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Abstract

Block’s Lemma states that every automorphism group of a finite
2-(v,k, A) design acts with at least as many block orbits as point
orbits: this is not the case for infinite designs. Evans constructed a
block transitive 2-(v, 4, 14) design with two point orbits using ideas
from model theory and Camina generalized this method to construct
a family of block transitive designs with two point orbits. In this
paper we generalize the method further to construct designs with »
point orbits and ! block orbits with ! < n, where both k and X are
finite. In particular, we prove that for ¥ > 4 and n < k/2, there
exists a block transitive 2-(v, k, A) design, for some finite A\, with n
point orbits. We also construct 2-(v, 4, A) designs with automorphism
groups acting with n point orbits and I block orbits, { < n, for every
permissible pair (n,1).

1 Introduction

Let D be a 2-(v,k, ) design and let G < Aut D. It is well known that
when v is finite, G acts with at least as many orbits on the blocks of D
as on the points. This is known as Block’s Lemma [1]. However, infinite
designs with automorphism groups acting with more point orbits than block
orbits are not difficult to construct when A is infinite; see Webb [11] for
some examples. An example of a block transitive point intransitive design
with A = 1 and k infinite is attributed to Valette [2]. Another example
with an automorphism group acting with two block orbits and three point
orbits was constructed by Prazmowski [9] by generalizing a linear space of
Strambach [10]. The first example of a design with more point orbits than
block orbits and both &£ and A finite, is a block transitive design with two
point orbits constructed by Evans [7] using a model theoretic construction
of Hrushovski [8]. This method was generalized by Camina [6] to show that
a block transitive 2-(v, &,k + 1) design with two point orbits exists for all
finite £ > 6. Here we generalize this method further, to construct designs

ARS COMBINATORIA 53(1999), pp. 291-308



with n point orbits and ! block orbits. We show that 2-(v, k, \) designs with
automorphism groups acting with more point orbits than block orbits, and
finite k£ and A, are not uncommon.

It is worth noting here that no design is known with A = 1, k finite and
an automorphism group acting with more point orbits than block orbits.
When k¥ = 2 or 3, and A = 1 every automorphism group acts with at
least as many block orbits as point orbits [4] (in fact, this is also the case
for k = 2 or 3 and any A [11]). The ‘smallest’ possible example of a block
transitive point intransitive design with A = 1 is therefore a 2-(v,4, 1) design
with two point orbits. The question of the existence of such a design was
posed by Cameron and Praeger [5] in 1993, and despite receiving attention
from a number of mathematicians, remains unanswered. A related problem
(Doyen, see Cameron (3]) is to construct infinite linear spaces with more
point orbits than block orbits with (n,!) not equal to (2,1) and (3,2).

2 Preliminaries

Let D be a design with both & and X finite, and let G act on D with a finite
number n of point orbits P,...,P,. Let C be a set of n distinct colours.
Then we colour the points of D so that each point in P; is of colour ¢;. This
induces a colouring on the blocks of D which depends only on the colours
of the points incident with the block. The point colouring is G-invariant
and so the induced colouring of the blocks is also G-invariant.

Now, D is a design, so there are precisely A blocks incident with each
pair of points. Therefore, for each colour (that does not correspond to a
fixed point) there must be some block orbit whose blocks are incident with
at least two points of this colour, and likewise for each pair of colours there
must be some block orbit whose blocks are incident with at least one point
of each of these colours. For fixed k, we get a lower bound for the number
of block orbits in terms of n, call this Fi(n); see [11). Here we are not
concerned with the exact values taken by Fi(n), but with designs with !
block orbits under G where Fi(n) <1 < n.

We begin by generalizing Lemma 1 of [11].

Lemma 1 Let D be a 2-(v,k,)) design with k and X finite. Let G be an
automorphism group of D acting with a finite number of finite length point
orbits. Let Py denote an infinitely long point orbit under G. Then there is
some block orbit such that each block in this orbit is incident with at least
two points of P, and no points of finite length orbits.

