Block Graphs of Z-transformation Graphs of Perfect Matchings of Plane Elementary Bipartite Graphs

Heping Zhang

Department of Mathematics

Lanzhou University

Lanzhou, Gansu 730000

P. R. China

email: zhanghp@lzu.edu.cn

Fuji Zhang
Department of Mathematics
Xiamen University
Xiamen, Fujian 361005
P. R. China

ABSTRACT. Let G be a connected plane bipartite graph. The Z-transformation graph Z(G) is a graph where the vertices are the perfect matchings of G and where two perfect matchings are joined by an edge provided their symmetric difference is the boundary of an interior face of G. For a plane elementary bipartite graph G it is shown that the block graph of Z-transformation graph Z(G) is a path. As an immediate consequence, we have that Z(G) has at most two vertices of degree one.

Since a hexagonal system with at least one perfect matching is the skeleton of a benzenoid hydrocarbon molecule, graphs of this kind are of chemical significance and their topological properties have been extensively studied[2-4]. In Refs.[7,8] the concept of Z-transformation graphs of hexagonal systems was introduced. By virtue of this concept a complete characterization for the hexagonal systems with forcing edges [5] was given, see[9]. In [10] the present authors extended the Z-transformation graph of hexagonal systems to general plane bipartite graphs in a natural way. For a plane elementary bipartite graph some analogous results were obtained.

Now let us recall some related concepts and properties. Some terminologies on the connection of graphs are taken from [14]. A connected graph is said to be 2-connected or nonseparable if it has no cut-vertex. A block in a graph G is a maximal 2-connected subgraph of G, that is, a 2-connected subgraph of G that is not contained in any other. Let G be a plane bipartite graph. The boundary of an interior face of G is called a ring if it is a cycle. A perfect matching of G is a set of disjoint edges covering all the vertices of G. A connected bipartite graph is said to be elementary or 1-extendable if each edge of it is contained in a perfect matching of G. It is known that an elementary bipartite graph is 2-connected. For other various properties, the interested reader may be referred to [6,10]. The symmetric difference of two finite sets G and G is defined as $G \cap G$ in this paper see G in this paper see G in the paper see G in the paper see G in this paper see G in the paper see G in this paper see G in t

Definition 1. Let G be a plane bipartite graph with perfect matchings. Z-transformation graph of G, denoted by Z(G), is defined as a simple graph in which the vertices are the perfect matchings of G and two perfect matchings M_1 and M_2 are joined by an edge provided the symmetric difference $M_1 \oplus M_2$ consists exactly of a ring of G.

Theorem 2. [10]. Let G be a plane elementary bipartite graph. Then

- (a) Z(G) is connected bipartite graph,
- (b) Z(G) has at most two vertices of degree 1, and
- (c) Z(G) is either a path or a graph of girth 4 different from cycles.

For hexagonal systems H and polyomino graphs P (or square systems), the above results hold. Here we would like to emphasize the following results: the connectivity of Z(H) is equal to the minimum degree[8]; the same result holds for Z(P) except for only two graphs [13]. For general plane (elementary) bipartite graphs the situations are more complicated. To find the relations between the blocks and cut-vertices of Z-transformation graphs we will study its block-graph.

Definition 3. Let G be a graph. Let U and V be the sets of blocks and cut-vertices of G, respectively. The block-graph of G, denoted by Blk(G), is defined as a bipartite graph G(U,V) such that a vertex B of U and a vertex x of V are adjacent if and only if the block B includes the cut-vertex x of G.

It is well known that the block-graph of a connected graph is a tree[14]. In this paper we obtain the following main result.

Theorem 4. Let G be a plane elementary bipartite graph. Then the block-graph of Z-transformation graph of G is a path.

To prove the theorem it needs to orientate every edge of Z-transformation graph Z(G) and obtain a directed graph $\vec{Z}(G)$. First let us introduce some important concepts. Let G be a plane bipartite graph with a perfect matching M. A cycle C of G is called an M-alternating cycle if the edges of C appear alternately in M and $E(G)\backslash M$. An M-alternating path can be defined similarly. For convenience all the vertices of G are always colored properly black and white. In the following we restrict our consideration to plane elementary bipartite graphs G with a perfect matching M.

Definition 5. [11,12]. An M-alternating cycle C of G is called a proper M-alternating cycle if each edge of C belonging to M goes from white vertex to black vertex by the orientation of C clockwise; otherwise C is known as an improper M-alternating cycle.

Definition 6. Let G be a plane bipartite graph. Orientate all the edges of Z(G) and result in a directed Z-transformation graph $\vec{Z}(G)$ according to the following way: the orientation of an edge M_1M_2 of Z(G) is from M_1 to M_2 if and only if $M_1 \oplus M_2$ is a proper M_1 -alternating ring of G.

Lemma 7. Assume that M_1 and M_2 are two perfect matchings of G such that $M_1 \oplus M_2$ is a proper M_1 -alternating cycle. Then $\vec{Z}(G)$ has a directed path from M_1 to M_2 .

