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Abstract

In this paper it is shown that any partial extended triple system
of order n and index A > 2 can be embedded in an extended triple
system of order v and index A for all even v > 4n + 6. This extends
results known when A = 1.
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1 Introduction

Let AK} be the complete multigraph on n vertices with edge set consisting
of )\ edges joining each pair of vertices and A loops incident with each
vertex. Define an extended triple to be a loop, a loop with an edge attached
(known as a lollipop), or a copy of K3 (known as a triple). We denote a
loop incident with vertex a by {a, a,a}, a lollipop by {a, a,b}, a # b, when
the loop of the lollipop is incident with vertex a, and a triple by {a,b,c},
where a, b, and c are distinct. A (partial) extended triple system of order
n and index A, (P)ETS(n, }), is an ordered pair (V, B), where B is a set of
extended triples defined on the vertex set V which partitions (a subset of)
the edges of AK;}. If A = 1, it has been shown (see, for example, [7]) that
a (P)ETS(n) is equivalent to a (partial) totally symmetric quasigroup.

D. M. Johnson and N. S. Mendelsohn [9] first investigated extended
triple systems and gave necessary conditions for their existence. Subse-
quently, these conditions were shown to be sufficient by F. E. Bennett and
N. S. Mendelsohn [2].

A PETS(n, A)(V, B) is said to be embedded in an ETS(v,A)(V’, B') if
V € V' and B C B’. Cruse and Lindner [4] obtained an embedding of
a partial totally symmetric quasigroup of order n in a complete totally
symmetric quasigroup of order v for any v = 0 (mod 6), v > 6n. D. G.
Hoffman and C. A. Rodger [7] showed that an ETS(n, 1) can be embedded
in an ETS(v, 1), where v > n, if and only if v > 2n, v is even if n is, and
(n,v) # (6k + 5,12k + 12). Subsequently, M. E. Raines and C. A. Rodger
[13] showed that any PETS(n, 1) can be embedded in an ETS(v, 1), for
all v > 4n + 6,v = 2 (mod 4) and showed that this bound on v can be
lowered to 4n + 2 in many cases. Recently, M. E. Raines [12] showed that
any PETS(n, 1) can be embedded in an ETS(v, 1), for all even v > 4n 4 4.

All of these embeddings follow upon several landmark results in this area
where partial Steiner triple systems were considered. Treash [16] obtained a
finite, yet very large, embedding for partial Steiner triple systems. Lindner
[10] greatly reduced the size of the containing triple system to v = 6n + 3.
The best result to date is due to Andersen, Hilton, and Mendelsohn [1], and
it provides an embedding for admissable v > 4n+1. Rodger and Stubbs [15]
considered partial triple systems of index A > 2 and found that a partial
triple system of order n and index A (PTS(n,))) can be embedded in a
triple system of any odd A-admissable order greater than 4n. Subsequently,
Hilton and Rodger [6] showed that if 4 divides A, then any PTS(n,\) can
be embedded in a T'S(v, A) whenever v is A-admissable and v > 2n + 1, the
best possible lower bound on v. Recently, Johansson [8] gave an embedding
of a PTS(n, ) in a T'S(v, ) where X is even, whenever v is A-admissable
and v > 2n + 1.

The focus of this paper is to obtain small embeddings of partial extended
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triple systems of index A > 2 (see Corollary 4.4).

Theorem 1.1 Any partial eztended triple system of order n and index A >
2 can be embedded in an extended triple system of order v and index )\ for
all even v > 4n + 6.

For terms and notation not defined here, we refer the reader to [3].

2 Preliminary Results

We begin with several results that will be used in the proofs of the main
results.

Lemma 2.1 ([17]) If a simple graph G on n vertices contains no K3, then
€(G) < [n?/4].

The next lemma follows from the previous one.

Lemma 2.2 If a multigraph G of multiplicity at most A on n vertices con-
tains no K3, then ¢(G) < A|n2/4).

A near 1-factor of a graph G is a set of mutually nonadjacent edges in G
which saturates all but one vertex of G. We have the following well known
result.

Lemma 2.3 If n is even (odd), then the edges of K, can be partitioned
into (near) I-factors.

Let T be any edge-coloring of a graph G. Let Cy, ¢ € T denote the
set of edges colored « in this edge-coloring of G; C, is called a color class.
Let Cq(v) denote the set of edges incident with v that are colored a. The
edge-coloring is said to be equalized if ||Ca| — |Cp|| < 1, for all a, 8 € T.
The edge-coloring is said to be equitable if ||Cq(v)| — |Cs(v)]] < 1, for all
a,f €T, and all v € V(G).

The next lemma will be used extensively.

Lemma 2.4 ([11] [18]) A graph which has a proper n-edge-coloring has
an equalized proper n-edge-coloring.

Lemma 2.5 ([18] [19]) Any bipartite graph can be given an equitable edge-
coloring with n colors, for any n > 1.

A (partial) symmetric quasi-latin square L of order r and multiplicity
on n symbols (P)SQ(n,r, A) is an r x r array such that
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(i) for each i,j (1 < i,j < r,i # j) if a symbol occurs z times in cell
(¢,4) then it also occurs z times in cell (j,1),

(ii) foreach i,j (1 <i,j < r,i# j),cell (i, ;) contains at most A symbols,

(iil) each symbol occurs (at most) exactly A times in each row and (at
most) exactly A times in each column, and

(iv) each row contains at most A(r — 1) symbols and each column contains
at most A(r — 1) symbols.

Let Np(¢) denote the number of times symbol i occurs in some partial
symmetric quasi-latin square L. Symmetric quasi-latin squares have been
used in the embeddings of (extended) triple systems [1] [12] [13]). The
following result was proved for the case A = 1 in [13]. At first one thinks
of proving Theorem 2.6 by splitting L into A partial symmetric quasi-latin
squares of multiplicity 1 and applying the result in [13]. However, this
approach is often not possible.

Theorem 2.6 Let n > 1 and r = t(mod 2). Let L be a partial symmet-
ric quasi-latin square of order r and multiplicity \ on the symbols 1,...,1
(where t = 2n or 2n + 1), in which row i contains A(r — 2) symbols, for
1< i< r. Then L can be embedded in the top left corner of a symmetric
quasi-latin square, L' of ordert+2 and multiplicity A on the symbols 1, ...t
in which the diagonal cells (i,7), forr+1 < i < {42, and the near-diagonal
cells (r4+2i—1,r4+2i) and (r+ 2,7 +2i— 1), for 1 <i < (t —r+2)/2,
are empty, without adding any symbols to the cells in L if and only if

(a) Np(i) = Mt +2) (mod 2), for 1 < i<, and
(b) Np(3) > AX(2r—t-2), for1<i<t.

Proof: Necessity: For 1 < i <{, symbol i must be placed A(t + 2)
times in L’. Since L' is symmetric, symbol ¢ must occur an even number of
times in L’ outside L, so (a) is necessary. Let N4 (i) and Ng(i) denote the
number of times symbol i occurs in A and B as shown in Figure 1. Then
Np(f) = Np () = Na(d) = Np(i) 2 Al +2) = 2A(t+2—7) = A\(2r —1 - 2),
so (b) is necessary.

Sufficiency: Let » < s < ¢ with s = ¢ (mod 2), and proceed by
induction on s. Assume that s rows and columns have been completed so
that each row contains A(s — 2) symbols, thus forming L*. Suppose also
that, for 1 < i <t, Np(i) = A(t +2) (mod 2), Np.(?) > A(25s =1 —2), and
that the appropriate diagonal and near-diagonal cells are empty.

First suppose s < t. Form an (s + 2) x (s + 2) array L; from L* as
follows. Let B; be a bipartite graph with bipartition (X = {1,...,t},Y =
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Figure 1:
{p1,...,ps}) in which vertex i is joined to vertex p; by z edges if and only

if symbol 7 occurs A — z times in row j of L*. We have that dp,(p;) =
At—(s—2))and dp, (i) < As—A(2s -t ~2) = A(t — (s — 2)), 50 A(By) =
At — (s — 2)). Give By an equitable ((t — (s — 2))/2)-edge-coloring, where
C1,...,Ct—(s—2))/2 represent the color classes. Let B} be the bipartite
subgraph of By induced by the edges in C1. Now dp; (p;) =2 for 1 < j <
s, and dp; (i) < [dB, (i)/((t—(s—2))/2)] < [A(t—(s-2))/((t—(s—2))/2)] =
2X for 1 < i <t. Give B} an equitable 2-edge-coloring using the colors a;
and az. For every edge {¢, p;} colored ay, place symbol 7 in cells (s + &, 7)
and (j,s + k). Then each vertex in B} is incident with at most A edges of
each of the colors a; and as. So, for 1 < j < s we have that row j of L,
contains A(s — 2) + 2X = As symbols, and each symbol appears at most A
times in each of the added rows and columns. In addition, cells (s+1,s+1),
(s+1,54+2), (s+2,5+1), and (s + 2,5+ 2) remain empty since there are
no vertices ps41 and ps42 in By. Each symbol occurs at most A times in
each row (column) of L; since the number of edges joining vertices ¢ and
p;j is A minus the number of occurrences of symbol 7 in row j of L*.