Proof: Let p be a point of P;. Since there are only finitely many points
in finite length orbits, each in A blocks incident with p, only finitely many
blocks incident with p contain a point in a finite orbit. However, there are

292



infinitely many points p’ # p of P;, and so infinitely many blocks incident
with p and another point of P,. Therefore, there is some block orbit with
each block incident with at least two points of P, and no points of a finite
length orbit. o

In light of this Lemma, since we are concerned with designs with rel-
atively few block orbits (Fi(n) <! < n), we can restrict our attention to
designs with automorphism groups acting only with infinitely long point
orbits.

In this paper we generalize the method of Evans [7] of constructing
block transitive 2-(v,k,\) designs with two point orbits, to construct 2-
(v,k, ) designs with n point orbits and ! block orbits (Fi(n) <1< n). In
particular, we prove:

Theorem 1 Let k > 4. Then, for some finite natural number A, there
exists a block transitive 2-(v, k, \) design with n point orbits, for every n <
k/2.

The values of ! satisfying F4(n) < ! < n can easily be determined. This
leads to the following;:

Theorem 2 Let | and n be natural numbers such that Fy(n) < |l < n.
Then, for some finite natural number A, there ezists a 2-(v,4,)) design
with n point orbits and | block orbits.

We make the following conjecture:

Conjecture Let n, k and ! be finite natural numbers such that Fi(n) <
I < n. Then, for some finite natural number A, there erists a 2-(v, k, )
design with an automorphism group acting with n point orbits and | block
orbits.

3 An overview of the method

This method, introduced by Evans [7], for constructing designs is quite
involved and makes use of a powerful model theory theorem of Hrushovski [8].
We therefore give a brief overview of the main ideas before going into more
detail in the next section.

Let V be a set of points and Ey a set of distinct subsets of V of size
3, called edges. Then the pair (V, Ev) is a 3-uniform hypergraph. (Note
that in standard graph theory terms the elements of V are usually called
vertices of the hypergraph. Here we call these elements points as we shall
be using them to form the points of the design we construct.)

Let C be a set of n distinct colours, where 7 is finite. Then we call the
triple V = (V, Ev,Cv) a 3-uniform coloured hypergraph, where Cy assigns
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a colour from C to each point of V. We call W = (W, Ew,Cw) a coloured
subgraph of V, and write W C V,if W CV, Ew C Ey is a set of edges
incident only with points of W and Cyw is a restriction of Cy to W.

4

We can summarize the method used to construct the designs as follows:

1. We use a model-theoretic result to show that there exists a special

countably infinite 3-uniform coloured hypergraph M with: n col-
ours; a large automorphism group that acts transitively on the points
of M of each colour; and a function g on certain pairs of finite col-
oured subgraphs of M. At this point we do not specify the values
that this function takes, simply that its value is always at least 2.
The automorphism group is ‘large’ in the sense that any isomorph-
ism between certain finite coloured subgraphs can be extended to an
automorphism of the coloured hypergraph M.

. We then construct a design on M: the points of this design D are the

points of M and the blocks of D are chosen to be those coloured sub-
graphs (of size k) whose isomorphism type is one of a fixed collection
(of size 1).

. The automorphism group of M induces an automorphism group of

D; the orbits on the points of D are simply the sets of points of each
colour. Because of the ‘largeness’ of the automorphism group, if two
blocks are isomorphic as coloured subgraphs of M, then they lie in
the same orbit under the induced action of the automorphism group;
thus there are ! block orbits.

. The final (and more technical) part of the construction is to find

possible values for the function M (in terms of n and ) such that
any pair of points of D is incident with a constant number of blocks
of D. This determines the value of A and proves a result for this
n and [.

The countably infinite hypergraph M

In this section we give the method, introduced by Evans (7], to construct
the 3-uniform coloured hypergraph with the required properties for the
construction of the design D. This method uses model theoretic results of
Hrushovski (8].

