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ABSTRACT. Let G be a connected plane bipartite graph. The
Z-transformation graph Z(G) is a graph where the vertices are
the perfect matchings of G and where two perfect matchings
are joined by an edge provided their symmetric difference is
the boundary of an interior face of G. For a plane elemen-
tary bipartite graph G it is shown that the block graph of Z-
transformation graph Z(G) is a path. As an immediate conse-
quence, we have that Z(G) has at most two vertices of degree
one.

Since a hexagonal system with at least one perfect matching is the
skeleton of a benzenocid hydrocarbon molecule, graphs of this kind are of
chemical significance and their topological properties have been extensively
studied[2-4]. In Refs.[7,8] the concept of Z-transformation graphs of hexag-
onal systems was introduced. By virtue of this concept a complete char-
acterization for the hexagonal systems with forcing edges [5] was given,
see[9]. In [10] the present authors extended the Z-transformation graph of
hexagonal systems to general plane bipartite graphs in a natural way. For
a plane elementary bipartite graph some analogous results were obtained.
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Now let us recall some related concepts and properties. Some terminolo-
gies on the connection of graphs are taken from [14]. A connected graph is
said to be 2-connected or nonseparable if it has no cut-vertex. A block in
a graph G is a maximal 2-connected subgraph of G, that is, a 2-connected
subgraph of G that is not contained in any other. Let G be a plane bipartite
graph. The boundary of an interior face of G is called a ring if it is a cycle.
A perfect matching of G is a set of disjoint edges covering all the vertices
of G. A connected bipartite graph is said to be elementary or 1-extendable
if each edge of it is contained in a perfect matching of G. It is known that
an elementary bipartite graph is 2-connected. For other various properties,
the interested reader may be referred to [6,10]. The symmetric difference
of two finite sets A and B is defined as A® B =: (AU B)\(AN B). For any
concepts of graphs and directed graphs not defined in this paper see[1].

Definition 1. Let G be a plane bipartite graph with perfect matchings. Z-
transformation graph of G, denoted by Z(G), is defined as a simple graph in
which the vertices are the perfect matchings of G and two perfect matchings
M, and M, are joined by an edge provided the symmetric difference M, @
M, consists exactly of a ring of G.

Theorem 2. [10]. Let G be a plane elementary bipartite graph. Then
(a) Z(G) is connected bipartite graph,
(b) Z(G) has at most two vertices of degree 1, and

(c) Z(G) is either a path or a graph of girth 4 different from cycles.

For hexagonal systems H and polyomino graphs P (or square systems),
the above results hold. Here we would like to emphasize the following
results: the connectivity of Z(H) is equal to the minimum degree[8]; the
same result holds for Z(P) except for only two graphs [13]. For general
plane (elementary) bipartite graphs the situations are more complicated. To
find the relations between the blocks and cut-vertices of Z-transformation
graphs we will study its block-graph.

Definition 3. Let G be a graph. Let U and V be the sets of blocks and
cut-vertices of G, respectively. The block-graph of G, denoted by Blk(G),
is defined as a bipartite graph G(U, V) such that a vertex B of U and a
vertex z of V are adjacent if and only if the block -B includes the cut-vertex
z of G.

It is well known that the block-graph of a connected graph is a tree(14].
In this paper we obtain the following main result.

Theorem 4. Let G be a plane elementary bipartite graph. Then the
block-graph of Z-transformation graph of G is a path.
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To prove the theorem it needs to orientate every edge of Z-transformation
graph Z(G) and obtain a directed graph (G) First let us introduce
some important concepts. Let G be a plane bipartite graph with a perfect
matching M. A cycle C of G is called an M-alternating cycle if the edges
of C appear alternately in M and E(G)\M. An M-alternating path can be
defined similarly. For convenience all the vertices of G are always colored
properly black and white. In the following we restrict our consideration to
plane elementary bipartite graphs G with a perfect matching M. ‘

Definition 5. [11,12]. An M-alternating cycle C of G is called a proper
M -alternating cycle if each edge of C belonging to M goes from white
vertex to black vertex by the orientation of C clockwise; otherwise C is
known as an improper M-alternating cycle.

Definition 8. Let G be a plane bipartite graph. Orientate all the edges
of Z(G) and result in a directed Z-transformation graph Z(G) according
to the following way: the orientaion of an edge My M> of Z(G) is from M,
to M, if and only if M) ® M, is a proper M;-alternating ring of G.

Lemma 7. Assume that M; and M> are two perfect matchmgs of G such
that M, ® M, is a proper M;-alternating cycle. Then Z (G) has a directed
path from M, to Ms.

Proof: Let C = M; & M,. The proof is by induction on the number N
of faces contained in the interior of the cycle C. If N = 1, the lemma is
true obviously. In what follows assume that N > 1. There must exist an
edge e € E(C) in the interior of C such that an end vertex of e lies on the
C. Since G is elementary, G has a perfect matching M3 such that e € M.
Hence the symmetric difference M; @ M3 has an M;(Ms)-alternating cycle
C* containing the egde e. Let P be a path on C* such that two end vertices
lie on C and the internal vertices of P lie in the interior of C. Since P is
an Mj-,M>- and Mgs-alternating path and two end edges belong to Mj,
the two end vertices of P are of different colors. C and P form two new
cycles C’ and C” such that C’ is an M,-alternating cycle. Hence C’ is a
proper M;-alternating cycle and C” is a proper M; & C’-alternating cycle.
Since the numbers of faces contained in C’ and C” are all less than N, by
introduction hypothesis we have that Z (G) has a directed path from M; to
M®C’ and a directed path from M;®C’ to My = M, &C = M1 C'®C".
The lemma is proved. ]

Corollary 8. In the interior of each proper (improper) M-alternating cycle
of G there must exist a proper (improper) M-alternating ring.