We have that N, (i) = A(t + 2) (mod 2) since each symbol was added
an even number of times in forming L, from L*, so (a) is satisfied by
L*. To satisfy (b), we must have that N, (¢) > AM2(s +2) -t -2) =
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A2s—t+2). f Np.(i) = AM2s—t—2)+2y, forsome y, 0 <y <22 -1,
then dp, (i) = A(f — (s — 2)) — 2y. Therefore, vertex 7 is incident with at
least [d, (3)/((t — (s — 2)/2)] = [2(At ~ (s — 2)) - 20)/(t = (s — 2))] =
22—[4y/(t—(s—2))] > 2X—y (since in this case t—(s—2) > 4) edges colored
1in B;. Therefore, symbol i must have been placed at least 2(2X —y) times
in forming L; from L*, so (b) is also satisfied by L*.

Now suppose s = t, and let Ly be a partial symmetric quasi-latin square
of order t and multiplicity A on the symbols 1, ...,t. Form a bipartite graph
B, in the same fashion that B; was formed. Since each row of L contains
A(t = 2) symbols, dp,(p;) = 2A. Since Np, (i) > A(t—2) for 1 < i < ¢,
and since each row contains exactly A(f — 2) symbols, it must be that
Np,(3) = A(t — 2). Therefore, dp,(i) = 2A for 1 < i <t. So B; is a 2)-
regular graph which can be given an equitable 2-edge-coloring. Both colors,
say a; and as, occur A times at each vertex of B;. For each edge {7, p;}
colored oy, for 1 < k < 2, place symbol i in cells (¢t + k,j) and (j,t + k).
Clearly, the desired symmetric quasi-latin square L’ is obtained. )

We will also need the following companion result to Theorem 2.6. Con-
ditions (a) and (b) in Theorem 2.7 are necessary, but it turns out that

t

Z max{0, \(2r —t —2) — N1(i)} < A(r—1)? is a third necessary condition.
i=1

However, condition (c) below (which implies this third necessary condition)
will suffice for our purposes.

Theorem 2.7 Let1 < r < |(¢+2)/2], and letr = (t+1) (mod 2). Let L be
a partial symmetric quasi-latin square of order r and multiplicity A on the
symbols 1,...,t in which, for 1 <i < r—1, row i contains A\(r —2) symbols
and in which row r contains A(r — 1) symbols. Then L can be embedded
in the top left corner of a symmetric quasi-latin square, L', of order t + 2
and multiplicity A on the symbols 1,...,t in which the diagonal cells (i,1),
forr+1 < i< t+2, and the near-diagonal cells (r + 2i,r + 2i + 1) and
(r+2i+41,742i), for 0 < i< (t—r+1)/2 are empty, without adding any
symbols to the cells in L if

(a) Np(3) = At +2) (mod 2), for 1 <i<t,
() NL(i) > M2r—t—-2), for 1<i<t, and

(c) if r = (t +2)/2, then there are no more than r — 1 symbols satisfying
NL(i) < A2(r+1) -1 -2).

Proof: We consider three cases in turn. In each case we embed L in
an (r+ 1) x (r + 1) array L* which satisfies the conditions of Theorem 2.6
which shows that L* can be embedded in L' as required.
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Firstly, suppose 1 < r < |(t +2)/2] with r = (£ + 1) (mod 2). Let L be
a PSQLS(r,%, A) in which, for 1 < ¢ < r—1, row i contains A(r — 2) symbols
and in which row r contains A(r — 1) symbols. Form an (r + 1) x (r + 1)
array, L*, as follows. For 1 < j < r — 1, greedily fill each of the cells
(4, + 1) and (r + 1, ) with A symbols so that symmetry is preserved and
so that no row of L* will contain any symbol more than A times. Now
for 1 <i<r—1,rowiof L* contains A(r — 1) symbols, and rows r and
r + 1 of L* each contain A(r — 1) symbols, so L* is a PSQLS(r + 1,¢, A).
Clearly condition (a) is satisfied for L*, and condition (b) is satisfied since
we only need Ng. () > 0 in any case. Therefore, by Theorem 2.6, L* can
be embedded in a SQLS(t + 2,¢,A) in which the diagonal cells (7,1), for
r+1 < i < t+2, and the near-diagonal cells (» + 24,7 + 2i + 1) and
(r+2i+1,7+4+2i), for 0 < i< (t—r+1)/2, are empty. Hence, the theorem
is true when r < | (¢ + 2)/2].

Secondly, suppose r = (¢ +2)/2 > 3, so by (c) the number of symbols
for which Np(i) < A(2(r +1) —t —2) = 2) is no more than r — 1. Let
M = {1,...,k} be the set of ¥ < r — 1 symbols which occur less than
2) times in L. We have that for 1 < ¢ < 7, row 7 contains A{r — 2)
symbols, and row r contains A(r.— 1) symbols. Our goal is to form a
PSQLS(r + 1,¢,A), L*, in which for 1 <7 <¢, Np.(i) = At + 2) (mod 2)
and Np.(9) > A(2(r+1)—t—2) =2\

We form L* in the following manner. Let B be a bipartite graph with
bipartition (X = {p1,...,pr—1},Y ={1,...,k}), where py, ..., pr—1 repre-
sent the rows 1,...,r — 1 of L and 1,...,k represent the elements of M.
Join vertices p; € X and i € Y with A — z edges if and only if symbol ¢
occurs z times in row j of L. We have that dp(p;) < Ak < A(r — 1). Also,
for1 < i<k, M(r—3) < dp() < A(r—1), since symbol i occurs less than 2\
times altogether in L. Give B an equitable (r — 1)-edge-coloring with color
classes Cy,...,Cr1. For 1 < j < r—1 and for every edge {p;,i} € Ci,
place symbol i in cells (j,7+1) and (r+1, j) of L*. Note that cells (r,7+1),
(r+1,r),and (r+ 1,7+ 1) of L* contain no symbols.

In any cell (a, 7+ 1) that contains A — y symbols, greedily place y more
symbols and place the same y symbols in cell (r+1, a). (For, row a contains
exactly A(r —1) —y symbols, and column r+ 1 contains at most A(r—1)—y
symbols. Therefore, there are at least A(2r — 2) — (2A(r — 1) — 2y) = 2y
symbols available to be placed in cell (a,r + 1). However, we only need
to place y more symbols there, so we can fill the cell). This completes
the formation of L*. Suppose symbol ¢ € M occurs 2z times in L. Then
dp(i) > A(r — 1) — 2z, so vertex i is incident with at least |(A(r — 1) —
2z)/(r—1)] > A= [2z/(r — 1)] > A — = (since r > 3) edges in C;. Hence,
symbol ¢ occurs at least N (¢) + 2(\ — ) = 2 times in L*. Therefore, for
1<i<k(andalsofor1<i<t), Np.(¢) > AM2(r+1) =t —2). Also,
vertex p; is incident with at most A edges in Cy,so for 1 < j <7 -1, cells
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(4,7 +1) and (r + 1, 7) contain at most A symbols.

Finally suppose r = (¢ 4+ 1)/2. Then condition (a) tells us that A(t + 2)
is odd, so both A and (¢4 2) are odd. We have that L contains (r — 1)A(r —
2) + A(r — 1) = A(r — 1)? symbols. Suppose a symbol occurs at most 2\ — 1
times is L. Then the remaining t — 1 = 2r — 2 symbols occur at least an
average of (A\(r—1)2—2A+1)/2r—2 = (A(r?=2r-1)+2(r—-1))/2(r-1) >
2+A(r—2)/2 > X timesin L when r > 4 (when r = 3, we can apply Theorem
2.6 since r = (t + 2) (mod 2)). Hence, there is at least one symbol, say
symbol ¢, which occurs at least A times in L. We form an (r +1) x (r + 1)
array L* as follows. Suppose symbol ¢ occurs A — z; times in L; so by (a)
z; is even since A is odd. Then it occurs at most A — z; times in any row j
of L, where 1 < j < r—1. For 1 <i < 2r—2, place symboli z; times in cell
([#/2],r + 1) and in cell (r + 1,[i/2]). Since z; < A, we have that each of
these cells contains at most A symbols. In addition, symbol ¢ will occur at
least A — z; + 2(z;/2) = A times in L*. Therefore, every symbol appears at
least A times in L*. Lastly, as in the previous case, greedily place symbols
so that each cell (&, 7+1) and (r+1, ), for 1 < a < r—1, contains exactly
A symbols.

In any case, we have that for 1 < ¢ < t, Np.(7) = A(t + 2) (mod 2)
since N () = A(t+2) (mod 2) and since symbols are placed symmetrically
when forming L* from L. In addition, we showed earlier in each case that
Ni« (i) > M2(r+1)—t—2) for 1 < i < t. Furthermore, for 1 <i < r—1, row
i of L* contains A+ A(r—2) = A(r—1) symbols and rows r and r+1 contain
A(r —1) symbols. So L* is a PSQLS(r + 1,¢, A) satisfying the conditions of
Theorem 2.6. Therefore, by Theorem 2.6, L* can be embedded in a SQLS
(t+2,t,A), L', which contains holes of size 2 down the main diagonal of L’
outside L*, and the proof is complete. |

A partial triple system of order n and index A (PTS(n, A)) is an ordered
pair (S,T), where T is a set of edge-disjoint copies of K3, or triples, that
together form a subgraph G(S) of AK, with vertex set S. We define the
leave of (S, T) to be the complement of G(S) in AK,. Let u(n,)) denote
the maximum possible number of triples in a PTS(n, A).

Lemma 2.8 ([5])

forn=15 (mod 6) and A=1 or 4 (mod 6)

{ [g-[i(”z—‘l)”—l forn =2 (mod 6) and A = 4 (mod 6) or
p(n,A) =
151 5-("2—'1-1” otherwise ‘

For a PTS(n, A) on the vertex set {1, ...,n}, let (¢) denote the number
of triples which contain symbol ¢. If |r(:) — r(j)] < 1, for 1 < i< j < n,
the PTS(n, A) is said to be equitable.
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Lemma 2.9 ([15]) Let v, A, and n be non-negative integers such that 1 <
v < p(n,A). Then there is an equitable PTS(n, ) with v triples.