Let V= (V,Ey,Cy). f X CV and W C V, then we define the union

X UW to be the coloured subgraph of V given by

XUW = (XUW,Exuw,Cxuw),
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where Exuw comprises all the edges of V incident only with the points of
XUuUw.
We define
do(V) =|V| - |Ev]|.

Notice that hypergraphs with positive values of dy have comparatively few
edges.
If X CWCYV, then we define

d(X, W) =min{dp(Z) | ¥ CZ C W}

We call X self-sufficient in W if d(X, W) = do(X).

Now let X C V and W C V be disjoint coloured subgraphs. Then
we call X simply algebraic over W if W is self-sufficient in X U W and
do(X UW) = do(W); that is, if

dW, X UW) = do(W) = do(X UW).

Further, we call X minimally simply algebraic over W if there is no proper
coloured subgraph Z C W such that X is simply algebraic over Z.

For example, consider the coloured subgraphs X = ({z},0,Cx), Y =
({y1,92},9,Cy) and W = ({w1,w2},0,Cw) of V, where z, y1, y2, w1 and
wy are in V and the edges {z,w;, w2}, {y1, w1, w2} and {yz, w1, w2} are in
Ev. NOW,

XUW = ({.'L', 'UJ1,’UJ2}, {{x7 wlaw2}}vCXUW)

and
dW, X UW) =do(W) =dp(XYUW) =2,

so & is simply algebraic over W. Notice that the only proper coloured
subgraphs of W are 2Z; = ({un},0,Cz,) and 22 = ({w:2},0,Cz,). We have

d(Z21,XUZ2)) =d(22,XUZ) =1#dp(X U Z;) =dp(X U Z3) =2,
so A is minimally simply algebraic over W. Also,
YUW = ({y1,y2, w1, w2}, {{v1, w1, w2}, {y2, w1, w2}}, Cyuw)

and

dY, YUW) =do(Y) = do(YUW) =2,

so W is simply algebraic over ). The only proper coloured subgraphs of
are Zs = ({yl},Q,Czs) and Z4 = ({yz},Q,CzJ. We have

d(Z3, WU 2Z3) =d(23, WU 24) =1 £ do(WU 2Z3) = dp(WU Z4) =2,
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so W is minimally simply algebraic over.)y. The only examples of min-
imally simply algebraic coloured subgraphs that we shall consider will be
isomorphic, as (uncoloured) subgraphs, to one of these two examples.

Let X and W be coloured subgraphs of V, such that X’ is minimally
simply algebraic over W and |X| > 1. Then we define an integer valued
class function p, defined on the pairs (X', W) such that the value of u(X, W)
is dependent only on the isomorphism type of the embedding of X in X UW.
We do not at this point assign exact values to this function, but note that
it is at least the value of do(W).

We are now in a position to quote the definition from [7] of the class of
3-uniform coloured hypergraphs that we shall need.

Definition 1 For a given class function u, let C be the class of all finite
3-uniform coloured hypergraphs V which satisfy the following:

(a) for all coloured subgraphs X of V, do(X) > min{|X|,2};

(b) let W and X4, ..., X, be pairwise disjoint coloured subgraphs of V such
that X; UW are pairwise isomorphic under (colour preserving) auto-
morphisms of V fizing W, and each X; is minimally simply algebraic
over W. Then t < u(X;,W).

Notice that, by part (a) of Definition 1, if V € C, then V has at most
|V| — 2 edges, and part (b) states that the number of any such subgraphs
is finite and bounded above by u.

The results of Hrushovski [8], as interpreted by Evans [7] prove the
existence of the 3-uniform coloured hypergraph with the special properties
that we require. Note that we need a hypergraph with n colours, for finite
n, so we make the additional modification of taking a language with a single
ternary predicate and n unary predicates (see Section 5.3 of Hrushovski’s

paper [8]).
Theorem 3 There exists a countably infinite 3-uniform coloured hyper-

graph M = (M, Ep,Cpr) (dependant on C and hence on u) with the fol-
lowing properties:

(i) the class of all (isomorphism classes of) finite coloured subgraphs of
MisC;

(i) let Vi € C and V, € C be self-sufficient in M. If there is a (colour
preserving) isomorphism from V) to Vs, then this isomorphism can be
extended to a (colour preserving) automorphism of M.