Proof: Let $C = M_1 \oplus M_2$. The proof is by induction on the number N of faces contained in the interior of the cycle C. If N=1, the lemma is true obviously. In what follows assume that N > 1. There must exist an edge $e \in E(C)$ in the interior of C such that an end vertex of e lies on the C. Since G is elementary, G has a perfect matching M_3 such that $e \in M_3$. Hence the symmetric difference $M_1 \oplus M_3$ has an $M_1(M_3)$ -alternating cycle C^* containing the egde e. Let P be a path on C^* such that two end vertices lie on C and the internal vertices of P lie in the interior of C. Since P is an M_{1} -, M_{2} - and M_{3} -alternating path and two end edges belong to M_{3} , the two end vertices of P are of different colors. C and P form two new cycles C' and C'' such that C' is an M_1 -alternating cycle. Hence C' is a proper M_1 -alternating cycle and C'' is a proper $M_1 \oplus C'$ -alternating cycle. Since the numbers of faces contained in C' and C'' are all less than N, by introduction hypothesis we have that $\vec{Z}(G)$ has a directed path from M_1 to $M_1 \oplus C'$ and a directed path from $M_1 \oplus C'$ to $M_2 = M_1 \oplus C = M_1 \oplus C' \oplus C''$. The lemma is proved.

Corollary 8. In the interior of each proper (improper) M-alternating cycle of G there must exist a proper (improper) M-alternating ring.

Proof: Assume that C is a proper M-alternating cycle. Denote by G[C] the subgraph of G consisting of C together with its interior. It is easily shown that G[C] is elementary. Let M_0 denote the restriction of M on G[C]. By

lemma 7 $\vec{Z}(G[C])$ has a directed path from M_0 to $M_0 \oplus C$, namely, it has an arc with the tail M_0 . Hence G has a proper M_0 -alternating ring in the interior of C.

Lemma 9. Let Z be a subgraph of Z(G). Denote by \vec{Z} the orientation of Z such that the orientation of each edge of Z is the same as $\vec{Z}(G)$. Assume that Z(G) has a cut-vertex M. Then

- (1) Each proper M-alternating ring of G intersects each improper M-alternating ring of G.
- (2) M belongs exactly to two blocks Z_1 and Z_2 of Z(G), and
- (3) M must be the source (a vertex of in-degree 0) of one and the sink (a vertex of out-degree 0) of the other one in \vec{Z}_1 and \vec{Z}_2 .

Proof: Let M be a cut-vertex of Z(G). Let $f_i, i = 1, ..., s$, be all proper M-alternating rings of G; $g_j, 1, 2, ..., t$, all improper M-alternating rings of G. The neighbour set of M in Z(G) is defined as $N(M) := \{M \oplus g_j : j = 1, 2, ..., t\} \cup \{M \oplus f_i : i = 1, 2, ..., s\}$. Let $V_1 = \{M \oplus_{i \in S} f_i : S \subseteq \{1, 2, ..., s\}\}$, where $M \oplus_{i \in S} f_i$ denote the symenetric difference of M and all $f_i, i \in S$. Let $V_2 = \{M \oplus_{j \in T} g_j : T \subseteq \{1, 2, ... t\}\}$. It is easy to know that all proper M-alternating rings f_i are disjoint and all improper M-alternating rings g_j are disjoint as well. Hence the induced subgraphs of Z(G) by V_1 and V_2 are s- and t-dimensional hypercubes, respectively. It is obvious that $s \geq 1$ and $t \geq 1$. Hence M belongs exactly to two blocks Z_1 and Z_2 of G containing V_1 and V_2 respectively. So (2) follows.

It is clear that $(M, M \oplus f_i)$, i = 1, 2, ..., s, are arcs of \vec{Z}_1 ; $(M \oplus g_j, M)$, j = 1, 2, ..., t are arcs of \vec{Z}_2 . Thus M is both a source of \vec{Z}_1 and a sink of \vec{Z}_2 , i.e. (3) follows. We now prove that $f_i \cap g_j \neq \emptyset$ for all i = 1, ..., s and j = 1, ..., t. Suppose that $f_i \cap g_j = \emptyset$ for a certain pair (i, j) of subscripts. Then the induced subgraph of Z(G) by $\{M, M \oplus g_j, M \oplus f_i, M \oplus g_j \oplus f_i\}$ is a cycle of length 4 containing M, which contradicts that M is a cut-vertex of Z(G). \square

Lemma 10. $\vec{Z}(G)$ has no directed cycles.

Proof: By contrary. Suppose that $\vec{Z}(G)$ has a directed cycle $M_1M_2\cdots M_tM_1$ such that $M_i\oplus M_{i+1}=s_i$ is a proper M_i -alternating ring, i=1,2,...,t (the subscripts modulo t). Let f be any face of G. The depth d(f) of f is defined as the length of shortest path of the dual graph G^* between two vertices corresponding to f and the exterior face (infinite face) of G. If f is an interior face of G, put $d(\partial f):=d(f)$, where ∂f denotes the boundary of f. Without loss of generality, assume that $d(s_1)=\min\{d(s_i):i=1,2,...,t\}$. G must have a face f_0 such that the ∂f_0 and s_1 have an edge e in common and $d(f_0)=d(s_1)-1$. It is obvious that $e\notin E(s_i), i=2,...,t$, i.e.