Lemma 2.10 ([14]) There erists an equitable PTS(n,1)(S,T) with t(n)
triples such that the leave contains a 1-factor if n is even and a near 1-factor
if n is odd if and only if t(n) < T(n), where

p(n) =n(n—2)/6 ifn=0 (mod 6)
p(n) — [n/3] =(n-1)(n-2)/6 ifn=1 (mod6)
T(n) = u(n) =n(n—2)/6 ifn =2 (mod 6)
u(n) —n/3 =n(n—3)/6 ifn=3 (mod 6)
p(n) —1 =(n—-4)(n+2)/6 ifn=4 (mod 6)

p(n) ~(n—=5)/3 =(n-1){n-2)/6 ifn=>5 (mod6).

A PTS(n,]) is said to be regular if the leave of the PTS is regular.
The following lemma follows from Lemma 2.9 and Lemma 2.10.

Lemma 2.11 Let n > 3. There ezists a regular PT'S(n,1) (S,T) contain-
ing R(n) triples such that the leave of (S,T) contains a (near) 1-factor if
n is even (odd), where

n(n—2)/6 ifn=0,2 (mod6)
n(n—-"7)/6 ifn=1 (mod6)
R(n)=¢ n(n-3)/6 ifn=3 (mod 6)
n(n—4)/6 ifn=4 (mod6)
n(n—15)/6 ifn=>5 (modé6).

A 2-factor of a graph G is a 2-regular spanning subgraph of G. A near
2-factor of G is a 2-regular spanning subgraph of G'\ {v}, where v € V(G).

The proofs of the next two lemmas are so similar that we group the
proofs into one. Throughout we assume that a doubled edge is a cycle of
length 2.

Lemma 2.12 Let A =2 and n > 3. Let t(n,2) < T'(n,2), where T(n,2) =
T(n) + R(n) ifn ¢ {4,5,7}, T(4,2) = 2, T(5,2) = 4, and T(7,2) = 10.
Then there exists an equitable PTS(n, 2)(S,T) witht(n,2) triples such that:
if n is even then the leave contains a 2-factor in which each cycle has even
length; and if n is odd then the leave contains a near 2-factor in which each
cycle has even length.

Lemma 2.13 Let A = 2 and n > 3. Let t*(n,2) < T*(n,2), where
T*(n,2) =T(n,2) f n=1,3,4 or 5 (mod 6) and n ¢ {4,5,7}, T*(n,2) =
T(n,2)-1ifn=0o0r2 (mod6), T*(4,2) = T*(5,2) = 3, and T*(7,2) = 9.
Then there exists an equitable PTS(n,2) (S,T) with t*(n,2) triples such
that if n is (even) odd, then the leave contains a (near) 2-factor consisting
of all even cycles except for ezactly one 3-cycle.
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Proof: Clearly Lemma 2.12 follows from Lemma 2.10 if ¢(n, 2) < T'(n),
and Lemma 2.13 follows from Lemma 2.10 if ¢*(n,2) < T'(n), so we can
assume that T'(n) < t(n,2) < T(n,2), and T(n) < t*(n,2) < T*(n,2).

Suppose n # 4, 5 or 7. If {(n,2) > T(n) and if n is (odd) even, then
by Lemma 2.11 let (S,T}) be a regular PSTS(n) with R(n) triples that
has a (near) 1-factor, Fy, in the leave, and by Lemma 2.10 let (S,T3) be
an equitable PST'S(n) with ¢t(n,2) — R(n) < T'(n,2) — R(n) = T(n) triples
that has a (near) 1-factor, F, in the leave. Clearly, F) U F, is a (near)
2-factor in which each cycle has even length.

If t*(n,2) > T(n), define (S,T1) and F as above, and if n is (odd) even
then let (S, T2) be an equitable PST'S(n) with t*(n,2) — R(n) triples that
has a (near) 1- factor, F3, in the leave. Without loss of generality, if n is
(odd) even we can assume that Fy and F; differ in exactly (one) two edges.
Unless n = 0 or 2 (mod 6) and (S, T2) is maximal (so [T1|+|T32| = T(n, 2)),
the leave of (S,T; U T3) contains some edge {a,b} ¢ F; U Fa. If n is odd,
then we can assume that {a,z} € F; and {b,z} € F; are the edges in which
F, and F, differ. If n is even, let {a,y}, {b,z} € F1 and {a,z}, {b,y} € Fa.
Clearly {a,b,z} is a 3-cycle in the leave of (S,T; UT2), and the remaining
edges of Fy U F, form even cycles, so the result follows.

Now suppose n = 4. Let T = {{1,2,3},{1,3,4},{2,3,4}}. Define an
equitable PT'S(4) (S,7") with k < 3 triples such that 7" consists of the
first k triples listed in T'. If |7] < 2, then the leave contains a 2-factor, and
if |T'| = 3, then the leave contains a 3-cycle.

Next suppose n = 5, and let T = {{1,2,3},{1,4,5},{2,3,4},{3,4,5}}.
Define an equitable PT'S(5) (S,T") with k < 4 triples such that T" consists
of the first k triples listed in T'. If |T”| < 4, then the leave contains a 4-cycle,
and if |T”| < 3, then the leave contains a 3-cycle and a 2-cycle.

Finally suppose n = 7, and let T = {{1, 3,4}, {2, 5,6}, {4,6,7},{1,5,7},
{2,3,4},{1,6,7}, {2,3,5},{1,3,5},{2,4,6},{4,5,7}}. Define an equitable
PTS(7) (S,T') with k < 10 triples such that 7" consists of the first k triples
listed in 7. If |T”| < 10, then the leave contains a near 2-factor consisting of
even cycles, and if |T”| < 9, then the leave contains a 2-factor with exactly
one 3-cycle and two 2-cycles. O

3 Embedding a PETS(n,)) in an ETS(4n +
2,))
Given any PETS(n, \)(V, B), define the deficiency graph, G(B), to be the

graph on the vertex set V whose edge set consists of the edges of AK}
not found in any extended triple in B. Let p(G(B)) denote the number of
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vertices of odd degree in G(B) and let

p(G(B)) if ¢(G(B)) + p(G(B)) = 0 (mod 3),
P(G(B)) ={ p(G(B))+2 if e(G(B))+ p(G(B)) =1 (mod 3),
p(G(B)) +4 if (G(B))+ p(G(B)) = 2 (mod 3).

We say that (V, B) is mazimal if G(B) contains no extended triples (and
hence no loops).

The embedding process takes two steps. Lemma 3.1 embeds the PETS
(n,A) in a PETS whose deficiency graph meets the conditions of Proposi-
tion 3.2. Applying Proposition 3.2 then completes the embedding.

Lemma 3.1 Let (V, B) be a mazimal PETS(n,)\) withn > 3 and A > 2.
Then (V, B) can be embedded in a PETS(2n,\)(V*, B*) satisfying:

(1) A(G(B")) < An,

(i) P(G(B")) <n,
(tii a) If A =2, then ¢(G(B*)) + P(G(B*)) < 3T(n +1,2)
(i1 b) If XA > 2 then

€(G(B*))+P(G(B")) < { gﬁEZI i:\\: R%P_ 1)) :jfr: :: Z:gn,

(iv) and G(B*) contains at least 2 vertices of degree at most An — 2.

Proof: Let V ={1,...,n} and V* = {1,...,2n}.

Case 1: n is odd, X is odd.

If p(G(B)) # 0, we can assume without loss of generality that p(G(B)) >
2 and that vertices n — 1 and n have odd degree.

Define B* as follows.

(1) BC B*.

(2a) Suppose n = 3 and p(G(B)) = 0. If ¢(G(B)) +p(G(B)) = 1 (mod 3),
let B* contain A copies of the lollipops {4,4,1} and {5,5,2}, A — 2
copies of the lollipop {6, 6,3}, and the remaining loops at vertex 6.
If ¢(G(B)) + p(G(B)) = 2 (mod 3), let B* contain A copies of the
lollipop {4,4,1}, A — 2 copies of the lollipops {5, 5,2} and {6,6,3},
and the remaining loops at vertices 5 and 6.

(2b) If p(G(B)) = 0 and n > 5 or if ¢(G(B)) + p(G(B)) = 0 (mod 3), then
B* contains A copies of the lollipops {n +i,n +1,i}, for 1 < i< n.
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Next consider case (2c). We have that ¢(G(B*))+P(G(B*)) < A|n?/4|+
n+2< (Mn?-1)-n?-10)/2 < 3p(n+ 1,2 - [A/n]) when A > 3 and
n > 3, except possibly for the following special cases: n = 3 and A < T;
n=>5and A = 3; and, n = 7 and A = 3. However, direct calculations show
that 3u(n + 1,X — [A/n]) > ¢(G(B*)) + P(G(B*)) in all of these cases as
well, so (iii b) is satisfied in case (2c).

Finally, we consider case (2d). We have that ¢(G(B*)) + P(G(B*)) <
An?/4]+n+1< (A(n?—=1)-n2—-10)/2 < 3u(n+ 1,2 —[A/n]) for all
odd n > 3 and all odd A > 3 except possibly for the following special cases:
n=3and A<T7;n=5and A =3;and, n =7 and A = 3. However, direct
calculations show that 3u(n + 1, A = [A/n]) > ¢(G(B*)) + P(G(B*)) in all
of these cases as well, so (iii b) is satisfied for (2d) and thus for Case 1.