Note that any subset of size 2 is self-sufficient in M. Hence, the orbits
on pairs of points are determined only by the colours of the points.
We also need the following definitions and lemmas from [6].
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Definition 2 Let W C Z C V be 3-uniform coloured hypergraphs with the
following properties: Z is a union of subgraphs Y1,Ys,..., Vs such that
W C ); for each i, and each Y; is pairwise isomorphic over W; if i # 3,
then YiNY; = W and no edge contains points of both Y:\W and YVi\W.
Then Z is called the free amalgam of V1,Vs,..., Vs over W.

Definition 3 An edge configuration is an almost special case of a free
amalgam in which each component Y; is just one edge and |W| = 2; but the
Y; need not be isomorphic to each other; that is, their colourings may vary.

Lemma 2 Any sufficiently small edge configuration satisfies the conditions
of Definition 1. Hence it is in C, and occurs as a subgraph of M; the size
restriction is given by part (b) of Definition 1.

Lemma 3 Any sufficiently small free amalgam in which |Y;| = 4 and
|W| = 2 and the only edges within Y; are the two 3-subsets containing
W, satisfies the conditions of Definition 1. Hence, it is in C and occurs as
a subgraph of M; the size restriction is given by part (b) of Definition 1.

5 Proof of Theorem 1

We prove the Theorem in four parts as outlined in Section 3.

1. We fix k > 4 and let |C| = n. One of the countably infinite 3-uniform
coloured hypergraphs M = (M, Ea,Cam) whose existence is guaranteed by
Theorem 3 will be used to construct D. The automorphism group of M
acts with n point orbits; it acts transitively on the points of each of the n
colours. At this stage we do not specify the choice of the function y; we do
this in the final part of the proof, once the necessary properties have been
established. Recall that u always takes values of at least 2.

2. The points of the design D are the points of the 3-uniform coloured
hypergraph M. We fix s; =2 and s2 > 2, 83 > 2, ..., s, > 2 such that
>-i1 si = k. This is possible since n < k/2. The blocks of our structure D

are the subgraphs X = (X, Ex,Cx):

X = {lxl,lﬂfzfa:l,za:g,...,2:1::2,3:1::1,...,3:383,...,”2:1,...,"z,ﬂ}
Ex = {{l$l7 Zz,y}:yEX\{ I, 32}}

The point ‘z; is coloured ¢; € C. Notice that |X| =k and |Ex|=k—-2=
Y-, si, and so do(X) = 2. Such blocks are contained in M for a suitable
function g by Lemma 2.

3. The automorphism group of M induces an automorphism group of D.
We have already established that there are n point orbits under this action.
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Now, dp(X) = 2, so by part (a) of Definition 1, X is self-sufficient in M.
Hence, by part (ii) of Theorem 3, the automorphism group acts transitively
on the blocks of D.

4. Here we show how to choose the function p so that the structure D
is a design. We do this by showing how the existence and value of A are
related to the value of y on certain basic configurations. We first relate the
values of u to the counts of these configurations, then we count the number
of blocks through a pair of points in terms of these counts. The details of
the counts are given in the following table.

We shall show that each of these counts must be equal to the value of
#(Z,W); this is the value of p on the isomorphism class of embeddings.
Since the automorphism group of y is transitive on pairs of points, it follows
that each of the counts is independent of the fixed pair of points chosen,
and also that the free amalgam of the required type can be found.

We use Lemma 2 or Lemma 3 to prove that the free amalgam of t'
copies of ZUW over W is in C for any t' < p(Z,W); thus the count is at
least u(Z,W). However, by part (b) of Definition 1, the count is at most
u(Z,W). Hence, the count is equal to u(Z, W).