 $e \notin M_i \oplus M_{i+1}, i = 2, ..., t$. In the process of $M_2 \to M_3 \to \cdots \to M_t \to M_1$, the matched way of e remains unchanged. Thus $e \notin M_2 \oplus M_1$. On the other hand, $s_1 = M_1 \oplus M_2$ and $e \in M_1 \oplus M_2$, a contradiction.

Lemma 11. $\vec{Z}(G)$ has exactly one source and one sink.

Proof: If the out-degree of each vertex of $\vec{Z}(G)$ exceeds zero, $\vec{Z}(G)$ must have a directed cycle by its finiteness, which contradicts Lemma 10. Let M' be a sink of $\vec{Z}(G)$. Then G has no proper M'-alternating ring. Moreover, G has no proper M'-alternating cycles by Corollary 8. Suppose M'' is a sink of $\vec{Z}(G)$ other than M'. By the same reason as above G has a no proper M''-alternating cycles. But $M' \oplus M''$ must have a proper M''- or M''-alternating cycle, a contradiction. Therefore $\vec{Z}(G)$ has a unique sink. Similarly, it follows that $\vec{Z}(G)$ has a unique source.

Lemma 12. If the number of blocks of $Z(G) \ge 2$, then Z(G) has exactly two extremal blocks, which corresponds to vertices of degree 1 in Blk(Z(G)).

Proof: For any block B of Z(G), it is obvious that \vec{B} has no directed cycles. Hence \vec{B} has at least one sink and one source. In particular, assume that B is extremal block of Z(G). Then B contains exactly one cut-vertex of Z(G). By Lemma 9(3) the cut-vertex must be a source or a sink of \vec{B} . Hence \vec{B} has at least a sink or a source which is also a sink or a source of $\vec{Z}(G)$. By Lemma 11 it follows that Z(G) has exactly two extremal blocks.

Proof of Theorem 4: Since Z(G) is connected, the block-graph of Z(G) is a tree. On the other hand, by Lemma 12 it follows that the block-graph of Z(G) has at most two vertices of degree one. Therefore the block-graph of Z(G) is a path (single-vertex graph may be viewed as a degenerated case of path).

The above results can be used to deduce Part (b) of Theorem 2 straightforwardly. Furthermore, we have

Corollary 13. Let G be a plane elementary bipartite graph. For every block B of Z(G), \vec{B} has exactly one sink and one source.

Corollary 14. Let G be a plane elementary bipartite graph. Let t and s be the sink and source of $\vec{Z}(G)$ respectively, then s and t are not cutvertices of Z(G) and are contained in the two extremal blocks. For any other vertex w, $\vec{Z}(G)$ has a directed path from w to t and a directed path from s to w.

Acknowledgment. This work is supported by the National Natural Science Foundation of China and Youth Foundation of Lanzhou University.

References

- [1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York, and Macmillan, London, 1976.
- [2] S.J. Cyvin and I. Gutman, Kekulé Structures in Benzenoid Hydrocarbons, Lectures Notes in Chemistry 46 Springer-Verlag, Berlin, 1988.
- [3] I. Gutman and S.J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons, Springer-Verlag, Berlin, 1989.
- [4] I. Gutman and S.J. Cyvin, Advances in the Theory of Benzenoid Hydrocarbons, Springer-Verlag, Berlin, 1990.
- [5] F. Harary, D.J. Klein and T.P. Živković, Graphical properties of polyhexes: perfect matching vector and forcing, J. Math. Chem. 6 (1991), 295-306.
- [6] L. Lovász and M.D. Plummer, Matching Theory, Annals of Discrete Mathematics 29 North-Holland, Amsterdam, 1986.
- [7] Fuji Zhang, Xiaofeng Guo and Rongsi Chen, Z-transformation graphs of perfect matchings of hexagonal systems, *Discrete Math.* 72 (1988), 405-415.
- [8] Fuji Zhang, Xiaofeng Guo and Rongsi Chen, The connectivity of Z-transformation graphs of perfect matchings of hexagonal systems, Acta Math. Appl. Sinica 4(2) (1988), 131-135.
- [9] Fuji Zhang and Xueliang Li, Hexagonal systems with forcing edges, Discrete Math. 140 (1995), 253-263.
- [10] Fuji Zhang and Heping Zhang, Plane elementary bipartite graphs, submitted.
- [11] Heping Zhang and Fuji Zhang, The rotation graphs of perfect matchings of plane bipartite graphs, *Discrete Appl. Math.*, in press.
- [12] Heping Zhang, Directed rooted tree structure of the set of perfect matchings of plane bipartite graphs and its generation, (in Chinese), J. Lanzhou Univ. (natural sciences) 32(3) (1996), 7-11.
- [13] Heping Zhang, The connectivity of Z-transformation graphs of perfect matchings of polyominoes, *Discrete Math.* 158 (1996), 257-272.
- [14] W.T. Tutte, Graph Theory, Addison-Wesley Publishing Company, Menlo Park, London, 1984.