Clearly, the construction gives a PETS(2n, \) satisfying (iv).

Case 2: n is odd, A is even.

Again, if p(G(B)) # 0, we can assume without loss of generality that
p(G(B)) > 2 and that vertices n — 1 and n have odd degree in G(B).

Define B* as follows.

(1) BC B*.

(2a) Suppose n = 3 and p(G(B)) = 0. If ¢(G(B)) +p(G(B)) = 1 (mod 3),
let B* contain A copies of the lollipops {4,4,1} and {5,5,2}, A — 2
copies of the lollipop {6, 6,3}, and the remaining loops at vertex 6.
If ¢(G(B)) + p(G(B)) = 2 (mod 3), let B* contain A copies of the
lollipop {4,4,1}, A — 2 copies of the lollipops {5, 5,2} and {6,6,3},
and the remaining loops at vertices 5 and 6.

(2b) If p(G(B)) = 0 and n > 5 or if ¢(G(B)) + p(G(B)) = 0 (mod 3), then
B* contains X copies of the lollipops {n + i,n 4 14,i},for 1 <i < n.

(2¢) If p(G(B)) # 0 and if ¢(G(B)) + p(G(B)) = 1 (mod 3), then B*
contains A copies of the lollipops {n + i,n+4,i},for 1 <i<n-—1,
A — 2 copies of the lollipop {2n,2n,n}, and the two remaining loops
at vertex 2n.

(2d) If p(G(B)) # 0 and if ¢(G(B)) + p(G(B)) = 2 (mod 3), then B*
contains A copies of the lollipops {n + ¢{,n+i,i},for1 <i<n-1,
A — 1 copies of the lollipop {2n,2n,n}, and the loop {2n,2n,2n}.

(3) Using Lemma 2.3, partition the edges of K, defined on the vertex set
{n+1,...,2n} into the near 1-factors F,...F, with the property
that F, does not saturate vertex n+v. For each edge {a,b} € F,, for
1 < v < n,let B* contain A copies of the triple {v, a,b}.

We consider condition (i). We have that A(G(B)) < An — 1) and
dg(B+)(J) = dg)(j), for 1 < j < n — 2. Furthermore, we have that
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dgp+)(j) < 2, for n +1 < j < 2n. In addition, in (2a) we can have
without loss of generality that dg(g)(i) < 2), so dg(p+)(i) < 2A +2 < An,
where i € {2,3}. In cases (2b) and (2d), we have also that dg(g-)(n) <
dgs)(n) +1 < A(G(B)) + 1 < An. Finally, in case (2c) we have that
dg(s+)(n) = dg(B)(n) + 2. However, since dg(p)(n) is odd without loss of
generality, dg(s)(n) < A(n — 1) so dg(p+)(n) < An, so (i) is satisfied in all
cases.

We now consider (ii). Note that in all cases dg(p+)(7) = 0 for alln+1 <
i < 2n, except that dg(p+)(2n) = 2, 2, or 1 in cases (2a), (2c), and (2d),
respectively. However, if dg()(2n) = 1 then dg(p)(n) is odd, so dg(p-)(n)
is even. Therefore, in every case, for n+1 < 7 < 2n, either vertex ¢ or vertex
i — n has even degree, so p(G(B*)) < n.

In case (2a), we have ¢(G(B*)) + p(G(B*)) = 0 (mod 3); therefore,
P(G(B*)) = p(G(B*)) = 0 < n. In case (2b): if p(G(B)) = 0, then
P(G(B*)) <4< nifn>5;and if, n = 3 and p(G(B)) = 0 then ¢(G(B)) =
0 (mod 3), so P(G(B*)) = 0 < n. It is easily verified in all remaining
cases that ¢(G(B*)) + p(G(B*)) = 0 (mod 3), and since p(G(B*)) < n,
P(G(B*)) < n, so (ii) is satisfied.

Consider condition (iii a). We can calculate that ¢(G(B*))+p(G(B*)) <
2|n%/4]| +n+2 and show that if n # 3, 4, or 6 then ¢(G(B*)) +p(G(B*)) <
3T(n+1,2). Since we are assuming that n is odd, we need only consider the
case when n = 3. We first notice that ¢(G(B*)) + P(G(B*)) < 2|n%/4] +
4 < 8; however, since ¢(G(B*)) + P(G(B*)) = 0 (mod 3), we have that
¢(G(B*)) + P(G(B*)) < 6 = T(4,2). Hence, ¢(G(B*)) + P(G(B*)) <
T(n+1,2).

Next we consider condition (iii b). We have that 3u(n+1,A—[A/n]) >
(Mn?—-1)—n2-10)/2. In (2a), n = 3 and p(G(B*)) = 0. Since ¢(G(B*))+
p(G(B*)) = 0 (mod 3), it follows that ¢(G(B*)) + P(G(B*)) < A|n?/4] +
4 = 2) + 4. Here, we consider 3u(4,A — [A/3]) > 4)\ — 6, which is greater
than ¢(G(B*)) + P(G(B*)) when A > 5. When X = 4, 3p(4,2) = 12 >
€(G(B*)) + P(G(B*)), so (iii b) is satisfied for case (2a) for all even A > 4.

We now consider (2b). In this case, ¢(G(B*))+P(G(B*)) < A[n?/4]+n.
We can calculate that 3p(n + 1, A — [A/n]) > ¢(G(B*)) + P(G(B*)) for all
even A > 4 and all odd n > 3 except possibly for the special cases when
n=3and A=4or6. If n =3 and A = 4, then 3u(4,2) =12 > 11 >
¢(G(B*)) + P(G(B*)); if n = 3 and A = 6, then 3u(4,4) = 24 > 15 >
¢(G(B*)) + P(G(B*)), so (iii b) is satisfied for (2b).

Next we consider (2c). In this case, (G(B*)) + P(G(B*)) < A|n?/4]| +
n+2 < (A(n®—1)—n%-10)/2 < 3u(n+1,A—[A/n]) when A > 3and n >3
except possibly for the special cases when n = 3 and A = 4,6, or 8 and when
n=>5and A=4. If n = 3 and A = 4, then ¢(G(B*)) + P(G(B*)) < 12 (the
calculation actually gives an upper bound of 13, but ¢(G(B*))+P(G(B*)) =
0 (mod 3)). Now 3p(4,2) = 12 > ¢(G(B*))+P(G(B*)). If n = 3 and A =6,
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then ¢(G(B*)) + P(G(B*)) <17 < 24 = 3u(4,4). If n = 3 and A = 8, then
(G(B*)) + P(G(B*)) < 21 < 27 = 3u(4,5). If n = 5 and A = 4, then
€(G(B*))+ P(G(B*)) < 31 < 42 = 3u(6, 3), so (iii b) is satisfied for all odd
n >3 and all even A >4 in (2¢).

We finally consider case (2d). We have that ¢(G(B*)) + P(G(B*)) <
Aln?/4) +n+1 < 3p(n+ 1,1 — [A/n]) when n > 3 and A > 3 except
possibly for the following special cases: n =3 and A=4or6;andn =5
and A =4. If n = 3 and X = 4, then ¢(G(B*))+ P(G(B*)) < 12 = 3u(4, 2),
and if n = 3 and A = 6, then ¢(G(B*)) + P(G(B*)) < 16 < 24 = 3u(4,4).
If n =5 and A = 4, then ¢(G(B*)) + P(G(B*)) < 31 < 42 = 3u(6,3), so
(iii b) is satisfied for all odd n > 3 and all even A > 4 in (2d) and in all of
the above cases.

Clearly, the construction gives a PETS(2n, A) satisfying (iv).

Case 3: n is even, A is odd.

Define B* as follows.

(1) Bc B*.

(2a) If p(G(B)) = 0orife(G(B))+p(G(B)) =0 (mod 3), then B* contains
A copies of the lollipops {n +i,n+%,n}, for 1 <i < n.

(2b) If p(G(B)) # 0 and if ¢(G(B)) + p(G(B)) = 1 (mod 3), then B*
contains X copies of the lollipops {n +i{,n+i,n},for1 <i<n-—1,
A — 2 copies of the lollipop {2nr,2n,n}, and the remaining loops at
vertex 2n.

(2¢) If p(G(B)) # 0 and if ¢(G(B)) + p(G(B)) = 2 (mod 3), then B*
contains A copies of the lollipops {n +i,n+i,n} for 1 <i<n-1,
A — 1 copies of the lollipop {2n,2n,n}, and the remaining loop at
vertex 2n.

(3) Using Lemma 2.3, partition the edges of K, defined on the vertex
set {n+1,...,2n} into the 1-factors F,...,F,_;. For each edge
{a,b} € F,, for 1 < v < n—1, let B* contain A copies of the triple
{v,a,b}.

We first consider condition (i). We have that A(G(B)) < A(n — 1),
dg(B+)(j) = daB)(j) < Mn —1), for 1 < j < n—1, and dg(p+)(n) <
dg(B)(n) + 2 < An. Clearly, dg(+)(j) < 2,forn+1 < j < 2n,s0 (i) is
satisfied.