Count symbol What is counted Configuration (Z, W)
o;  For a fixed pair p, ¢ coloured ¢;, the number ({=}, {p.q})
of edges {’z,p,q} with =z coloured c;.
Bi For a fixed pair p, coloured ¢;, and %, col- ({q}, {p,iz})
oured c;, the number of edges {q,p,’z} with
q coloured c; .
v;  For a fixed pair %, ' coloured c;, the num- ({p,q}, {%,iz'})
ber of pairs of points p and g coloured ¢,
such that the only edges in {p,q,'z,'z'} are
{'z,p,q} and {%',p,q}. _ .
vij  For a fixed pair %, coloured c;, and 7z, col-  ({p,q},{%/x})
oured ¢;, the number of pairs of points p and
g coloured ¢;, such that the only edges in

{p,q,z, 7z} are {¥,p,q} and {’z,p,q}.

Ineachcase 1 <4,j <m.

We now count the number of blocks incident with a given pair of points.

e Two points of colour ¢;:
the number of blocks containing them is
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o Two points coloured ¢; (j # 1):
the number of blocks containing them is

i=2

i#j

¢ One point coloured ¢; and one coloured c; (j # 1):
the number of blocks containing them is

s(220) I ()

i

e One point coloured c; and one coloured ¢; (5,1 # 1):
the number of blocks containing them is

a; -1\ fag—1 d Q;
(9 i
ks (Sj—l) (s, - 1) ,.1;[2 (Si)'
i
i#

Hence we require values for p so that

i=2 i=2
i#j
_ ‘aj—l i A a;j =1\ fa; -1 i Q4
- ﬂ’(Sj—l) H (Si)—7]l<sj_l si—1 H si)
1i=2 i=2
i#j i#j
i#l

This implies that, for each j = 2,...,n,

17 Rt
I Sj(Sj - 1) 1 Sj

and for each pair j =2,...,nand I =2,...,n (j #1)

We have s; > 2, for all ¢, so we can set a; = s2, for each i, giving integer
solutions of at least 2 for «;, i, B; and 7;;, for all ¢ and j. This results in

i)
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Thus D is a 2-(v, k, ) design with one block orbit and n point orbits as
required.

In most cases it is possible to set smaller values for the o; and obtain
integer solutions of at least 2 for as, i, 8; and ;;. This results in designs
with lower values of A.

6 Some examples

1. A block transitive 2-(v,4,6) design exists with two point orbits. The
blocks of this design are the sets of four points, two coloured (say) red
and two (say) blue, such that the edges of the underlying 3-uniform
hypergraph contain both red points and one of the blue points, as
illustrated below. A block of the block transitive 2-(v,4,14) design
given by Evans [7] with two point orbits, is also illustrated.

red red red blue

TN TN

blue blue blue red
Blocks of the 2-(v,4,6) design, the 2-(v,4, 14) design.

2. A block transitive 2-(v, 5, 84) design exists with two point orbits. In
fact, we can set as = 25, = 6, so that 82 = 2, 2 = § and A\ = 20,
giving a block transitive 2-(v, 5, 20) design with two point orbits.

3. When k = 6, setting a; = s? gives the following designs: a block
transitive 2-(v, 6, 36) design with three point orbits and a block trans-
itive 2-(v, 6, 1820) design with two point orbits. However, by setting
az = 3s2 = 12 we obtain a block transitive 2-(v,6,495) design with
two point orbits. A block from each of these designs is illustrated
below, along with a block from the 2-(v,6,7) design given by Cam-
ina [6]. The blocks of the 2-(v,6,1820) and the 2-(v,6,495) designs
have the same colour type.

Notice that although the values for A are large, relatively smaller values
of A arise for designs with as many point orbits as possible. In many cases
it is also possible to construct designs with lower values for A by choosing
a different colouring for the coloured subgraph used to define the blocks.
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red red red red

blue green blue blue
Blocks of the 2-(v,6,36) design,  the 2-(v,6,495) design,
red blue

7N

blue red
the 2-(v,6,7) design.

