transforms the matrix $\Lambda(PSL(2,37);4,5)$ (Table 3) into the matrix $\Lambda(PGL(2,37);4,5)$ (Table 5):

								1-			-									
8	1	8	8	1	2	8	0	1	0	0	1	0	0	0	0	10	0	1	0	
4	1	0	4	1	0	0	4	1	8	4	1	4	2	4	0	10	0	1	0	
2	1	4	0	1	0	4	4	1	0	8	Ī	0	0	4	4	1 2	2	1	0	
0	1	8	4	1	0	0	2	l	4	0	1	0	4	4	4	10	0	1	4	
0	1	0	4	1	4	4	0	1	4	4	ı	0	4	4	2	10	4	1	0	
0	1	4	4	1	0	4	0	ı	0	4	1	6	0	4	0	10	4	1	4	
0	1	0	0	1	0	12	0	1	12	0	1	0	0	0	0	4	0	1	6	
	11																			

Table 5. The 7×15 matrix $\Lambda(PGL(2,37);4,5)$ and a corresponding 4-(38,5,16) design

The column combination of $\Lambda(PGL(2,37);4,5)$, consisting of the 2nd, 3rd, 7th, 8th, 13th and 14th column (rounded columns in Table 5) is the only one that corresponds to a 4-design. This column combination can be also recognized in Section 2; it is equivalent to one of the mentioned 11 combinations of $\Lambda(PSL(2,37);4,5)$ corresponding to $\lambda=16$; precisely to the combination containing the 3rd, 4th, 7th, 9th, 11th, 13th, 14th, 17th, 23rd, 24th, 28th and 29th column. \square

Remark. Note that the family F of blocks of a 4-(38,5,16) design exhibited in Section 2 cannot be represented as the union of whole orbits of PGL(2,37). For example, the orbit PS(5,3) is included into F, but PS(5,7) is not; consequently, the orbit PG(5,2) is only partly included into F.

References

- [1] Acketa, D.M., Mudrinski, V., Two 5-designs on 32 points, Discrete Math., 163 (1997), 209-210.
- [2] Acketa, D.M., Mudrinski, V., A family of 4-designs on 26 points, Comment.Math.Univ.Carolinae 37,4 (1996), 843-860.
- [3] Beth, T., Jungnickel, D., Lenz, B., Design theory, Bibliographisches Institut Mannheim/Wien/Zürich, 1985.
- [4] Kramer, E.S., Mesner, D.M., t-designs on hypergraphs, Discrete Math. 15 (1976), 263-296.
- [5] Kreher, D.L., Radziszowski, S.P., The existence of simple 6-(14,7,4) designs, Jour. of Combinatorial Theory, Ser. A, Vol. 43 (1986), 237-243.