Proof: Assume that C is a proper M-alternating cycle. Denote by G[C] the
subgraph of G consisting of C together with its interior. It is easily shown
that G[C] is elementary. Let Mo denote the restriction of M on G[C]. By
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lemma 7 Z(G[C]) has a directed path from My to My & C, namely, it has
an arc with the tail My. Hence G has a proper Mp-alternating ring in the
interior of C. (]

Lemma 9. Let Z be a subgraph of Z(G). Denote by Z the orientation of
Z such that the orientation of each edge of Z is the same as Z(G). Assume
that Z(G) has a cut-vertex M. Then

(1) Each proper M-alternating ring of G intersects each improper M-
alternating ring of G. '

(2) M belongs exaxtly to two blocks Z, and Z; of Z(G), and

(3) M must be the source (a vertex of in-degree 0) of one and the sink (a
vertex of out-degree 0) of the other one in Z, and Z,.

Proof: Let M be a cut-vertex of Z(G). Let f;,i = 1,..., s, be all proper
M-alternating rings of G, g;, 1,2, ...,¢, all improper M-alternating rings of
G. The neighbour set of M in Z(G) is defined as N(M) :={M®g;:j=
1,2,..,t}Ju{Meaf;:i=1,2,..,8}. Let V; = {M®ics f; : S C {1,2,...,5}},
where M @;cs fi denote the symenetric difference of M and all f;,i € S.
Let V2 = {M @jer g; : T C {1,2,...4}} . It is easy to know that all proper
M-alternating rings f; are disjoint and all improper M-alternating rings g;
are disjoint as well. Hence the induced subgraphs of Z(G) by V; and V; are
s- and ¢-dimensional hypercubes, respectively. It is obvious that s > 1 and
t > 1. Hence M belongs exactly to two blocks Z; and Z; of G containing
V1 and V; respectively. So (2) follows.

It is clear that (M, M @ f;),i = 1,2, ..., 8, are arcs of Z;; Mogi,M),j =
1,2,...,t are arcs of Z5. Thus M is both a source of Z; and a sink of 2y, ie.
(3) follows. We now prove that fiNg; #@foralli=1,..,sandj=1,...t.
Suppose that f; N g; = @ for a certain pair (3,) of subscripts. Then the
induced subgraph of Z(G) by {M, M ® g;, M® f;, M ® g; ® f;} is a cycle of
length 4 containing M, which contradicts that M is a cut-vertex of Z(G). O

Lemma 10. Z(G) has no directed cycles.

Proof: By contrary. Suppose that Z (G) has a directed cycle MiM> - - - M, M,
such that M; ® M;;, = s; is a proper M;-alternating ring, i = 1,2,...,¢(the
subscripts modulo t). Let f be any face of G. The depth d(f) of f is defined
as the length of shortest path of the dual graph G* between two vertices
corresponding to f and the exterior face (infinite face) of G. If f is an
interior face of G, put d(3f) := d(f), where 8f denotes the boundary of f.
Without loss of generality, assume that d(s;) = min{d(s;) : i = 1,2, ..., t}.
G must have a face fp such that the 8fy and s; have an edge e in com-
mon and d(fo) = d(s1) — 1. It is obvious that e ¢ E(s;),i = 2,...,¢, i.e.
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e¢ M;® M;,,i=2,...,t. In the process of M; —» M3z — --- — M; — M,
the matched way of e remains unchanged. Thus e ¢ M, & M;. On the
other hand, s; = M; ® M» and e € M; ® M>, a contradiction. (]

Lemma 11. Z(G) has exactly one source and one sink.

Proof: If the out-degree of each vertex of Z (@) exceeds zero, A (G) must
have a directed cycle by its finiteness, which contradicts Lemma 10. Let M’
be a sink of Z(G). Then G has no proper M’-alternating ring. Moreover,
G has no proper M’-alternating cycles by Corollary 8. Suppose M” is a
sink of Z(G) other than M’. By the same reason as above G has a no
proper M"-altenating cycles. But M’ ® M” must have a proper M’- or
M"-alternating cycle, a contradiction. Therefore Z(G) has a unique sink.
Similarly, it follows that Z (G) has a unique source. a

Lemma 12. If the number of blocks of Z(G) > 2, then Z(G) has ex-
actly two extremal blocks, which corresponds to vertices of degree 1 in

BIk(Z(G)).

Proof: For any block B of Z(G), it is obvious that B has no directed
cycles. Hence B has at least one sink and one source. In particular, assume
that B is extremal block of Z(G). Then B contains exactly one cut-vertex
of Z(G). By Lemma 9(3) the cut-vertex must be a source or a sink of B.
Hence B has at least a sink or a source which is also a sink or a source
of Z(G). By Lemma 11 it follows that Z(G) has exactly two extremal
blocks. o

Proof of Theorem 4: Since Z(G) is connected, the block-graph of Z(G)
is a tree. On the other hand, by Lemma 12 it follows that the block-graph
of Z(G) has at most two vertices of degree one. Therefore the block-graph
of Z(G) is a path (single-vertex graph may be viewed as a degenerated case
of path). o

The above results can be used to deduce Part (b) of Theorem 2 straight-
forwardly. Furthermore, we have

Corollary 138. Let G be a plane elementary bipartite graph. For every
block B of Z(G), B has exactly one sink and one source.

Corollary 14. Let G be a plane elementary bipartite graph. Let ¢t and
s be the sink and source of Z(G) respectively, then s and t are not cut-
vertices of Z(G) and are contairied in the two extremal blocks. For any
other vertex w, Z(G) has a directed path from w to t and a directed path
from s to w.
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