7 Proof of Theorem 2

The values of n and [ that we need to consider aren = 2,1l =1; n = 3,
Il =2 and n =4, ] = 3. We consider each case separately.

n=2,1=1
Theorem 1 proves the existence of a block transitive 2-(v,4,6) design with
two point orbits, as required.

n=3,1l=2
We first consider the case where n = 3 and [ = 2. Again we use the four
parts as outlined in Section 3.

1. We have ¥ = 4 and |C| = 3. We use one of the countably infin-
ite 3-uniform coloured hypergraphs M = (M, Ejs,Cpr) whose existence is
guaranteed by Theorem 3. The automorphism group of M acts with 3
point orbits; it acts transitively on the points of each of the 3 colours. At
this stage we do not specify the choice of the function y; we do this in the
final part of the proof, once the necessary properties have been established.
Recall that u always takes values of at least 2.

2. The points of the design D are the points of the 3-uniform coloured
hypergraph M. The blocks of our structure D are the subgraphs X =
(X,Ex,Cx) and Y = (Y, Ey,Cy):

X = {'z1, 22,201,222} Ex = {{'z1,' 22,221 }{21, 22,222} }
Y= {31:1,3172,11:,2&'} EY = {3$1,3$2,127}{3$1,3$2,2$}}

The point %; is coloured ¢; € C.

Let ¢; be red, c; be blue and c3 be yellow, then we can illustrate the
two types of blocks as follows.
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TN

red red yellow

blue . blue red

Notice that |Ex| = |Ey| = 2, and so do(X) = dp(Y) = 2. Such blocks
are contained in M for a suitable function p by Lemma 2.
3. The automorphism group of M induces an automorphism group of D:
there are 3 point orbits under this action. Now, do(X) = do(Y) = 2, so
by part (a) of Definition 1, X and ) are self-sufficient in M. Hence, by
part (ii) of Theorem 3, the automorphism group acts with two orbits on
the blocks of D; it acts transitively on the blocks of each colour type.

4. Here we choose the function p so that the structure D is a design. The
details of the counts that we need are given in the following table.

yellow

TN

blue

Count symbol What is counted Configuration (Z, W)

a2

Prz

Y2

a3y

Q32

Bs1

Bs2

T2

For a fixed pair r, 7' coloured c;, the number
of edges {b,r,7'} with b coloured c;.

For a fixed pair r, coloured c¢;, and b, coloured
¢2, the number of edges {r',r,b} with r' col-
oured c;.

For a fixed pair b, b’ coloured ¢z, the number of
pairs of points r and 7’ coloured ¢;, such that
the only edges in {r,7’,b,0'} are {b,7,7'} and
{o',r,7'}.

For a fixed pair y, ¥’ coloured c3, the number
of edges {r,y,y'} with r coloured c,.

For a fixed pair y, y' coloured c3, the number
of edges {b,y,y'} with b coloured c;.

For a fixed pair y, coloured c3, and r, coloured
¢1, the number of edges {y',y,r} with 3’ col-
oured c3.

For a fixed pair y, coloured c3, and b, coloured
¢z, the number of edges {y',y,b} with y' col-
oured c3.

For a fixed pair r, coloured ¢;, and b, coloured
c2, the number of pairs of points y and y' col-
oured c3, such that the only edges in {y,y’,r, b}
are {r,y,¥'} and {b,y,¥'}.

({6}, {r,7'})
({r'}, {r,b})

({r 7'} {60}

({r}: {v,¥'D)

({6}, {v,¥'})
({y'}: {y,r})

({¥'}: {y,0})

{v,v'}, {r,b})

Each of the counts is independent of the fixed pair of points chosen, and
also the free amalgam of the required type can be found. We use Lemma 2

302



or Lemma 3 to prove that the free amalgam of ¢' copies of Z U W over W
isin C for any t' < pu(Z,W); thus the count is at least u(Z, W). However,
by part (b) of Definition 1, the count is at most x(Z, W). Hence, the count
is equal to u(Z,W).