We now consider condition (ii). Clearly, p(G(B)) < n. In any case
of the above construction, dg(p+)(j) = dg)(j), for 1 < j < n -1,
and dg(p+)(k) = 0, for n+1 < k < 2n — 1. In cases (2a) and (2b), if
dg(B)(n) is even (odd), then dg(p-)(n) is even (odd), and dg(p+)(2n) is
even. In case (2c), we can assume without loss of generality that dg(g)(n)
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is odd, so dg(p+)(n) is even; in addition, dg(p.)(2n) = 1. Therefore, in
any case, p(G(B)) = p(G(B*)). In case (2a), if p(G(B)) = 0, then clearly
P(G(B*)) < n, and if ¢(G(B)) + p(G(B)) = 0 (mod 3), then (G(B*)) +
p(G(B*)) = 0 (mod 3) since ¢(G(B*)) = ¢(G(B)) and p(G(B*)) = p(G(B)).
Therefore, P(G(B*)) = p(G(B*)) = p(G(B)) < n. In cases (2b) and (2c)
we clearly have that ¢(G(B*)) + p(G(B*)) = 0 (mod 3), so P(G(B*)) =
p(G(B*)) = p(G(B)) < n, so (ii) is satisfied in all cases.

Next we observe condition (iii b), as condition (iii a) does not apply.
We have that €(G(B*)) < A|n%/4] + 2, and P(G(B*)) < n, so ¢(G(B*)) +
P(G(B*)) < A[n?/4]| + n+2. We can calculate that 3u(n+1,A—[A/(n -
1)]) > (An? = An — 2 — n? — 10)/2. We have also that A|n?/4] +n+2 <
(An? — An — 2X — n? — 10)/2 when n > 4 and A > 3 except possibly for
the following special cases: n = 4 and A < 17; n = 6 and A < 7; and,
n =8, 10, or 12 and X = 3. By direct calculations of A|n?/4] + n+ 2 and
3u(n+1,A=[A/(n—1)]), we have 3u(n+1,A—[A/(n=1)]) > A|n®/4]+n+2
for all of the above special cases, so (iii b) is satisfied for all cases considered.

Clearly, the construction gives at least two vertices of degree at most
An — 2, so (i) - (iv) are satisfied.

Case 4: n is even, X is even.

Define B* as follows.

(1) BC B*.

(2a) If p(G(B)) = 0or if ¢(G(B))+p(G(B)) = 0 (mod 3), then B* contains
A copies of the lollipops {n +i,n+i,n}, for 1 <i < n.

(2b) If p(G(B)) # 0 and if ¢(G(B)) + p(G(B)) = 1 (mod 3), then B*
contains XA copies of the lollipops {n +i,n+¢,n},for1 <i<n-1,
A — 2 copies of the lollipop {2n,2n,n}, and the remaining loops at
vertex 2n.

(2¢) If p(G(B)) # 0 and if ¢(G(B)) + p(G(B)) = 2 (mod 3), then B*
contains A copies of the lollipops {n +i#,n+i,n},for1<i<n-1,
A — 1 copies of the lollipop {2n,2n,n}, and the remaining loop at
vertex 2n.

(3) Using Lemma 2.3, partition K, defined on the vertex set {n+1,...,2n}
into the 1-factors Fy,..., F,_1. For each edge {a,b} € F,, for 1 <
v < n—1, let B* contain X copies of {v, a,b}.

We consider condition (i). We have that A(G(B)) < A(n — 1) and
de(B+)(j) = dg(B)(7), for 1 £ j < n— 1. Furthermore, we have that
dg(B+)(j) =0, for n +1 < j < 2n— 1. In cases (2a) and (2c), we have also
that dg(g+)(n) < dg(s)(n) + 1 < A(G(B)) + 1 < An. Finally, in case (2b)
we have that dg(p-)(n) = dg()(n) + 2. However, since dg(B)(n) is odd
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without loss of generality, dg(p)(n) < A(n — 1) so dg(g-)(n) < An, so (i) is
satisfied in all cases.

Next we investigate condition (ii). In all cases, dg(p+)(¢) = 0 for n+1 <
i < 2n, except that dg(p+)(2n) = 2 or 1 in cases (2b) and (2c), respectively.
However, if dg(p.)(2n) = 1 then dg(s)(n) is odd, so dg(g+)(n) is even.
Therefore, in every case, for n + 1 < 7 < 2n, either vertex ¢ or vertex i — n
has even degree, so p(G(B*)) < n. Furthermore, in every case it is easily
verified that p(G(B*)) = p(G(B)) and ¢(G(B*)) + p(G(B*)) = 0 (mod 3).
Therefore, P(G(B*)) = p(G(B*)) < n, so (ii) is satisfied.

We now investigate condition (iii a). We can calculate that ¢(G(B*)) +
P(G(B*)) < 2|n?/4|+n+2 and show that if n # 3, 4, or 6 then ¢(G(B*))+
P(G(B*)) <€ 3T(n+1,2). Since we are assuming that n is even, we need
only consider the cases when n = 4 and n = 6. We first notice that
although 2|n2?/4| + n + 2 = 14 when n = 4, ¢(G(B*)) + P(G(B*)) < 12,
since ¢(G(B*)) + P(G(B*)) = 0 (mod 3). Since we defined T'(5,2) = 4, we
have that 37'(5,2) = 12, so ¢(G(B*))+P(G(B*)) < T(n+1,2). In addition,
2|n?/4|+n+2 = 26 < 30 = 3T'(7,2),s0 €(G(B*))+P(G(B*)) < T(n+1,2).

Next we consider condition (iii b). We have in all cases that ¢(G(B*)) <
A|n2/4]+2 and P(G(B*)) < n, so (G(B*))+P(G(B*)) < A|n?/4]+n+2.
Again we can calculate that 3u(n+1,A—[A/(n—1)]) > (An? —An —2X —
n? — 10)/2, so we have that A[n?/4] +n+2 < (An? = An — 2X —n? — 10)/2
when n > 4 and A > 3, except possibly for the following cases: n =
4and A< 19;n =6and A < 7; and n = 8 and A = 4. By direct
calculations of A|n%/4] +n + 2 and 3p(n + 1,A — [A/(n — 1)]), we have
that 3u(n + 1,A — [A/(n = 1)]) > A[n?/4] + n + 2 unless n = 4 and
A=4. Ifn =4and A = 4, we have that A[n?/4] + n + 2 = 22 and
3u(n+1,A-[A/(n—1)]) = 3u(5,2) = 18. However, if (G(B)) = A[n?/4] <
14, we will satisfy condition (iii b) since ¢(G(B*)) + P(G(B*)) = 0 (mod
3) and since in this case ¢(G(B*)) + P(G(B*)) < Aln?/4] +n+2 < 20
(in fact ¢(G(B*)) + P(G(B*)) < 18 = 3u(5,2)). If ¢(G(B)) = 15, we
can assume without loss of generality that G(B) contains 2 vertices of odd
degree, so €(G(B)) + p(G(B)) = 17 = 2 (mod 3). Hence, we are in case
(2c) since p(G(B)) # 0, and this means that ¢(G(B*)) + P(G(B*)) =18 =
3u(5,2). If ¢(G(B)) = 16, we can assume that all four vertices of G(B)
have even degree, so we are in case (2a). Now ¢(G(B*)) + p(G(B*)) = 16,
so P(G(B*)) = 2; therefore, (G(B*)) + P(G(B*)) = 18 = 3u(5, 2), so (iii
b) is satisfied when n =4 and A = 4, and thus for all cases considered.

Clearly, the construction satisfies condition (iv), so the proof is com-
plete. o

Proposition 3.2 Let n > 3 and A > 2. Any PETS(2n,))(V*, B*) satis-
fying:
(i) A(G(B*)) < An,
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(i) P(G(B")) <,
(iti a) If A = 2, then ¢(G(B*)) + P(G(B*)) < 3T(n+1,2)
(i b) If A > 2 then

«(G(B)+P(G(B™)) 5{ §ﬁEZii§Z R%P- 1) i§2 i coen

(iv) and G(B*) contains at least 2 vertices of degree at most An — 2

can be embedded in an ETS(4n + 2,A)(V, B).

Proof: Clearly we can assume that (V*, B*) is maximal (if necessary,
by adding loops and triples, but not lollipops). There are five types of
extended triples that will be added to embed (V* = {1,...,2n}, B*) in
(V=A{1,...,4n+2},B):

(a) lollipops {a,a,b}, where a > 2n +1,b < 2n;

(b) lollipops and loops on vertices in {2n +1,...,4n + 2};
(c) triples {a,b,c}, where a,b < 2n,and ¢ > 2n + 1;

(d) triples {a,b,c}, for 2n+1 < a,b,c < 4n +2; and

(e) triples {a,b,c}, for a < 2n and b,c>2n+ 1.

We start by letting B* C B and then consider each type of extended
triple to be placed in B in turn.

Type a: Since |V| is even, each vertex in V must occur together in B
in an odd number of lollipops if A is odd and an even number of lollipops
if X is even. We use lollipops to adjust the p = p(G(B*)) vertices in V*
which occur in an even number of lollipops if A is odd and an odd number
of lollipops if X is even (these are the vertices in G(B*) which have odd
degree). We can assume {1,...,p} C {1,...,n} is this set of vertices, and
let {{i,2n+:{,2n+4}|1 <i<p} CB.

We must also have that the number of edges remaining to be placed in
triples after the Type b extended triples are defined is divisible by 3, so we
may need to add up to four further lollipops as follows. Let ¢ € Z3 with
¢ = ¢(G(B*)) + p(G(B*)) (mod 3). By condition (iv), there are at least
¢ vertices of degree at most An — 2 in G(B*), which we can name v;, for
1<i<¢. If¢p>1, welet {{v;,2n+p+2i—1,2n4+p+2i —1},{v;,2n +
p+2i,2n+ p+ 2i}|]1 < i < ¢} C B. We have therefore defined exactly
p+2¢ = P(G(B*)) < n Type a extended triples.