We now count the number of blocks incident with a given pair of points.
The following table shows the counts of the number of blocks containing a
pair of points of the given colours.

| C1 C2 c3
a | (%2 Buzlez—1)+m2 Bunasx
C2 Y2 Baz03)
3 31032

Hence we require values for p so that

a .
A= ( 12) = 7 =azno3z = fia(oz — 1) + M2

2
Ba1032 = Ba203;.

This implies that
Bs1 =az1 and asz = Pa.
Also,
az(ay2 — 1)
2

Since B2 and 7,2 are at least two, we have

= fr2(on2 — 1) + 712-

aja(aiz — 1) > 4o,

which implies that ay2 > 5.

We set aj2 = 5, so that B12 = 712 = 2, then y2 = 10. We set a3 =
B31 = 2 and az» = P32 = 5 to get a solution to the above equation with
A =10.

Thus D is a 2-(v,4,10) design with two block orbits and three point
orbits as required.

n=4,1=3
Now we consider the case where n = 4 and | = 3. Again we use the four
parts as outlined in Section 3.

1. We have k = 4 and |C| = 4. We use one of the countably infin-
ite 3-uniform coloured hypergraphs M = (M, Eps,Cpr) whose existence is
guaranteed by Theorem 3. The automorphism group of M acts with 4
point orbits; it acts transitively on the points of each of the 4 colours. At
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this stage we do not specify the choice of the function p; we do this in the
final part of the proof, once the necessary properties have been established.
Recall that p always takes values of at least 2.

2. The points of the design D are the points of the 3-uniform coloured
hypergraph M. The blocks of our structure D are the subgraphs &' =
(X,Ex,Cx), Y = (Y,EBy,Cy)and U = (U, Ey,Cy):

X= {1z1,1z2,2m1’2x2} EX = {lxlalxzale}{131)1:”2)23:2}}
Y = {3 3252,2,%2} By = {31,322, 2} {*n1,3 22, x}
U= {%:,2:,22.3z}  Eu = {{%n1,'z2,22}{*1," 22,32}

The point *z; is coloured ¢; € C.
Again, let ¢; be red, c; be blue and c3 be yellow, and let ¢4 be green,
then we can illustrate the three types of blocks as follows.

red red yellow yellow
blue blue red green

green green
blue yellow

Notice that |Ex| = |By| = |Eu| = 2, and so do(X) = do(Y) = do(U) =
2. Such blocks are contained in M for a suitable function g by Lemma 2.
3. The automorphism group of M induces an automorphism group of D:
there are 4 point orbits under this action. Now, do(X) = do(Y) = do(U) =
2, so by part (a) of Definition 1, X, Y and U are self-sufficient in M. Hence,
by part (ii) of Theorem 3, the automorphism group acts with three orbits
on the blocks of D; it acts transitively on the blocks of each colour type.
4. Here we choose the function u so that the structure D is a design. The
details of the counts that we need are given in the following table.
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Count symbol What is counted Configuration (Z, W)

12

ﬁ12

Y2

asy

Q34

Ba1

1334

M4

Q42

Q43

Ba2

Pas

Y23

For a fixed pair 7, r' coloured ¢;, the number
of edges {b,r,7'} with b coloured c;.

For a fixed pair r, coloured c;, and b, col-
oured ¢y, the number of edges {r',r,b} with
7’ coloured ¢;.

For a fixed pair b, b’ coloured cg, the number
of pairs of points r and r’ coloured ¢;, such
that the only edges in {r,r',b,b'} are {b,,7'}
and {V',r,r'}.

For a fixed pair y, 3’ coloured c3, the number
of edges {r,y,y'} with r coloured c;.

For a fixed pair y, y' coloured c3, the number
of edges {g,y,y'} with g coloured c;.

For a fixed pair y, coloured c3, and r, col-
oured c;, the number of edges {y,y,7} with
3" coloured c3.