Type b: Foreach v € V\V* = {2n+1,...,4n + 2}, in order that v
occurs in A lollipops, we must have that v occurs in A Type a or Type b
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extended triples. Since v occurs in exactly one Type a lollipop for 2r+1 <
v < 2n+ p+ 29, or no Type a lollipops for v > 2n+ p+ 2¢ + 1, we require
that v must occur in either A—1 or A Type b extended triples, respectively.

First suppose A = 2. By Lemma 2.12 there exists an equitable PT'S(n+
1,2)(S = {2n + 1,...,3n + 1}, T) containing (¢(G(B*)) + P(G(B*)))/3
triples such that the leave of (S,T) contains a 2-factor consisting of even
cycles if n4-1 is even and a near 2-factor consisting of even cycles if n+1 is
odd. First suppose n 4+ 1 is even. Give the 2-factor an orientation forming
directed cycles; we can name the vertices in S so that each directed cycle
consists of arcs of the form (z, n(z)) where n(z) = z+1 for each vertex in the
cycle except for the largest vertex. For every a € {2n+1,...,3n+1}\{2n+
1,2n+3,2n+5, ..., 2n+p+2¢—1}, include the lollipop {a, a, n(a)}. Because
we have specified that the 2-factor consists of even cycles, each vertex in
{2n+1,...,3n+1} is contained in the required number of lollipops. Next,
let B contam two lollipops of the form {3n 4 2i,3n + 24,3n + 2 4 1}, for
1< i< (n+1)/2. Finally, let B contain any remaining loops which are
not in lollipops.

Next let n + 1 be odd. Let the near 2-factor saturate all vertices of S
except 3n + 1. Form lollipops as before and add them to B so that vertices
in the set {2n+1,...,2n4p+2¢} occur in exactly one Type b lollipop and
all remaining vertices in S\ {3n+ 1} are contained in two Type b lollipops.
Again, this is possible since the near 2-factor consists of even cycles. Next,
let B contain two lollipops of the form {3n 4+ 2i — 1,3n + 2i — 1,3n + 2i},
for 1 < i < (n+ 2)/2. Finally, let B contain any remaining loops that are
not in lollipops.

Now suppose A > 3 and n is even. Consider K, defined on the vertex
set {2n+1,. 3n} By Lemma 2.3, we can partition the edges of K, into
the 1-factors Fl, F,—-1 such that F,,_; contains the edges {2n+1,2n+
2}, {2n+3, 2n+4} . {3n—1,3n}. For 1 < v < n—1,orient the edges of
F, to form F,, and for each arc (a,b) € F!, let B contain [A\/(n —1)] — 1
copies of the lolhpop {a,a,b}. Now every vertex in the set {2n+1,...,3n}
is contained in (n — 1)([A/ (n—1)]—1) Type b lollipops. Addltlonally, for
1<v< (A=1)=(n=1)([A/(n=1)]—-1), and for every arc (a,b) € F!,let B
contain one more copy of {a,a,b}; so now every vertex in {2n+1,...,3n}
is contained in A — 1 Type b lollipops. Finally,for 1 <i< (n—p— 2¢) /2
and for every arc (2n+p+2¢6+2i— 1,2n+ p+ 24 + 2i) € F;_;, let
{2n+p+ 24+ 2 — 1,2n+p+2¢+2i— 1,2n + p+ 2¢ + 2i} € B. Now
every vertex in {2n +1,...,3n} is contained in the required number of
Type b lolhpops Place in B all remaining loops which are incident with
vertices in {2n+1,...,3n}. Finally, let B contain A copies of the lollipops
{3n+2i—1,3n+ 21 —1,3n+ 2i} and X copies of the loops at each vertex
3n+2i,forl1 <i<(n+2)/2.
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Next suppose A > 3 and n is odd. Again consider K,4+; on the vertex
set {2n+1,...,3n + 1}. Using Lemma 2.3, partition the edges of K4,
into the 1-factors Fy, ..., F,, such that F,, contains the edges {2n+1,2n +
2},{2n+3,2n+4},.. {3n 3n+1}. Orlent the edges of F, to form F,j, for
1 < v < n, and for each arc (a,b) € F!, let B contain [/\/n] — 1 copies of
{a,a,b}. Now every vertex in the set {2n+ 1,...,3n+1}isin n([A/n] 1)
Type b lollipops. Again,forl1 <v < (A-1)— n([)\/n'l —1) and for each arc
(a,b) € F!, let B contain one more copy of {a,a,b}. Now every vertex in
{2n+1,...,3n+1} is contained in A—1 Type b lollipops. Finally,for1 <i <
(n—p— 2¢+1)/2 and for every arc (2n+p+2¢+2i—1, 2n+p+2¢+2i) € Fy,
let {2n+p+2¢+2i—1,2n+p+2¢+2i—1,2n+p+2¢+2i} € B. Therefore,

we have that every vertex in {2n+1,...,3n+1} is contained in the required
number of Type b lollipops. Now we place in B all remaining loops which
are incident with vertices in {2n + 1,...,3n 4+ 1}. Furthermore, we let B

contain A copies of the lollipops {3n + 21', 3n+2:¢,3n+2i+ 1} and X loops
at each vertex of the form 3n+2i+1,for 1 <i < (n+1)/2.

Type c: We form a graph H which consists of the edges of G(B*)
along with the edges (but not the loops) {z;,2n+ ¢}, where i € {1,...,p+
¢} and € € {1,...,p + 2¢}, which occur in Type a lollipops, so ¢(H) =
€(G(B*)) + P(G(B*)). Our goal is to give H an equalized edge-coloring
with n + 1 colors, say 2n +1,...,3n + 1, where: |Cons1| > -+ > |Cant1l;
|Ci(v)] < Afor 2n+1 < i < 3n+1; and for all v € V(H), and the Type
a lollipop edges all receive different colors, say {z;,2n + £} is colored with
2n+£for 1 < £ < p+24. We do this by forming a graph H' from H
by contracting vertices 2n + 1,...,2n + p + 2¢ into a single vertex y. We
have that dg:(i) < A(G(B*)) +1 < Anfor 1 < i < 2n, by (i) and (iv),
and dg:(v) < p(G(B*)) +2¢ = P(G(B*)) < n by (ii), so H' can be given
a proper equalized A(n + 1)-edge-coloring by Lemma 2.4. Name the color
classes C; j, where 1 <i < Aand 2n+41< j < 3n+1, and name the colors
so that: |C; ;| > |C;c ¢| if and only if (3,7) is lexlcographlca,lly less than
(k,£); and if e; and ey are any two edges incident with v in color classes
C;,; and Ck,¢, respectively, then j # £. Then letting Cny; = U, C; ; for
2n+1 < j < 3n+ 1 be the color classes of an equalized edge-colormg of
H' produces the desired (n + 1)-edge-coloring of H. For each edge {3, j} in
G(B*) colored k, let {i,j,k} € B.

Type d: Again consider the edge-coloring of H just obtained and let
§, denote the number of edges of H colored z. First assume A = 2. Let
(S' = {2n+1,...,3n+1},T) be an equitable PSTS(n+1,2), and let |T| =
(e(G(B*)) + P(G(B*)))/3; by the definition of P(G(B*)), this number is
an integer. By Lemma 2.12, such a PSTS exists, since by condition (iii
a), ((G(B*)) + P(G(B*)))/3 < T(n +1,2). Name the symbols so that
8z = r(z), the number of triples in 7/ which contain symbol z, for 2n+1 <
¢ < 3n+ 1. We have that no edge of the form {a,b} C S will occur in
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too many extended triples up to this point since the leave of our PSTS
contains a 2-factor from which the Type b lollipops were obtained. Let
T C B.

Next assume A > 3. Let (S={2n+1,...,3n+1},T’) be an equitable
PSTS(n+ 1, — [A/n]) if n is odd, and let (S,T") be a PSTS(n + 1, —
[A/(n—1)]) if n is even. Furthermore, let |T"| = (¢(G(B*))+ P(G(B"*)))/3;
again, by the definition of P(G(B*)), this number is an integer. Name the
symbols so that §; = r(z), the number of triples in 7/ which contain symbol
z,for2n+1 <z <3n+1. By Lemma 2.9, such a PSTS exists, since by

condition (iii b)
. . 3u(n+1,A—[A/n]) if n is odd

€(G(B"))+P(G(B")) < { 3u(n+1,A—[X/(n-1)]) ifniseven.

In addition, since any edge of the form {a,b} C S, is in at most [A/n]
Type b lollipops if n is odd and at most [A/(n — 1)] Type b lollipops if n
1s even, no such edge will be in too many extended triples up to this point.
Let 7V C B.

Type e: We use Theorem 2.6 and Theorem 2.7 to place the remaining
edges in triples. We first form a partial array L(oco) of order n + 1 and
multiplicity A on the symbols in {0} U {1,...,2n} as follows:

(1) place symbol j < 27 in cell (z,¢) if an edge colored 2n + i is incident
with vertex j in H,

(2) for1 <i< j<n+1,if {i+2n,j+ 2n} is an edge of k, triples in
T' and a lollipop edge of k; Type b lollipops, then fill cells (¢, j) and
(4,%) with symbol oo k1 + k2 times, and

(3) for 1< i< j<n+1,fill cells (7, 5) and (j,?) greedily with A — (k; +
k2) symbols in {1,...,2n}, preserving symmetry and preserving the
property that each symbol occurs at most A times in each row and
at most A times in each column, and if n 4+ 1 is odd then at least n
symbols occur at least 2 times in L(oo).

To see that property (3) can be achieved, we present the following ar-
gument.