For a fixed pair y, coloured c3, and g, col-
oured ¢4, the number of edges {v',y, g} with
y' coloured cs.

For a fixed pair 7, coloured ¢;, and g, col-
oured c4, the number of pairs of points y and
y' coloured c3, such that the only edges in
{y,9',7,9} are {r,3,¥'} and {g,9,%'}.

For a fixed pair g, g’ coloured c4, the number
of edges {b, g, g'} with b coloured c;.

For a fixed pair g, g’ coloured c4, the number
of edges {y,9,9'} with y coloured c3.

For a fixed pair g, coloured c4, and b, col-
oured cz, the number of edges {g', g,b} with
g' coloured c¢;.

For a fixed pair g, coloured c4, and y, col-
oured c3, the number of edges {¢’, g,y} with
g' coloured cq.

For a fixed pair b, coloured cz, and y, col-
oured c3, the number of pairs of points g and
g' coloured ¢4, such that the only edges in

{9,9',b,y} are {b,g,9'} and {y,9,9'}.
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({6}, {r,7'}H
({r'}s {r,0})

({r,r'} {b,0'})

({r}: {v:9'D

({g}: {v,¥'})
{y'}: {v,r})

({v'}: {y,9})

(v, '} {r,9})

({6}, {g:9'D)

({y}.{g:9'})
({g'}: {g,0})

{g'}:{9:9})

({9,9'}, {b,4})



Each of the counts is independent of the fixed pair of points chosen, and
also the free amalgam of the required type can be found. We use Lemma, 2
or Lemma 3 to prove that the free amalgam of # copies of ZUW over W
is in C for any t' < u(Z,W); thus the count is at least u(Z, W). However,
by part (b) of Definition 1, the count is at most x(Z,W). Hence, the count
is equal to u(Z,W).

The following table shows the counts of the number of blocks containing
a pair of points of the given colours.

G C2 c3 c4
a | (%32 Brlamz—1) oz T4
C2 Y2 Y23 Bao0uys
c3 a3 azq  Pagasr + Pazaye
Ca Q420043

Hence we require values for y so that

a
A= ( 212) = 12 =o31034 = aggagz = fiaonz — 1) = Barag

N4 = Y23 = P20z = Pasaz; + Pazayo.

This implies that

Pr2=012/2, Pa1=asn and L2 =y

We set a;2 = 6 so that 512 = 3. We also set

a3 = f31 = Ba2 = g2 = Pa3 = 3,
and
B4 =2 and a3q =ay3; =5
Thus, with
Y2 =4 =723 = 15,

we have a solution to the above equation with A = 15.
Thus D is a 2-(v,4,15) design with three block orbits and four point
orbits as required. This completes the proof.

8 Block intransitive designs
The results of this paper and those of Camina [6] show that infinite designs

with more point orbits than block orbits are not uncommon. Based on
these findings we make the following conjecture:
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Conjecture Let n, k and | be finite natural numbers such that Fr(n) <
l < n. Then, for some finite natural number )\, there ezists a 2-(v, k, \)
design with an automorphism group acting with n point orbits and I block
orbits.

This essentially claims that, whenever it is feasible to find a design with
blocks of length k, with n point orbits and ! block orbits, then for some
finite A such a 2-(v, k, \) design exists. The difficulty in proving this arises in
choosing the function p and hence solving the equation for A. The number
of counts required increases as k, n or ! are increased. For example, in the
proof of Theorem 2, the 2-(v,4,10) design with n = 3, | = 2 requires 8
counts and the 2-(v,4, 15) design with n = 4, ! = 3 requires 13 counts. The
author has constructed a 2-(v, 6,4) design with n = 4 and ! = 2 in the same
way and this requires 18 counts. To try to construct a 2-(v,6,) design
with n = 6, I = 3, then either 30 or 32 counts are required, depending on
the way in which the blocks are coloured. The complexity of this increases
greatly as k, n and ! are made general.
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