If n+ 1 is even, this can be done greedily, so suppose n + 1 is odd. In
this case, except when n = 4, we show that property (3) can be achieved by
ensuring that each symbolin B = {n+1,...,2n} can be placed 2) times
in L(0o), and in fact this can be done greedily; the case n = 4 is relegated
to the appendix. For each off-diagonal cell ¢ in L(co) let the number of
spaces in ¢ be the difference between A and the number of copies of co in
c. There are two things to show.

First, we address the greedy issue. Since each symbol in B occurs at
most once in each diagonal cell and in an even number of diagonal cells, and
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since we have the symmetry property, if symbol j € B occurs less than 2
times, then it appears less than A times in every row and in every column;
so it can be placed in any off-diagonal cell containing an unfilled space.

Second, we must show that the number of spaces is at least 2n\. Each
of rows 1,...,n in L are to contain A(n — 1) symbols, and row n + 1 is
to contain An symbols, so the total number of symbols to occur in L is
A(n - 1)n + An = An2. Of these, 2¢(G(B*)) + P(G(B*)) occur on the
diagonal, so the total number of spaces is An? — 2¢(G(B*)) + P(G(B*)) <
A?/2+n+4. Forn >6,n>—5n—4 >0, so since A > 2 we have
n? — 4n — ((2n + 8)/X) > 0, so An? — (2¢(G(B*)) + P(G(B*))) > 2n) as
required. Therefore, property (3) can be achieved.

Let L be formed from L{oo) by deleting all the co symbols. Then
L is a symmetric quasi-latin square of order n + 1 and multiplicity A on
the symbols in {1,...,2n}. In order to apply Theorem 2.6 and Theorem
2.7 (with r = n + 1 and ¢ = 2n), we need to check that L satisfies the
appropriate conditions. We first show that every symbol occurs an even
number of times on the main diagonal of L, and thus, an even number
of times in L, thus satisfying condition (a) of Theorems 2.6 and 2.7. We
consider the cases where dg(p+)() is odd and even in turn.

Suppose dg(p+)(z) = 2m + 1. Since z has odd degree in G(B*), the
graph H contains a lollipop edge of Type a incident with z colored with
some color a. Furthermore, z is contained in 2m + 1 triples of the form
{z,y, B}, where 8 is the color of an edge {z,y} in H. Hence, symbol z is
placed once in cell (& — 2n,a — 2n) and 2m + 1 times in cells of the form
(8 — 2n, 8 — 2n), and so it is placed 2m + 2 times on the main diagonal of
L.

Now suppose dg(g+)(z) = 2m. In this case, vertex z has even degree in
G(B"), so there are either 0 or 2 Type a lollipop edges in H which contain
z. If these lollipops exist, the edges were given distinct colors, say a; and
az. Furthermore, z occurs in 2m or 2m — 2 triples of the form {z,y, 8}
(depending upon whether z occurs in 0 or 2 lollipops, respectively), where
B is the color of an edge {z,y} in H. Hence, z is placed once in each of the
distinct cells (o3 — 2n, a1 — 2n) and (a2 — 2n,a2 — 2n) and 2m — 2 times
in cells of the form (8 — 2n, 8 — 2n) if such lollipops exist, and z is placed
2m times in cells of the form (8 — 2n, 8 — 2n), otherwise. Therefore, z is
placed 2m times on the main diagonal of L and, thus, an even number of
times in L.

We now check that L contains the appropriate number of symbols in
each row as required by Theorems 2.6 and 2.7, considering the cases n + 1
is even or odd in turn.

Suppose n + 1 is even. Since 7(2n + i) is the number of triples in 7"
containing symbol 2n + ¢, from (1) the number of symbols in cell (z,1) is
2r(2n + i) — 1 if symbol 2n + ¢ occurs in a Type a lollipop and 2r(2n + i),
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otherwise. From (2), the number of times symbol oo occurs in row i of
L(o0) is 2r(2n +1) + (A — 1) if vertex 7 is contained in a Type a lollipop and
2r(2n+1)+ A, otherwise. Therefore, also from (1), (2), and (3), we get that
An+2r(2n+14)—1—(2r(2n+9) + (A —1)) = An— A = A(n — 1) symbols
are placed in row i of L if symbol 2n + i is contained in a Type a lollipop;
otherwise, An + 2r(2n +¢) — (27(2n +7) + A) = An — A = A(n — 1) symbols
are placed in row 7 of L, so each row of L contains A(n — 1) symbolsif n+1
is even.

Suppose n+1 is odd. The same argument as the case where n+1 is even
holds for the first n rows of L, but in this case we must have that row n+1
of L contains An symbols. However, since n+1 is odd, vertex 3n+ 1 occurs
in A Type b lollipops with vertex 3n + 2, and these lollipops contribute no
oo symbols to row n + 1 of L(co). However, as before, row n + 1 of L(0c0)
contains symbol oo 2r(3n + 1) times (since vertex 3n + 1 is contained in A
Type b lollipops) and cell (n + 1,n+ 1) of L contains 2r(3n + 1) symbols.
Therefore, row n + 1 of L contains An — 27(3n 4+ 1) + 2r(3n + 1) = An
symbols.

We now have the following ((5) follows from the third condition imposed
on L(co) when forming the Type e triples):

(1) Ng(%) is even, for 1 < i < 2n;
(2) L is symmetric;
(3) No(®) > AM2(n+1)—2n—-2)=0,for 1 <i< 2n;

(4a) each row of L contains A(n — 1) symbols from {1,...,2n}if n+1is
even, or

(4b) row j (1 < j < n) of L contains A(n — 1) symbols, and row n + 1
contains An symbols if n + 1 is odd; and

(5) if n+1 is odd then at most n symbols occur less than 2\ times in L.

Therefore, by Theorems 2.6 and 2.7, L can be embedded in the top
left corner of a symmetric quasi-latin square L’ of order 2n + 2 on the
symbols 1,...,2n such that cells (¢,7), for n+2 < i < 2n + 2, and cells
(n—z+2i,n—2+2i+1) and (n—z+2i+1,n—2+2i), for 1 < i < (n+1+z)/2
are empty, where £ =0 or 1 if n + 1 is even or odd, respectively. We form
triples using L’: if symbol w occurs in cells (y, z) and (2, y), y # 2, then let
{y+2n,z+2n,w} € B.

This completes the definition of B, so now it remains to show that (V/, B)
is an ETS(4n + 2, A); that is, we must show that every pair of points of V'
occurs in exactly A extended triples.
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Consider edges of the form {z,y}, where z,y < 2n. Some (maybe all)
of these edges already occurred in extended triples in B*. Suppose {z,y}
occurred in « extended triples in B*. Then {z,y} occurred in G(B*) as an
edge A — a times, and therefore was included in A — @ Type c triples. All
loops incident with vertices  and y already occurred in B* since (V*, B*)
was taken to be maximal. Therefore, every edge of the form {z,y} occurs
in exactly A extended triples in B.

We now consider edges of the form {z, y}, where z < 2n and y > 2n+1.
Since every symbol 1,. .., 2n occurs exactly A times in each row of L', {z, y}
occurs in extended triples of Type a or ¢ if « is in a diagonal cell of L’ and
of Type e if z is in an off-diagonal cell of L'. In any event {z,y} occurs in
A extended triples of B.

We finally consider edges of the form {z,y}, where z,y > 2n + 1. Each
cell (z—2n,y—2n), z # y, in L’ contains B symbols from 1,...,2n, where
0 < B < A. For every symbol in 1,...,2n found in cell (z — 2n,y — 2n),
{z,y} is in a Type e triple; the remaining A — 8 edges joining z to y are
contained in either Type b lollipops or Type d triples (corresponding to the
A Type b lollipops if (z, y) is a near-diagonal cell of L’ outside L, and to the
A — B copies of oo in cell (z,y) of L(co) otherwise). In any event, {z,y} is
contained in exactly A extended triples, and all loops incident with vertices
in2n+1,...,4n + 2 are contained in A extended triples of B.

Therefore, we have that every edge of the form {z,y}, for 1 < z,y <
4n + 2, is in exactly A extended triples of B, and the proof is complete. O

We now have the following theorem.

Theorem 3.3 Any partial extended triple system (V, B) of order n and
index A > 2 can be embedded in an extended triple system (V, B) of order
v and indez A for allv > 4n+2, v =2 (mod 4).

Proof: First suppose n € {1,2}. Clearly, any PETS(1,)) can be
embedded in an ETS(v,A) for all v > 4n 4 2,v = 2 (mod 4) since this
corresponds to the existence of such ETS(v,A)s. If n = 2, consider a
PETS(2,)) with ¢(G(B)) = A — z. We can think of this PETS(2, )
as (A —z) PETS(2,1)s and ¢ ETS(2,1)s. Clearly, by [13] each of the
PETS(2,1)s and ETS(2,1)s can be embedded in an ETS(v, 1) for all v >
4n 4+ 2,v = 2 (mod 4). If we put these A ET'S(v, 1)s together, we have the
desired ET'S(v, A).

Now suppose n > 3,k > 0, and v = 4(n + k) + 2. Embed (V, B)
in a maximal PETS(n + k,A)(V1, B1). By Lemma 3.1, (V4,B;) can be
embedded in a PETS(2(n + k), A) satisfying conditions (i) — (iv), which
by Proposition 3.2 can be embedded in an ETS(4(n + k) + 2, ), and the
proof is complete. o
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4 Embedding a PETS(n,)\) in an ETS(4n +
8,)

We follow a similar approach when embedding a PETS(n, A) in an ETS(4n+
8,A). In most cases we can embed our PET'S(n, ) in an ETS(4n + 4, )).

Let w(G(B)) denote the number of vertices of even degree in G(B) and
let

w(G(B)) if (G(B)) + w(G(B)) = 0 (mod 3),
W(G(B)) = { w(G(B)) +2 if (G(B)) +w(G(B)) = 1 (mod 3).
w(G(B)) +4 if e(G(B)) +w(G(B)) = 2 (mod 3),

As before, the embedding process takes two steps. Lemma 4.1 embeds
the PETS(n,A) in a PETS whose deficiency graph meets the conditions
of Proposition 4.2. Applying Proposition 4.2 completes the embedding.

Lemma 4.1 Let (V, B) be a mazimal PETS(n,)) withn > 3 and A > 2.
Letu=2n+10r2n+3 ifn is odd, and u = 2n+3 or 2n+5 if n is even.
Then (V, B) can be embedded in a PETS(u,\) (V*, B*) satisfying:
© A if n is odd
" n , if n is o
AG(BY)) < { AMn+1) ,ifnis even

(ii a) If X is even, then

) n , if n is odd
P(G(B ))S{n+1 , if n is even
(11 b) If A is odd, then
. n , if n is odd
W(G(B*)) < { n+1 ,ifn is even

(iti a) If A =2, then ¢(G(B*)) + P(G(B*)) < 3T*((u +1)/2,2)
(iii b) If X > 2 and even, then

3u((u+1)/2,A = [A/((v - 1)/2))),
if (u+1)/2 is odd

3p((u+1)/2, X = [M/((u - 3)/2)]),
if (u+1)/2 is even,

«(G(B")) + P(G(B™)) <
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(iti ¢} If A > 2 and odd, then

3p((u+1)/2,2 = [A/((v - 1)/2)]),
if (u+1)/2 is odd

3u((u+1)/2,A = [M/((v - 3)/2)]),
if (u+ 1)/2 is even,

«(G(B") + W(G(B)) <

(iv) G(B*) contains at least 2 vertices of degree at most An — 2.

Proof:

Case 1: u=2n+1, nis odd, X is odd.

Since n is odd we have w(G(B)) # 0, and we can assume without loss
of generality that vertex n has even degree.

Define B* as follows.

(1)
(2)

(3c)

BC B*.

Using Lemma 2.3, partition the edges of K41 on the vertex set {n+
1,...,2n+ 1} into the 1-factors F, ..., F,, where F,, consists of the
edges {n+i,2n+2 — i}, for 1 < 7 < (n+ 1)/2. For each edge
{a,b} € F,, for 1 < v < n—1,let B* contain A copies of the triple
{v,a, b}, and for each edge {a,b} € F,, let B* contain A — 1 copies of
the triple {n, a, b}.

If ¢(G(B)) + w(G(B)) + (n + 1)/2 = 0 (mod 3), let B* contain the
lollipops {n +i,n+%,n}, for 1 <i < n+ 1, and the remaining loops
at vertices n+1,...,2n4 1.

If ¢(G(B)) + w(G(B)) + (n + 1)/2 = 1 (mod 3), let B* contain the
lollipops {n + i,n +i,n}, for 3 < i < n — 1, the lollipops {n + 1,7 +
1,2n+ 1} and {n+2,n+ 2,2n}, and the remaining loops at vertices
n+1,...,2n+1.

If ¢(G(B)) + w(G(B)) + (n + 1)/2 = 2 (mod 3), let B* contain the
lollipops {n+3%, n+i, n}, for 2 < i < n, the lollipop {n+1, n+1,2n+1},
and the remaining loops at vertices n+1,...,2n 4+ 1.

We first consider condition (i). Clearly, A(G(B)) < A(n —1). We must
have at least one vertex of degree at most A(n — 1) — 2 in G(B), for if all
vertices in G(B) had degree A(n—1)—1 or greater, then by Lemma 2.2, G(B)
would contain at least one triple. Without loss of generality we can assume
that dg(py(n) < A(n — 1) — 2. We have that dg(p+)(i) = dg(s)(i) for 1 <
i<n-1, dG(B-)(i) =1lforn+1<i<2n+1, and dG(B‘)(n) = dg(B)(n),
dg(p)(n) + 2, and dg(p)(n) + 4 in cases (3a), (3c), and (3b), respectively
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(so w(G(B*)) = w(G(B))). Hence, A(G(B*)) < A(n—1)+2 < An, so (i)
is satisfied.

We next consider (ii b). We have observed that w(G(B))
w(G(B*)) = w(G(B)). In addition: ¢(G(B*)) = ¢(G(B)) + (n
(3a); €(G(B*)) = €(G(B))+(n+1)/2+2 in (3b); and ¢(G(B")) = €(G(
(n+1)/24 1 in (3c). Therefore, we have that ¢(G(B*)) + w(G(B*)
(mod 3) in all cases, so W(G(B")) < n, satisfying (ii b).

Now we investigate condition (iii ¢). Since (V, B) is maximal, by Lemma
2.2, (G(B*)) < An?/4, so e(G(B*)) < An2/4 + 2 + (n + 1)/2. Therefore,
€(G(B*)) + W(G(B*)) < (An? +6n+10)/4 < (An? —n?2 — X - 10)/2 <
3u(n+1,A=[A/n]) when n > 3 and A > 3, except possibly for the following
special cases: n =3 and A < 9;n=5and A =3;n=7and A = 3; and
n =9 and A = 3. However, by direct calculations of 3u(n + 1,A — [A/n])
for these values, we find that ¢(G(B*))+ W(G(B*)) < 3u(n+1,A—[A/n])
in all of these cases, so (iii c) is satisfied.

Condition (iv) is satisfied since dg(p+)(i) = 1forn+1<i<2n+1.

Case 2: u=2n+1, n is odd, A is even.

Define B* as follows.

n an
/2
B))
)

<
n+1

(1) B C B".

(2) Using Lemma 2.3, partition the the edges of K41 on the vertex set
{n+1,...,2n + 1} into the 1-factors Fy,..., F,,, where F;, consists
of the edges {n+¢,2n+2— i}, for 1 <i < (n+ 1)/2. For each edge
{a,b} € Fy, for 1 < v < n—1, let B* contain A copies of the triple

{v,a,b}.

(3a) If ¢(G(B)) + p(G(B)) = 0 (mod 3), let B* contain A copies of the
triple {a, b, n}, for each edge {a,b} € F,,, and the remaining loops at
vertices in the set {n+1,...,2n+1}.

(3b) Ife(G(B))+p(G(B)) = 1 (mod 3), let B* contain A copies of the triple
{a,b,n}, for each edge {a,b} € Fo \ {{n+1,2n+1}}, A — 2 copies of
the triple {n,n + 1,2n + 1}, 2 copies of the lollipops {n + 1,n+1,n}
and {2n+1,2n + 1,n}, and the remaining loops at vertices in the set
{n+1,...,2n+1}.

(3c) If e(G(B))+p(G(B)) = 2 (mod 3), let B* contain A copies of the triple
{a,b,n}, for each edge {a,b} € Fy \ {{n+1,2n+1}U {n + 2,2n}},
A —2 copies of the triples {n,n+1,2n+1} and {n,n+2,2n}, 2 copies
of the lollipops {n + i,n + i,n}, where i € {1,2,n,n+ 1}, and the
remaining loops at vertices in the set {n+1,...,2n+ 1}.

We consider condition (i) and note that A(G(B)) < A(n — 1). Further-
more, for every vertex i € {1,...,n}, dg(s+)(i) = dg(p)(i). In addition,
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dgp+)(j) =0, forall j € {n+1,...,2n+ 1} except for case (3b) in which
dg(g+)(n +1) = dg(p+)(2n+ 1) = 2, and case (3c) in which dg(p.)(j) = 2,
forall j € {n+1,n+2,2n,2n+ 1}. Hence, A(G(B*)) < An.

Next we consider condition (ii a). We have that p(G(B*)) = p(G(B)) <
n. In addition, €(G(B*)) = ¢(G(B)) + 0, ¢(G(B)) + 2, and ¢(G(B)) + 4 in
cases (3a), (3b), and (3c), respectively. Therefore, (G(B*))+p(G(B*)) =0
(mod 3), so P(G(B*)) = p(G(B*)) < n.

We now investigate (iii a). It is easily verified that 37™(n + 1,2) >
2|n?/4] + n+4 > ¢(G(B*)) + P(G(B*)) for all odd n > 5. If n = 3, then
2[n%/4] + n + 4 = 11; however, ¢(G(B*)) + P(G(B*)) = 0 (mod 3), so
e(G(B*)) + P(G(B*)) < 9=3T"(4,2), so (iii a) is satisfied for all n > 3.

Next we consider (iii b). Using Lemma 2.2 we have that ¢(G(B*)) +
P(G(B*)) < A[n?/4f+n+4 < (An2—n?—1-10)/2 < 3u(n+1,2—[A/n])
when n > 3 and A > 4, except possibly for the following special cases:
n=3and A < 8 and n = 5 and A = 4. Direct calculations show that
3p(n+ 1, X = [A/n]) > €(G(B*)) + P(G(B*)) except possibly when n = 3
and A = 4. Suppose n = 3 and A = 4. We have that 3u(4,2) = 12 and
¢(G(B*))+P(G(B*)) < 15, so since ¢(G(B*))+P(G(B*)) = 0 (mod 3), we
need only consider the case when ¢(G(B)) = A|n?/4| = 8. But in this case
we will have that P(G(B*)) = 0, so ¢(G(B*)) + P(G(B*)) < 12 = 3u(4,2).
Therefore, (iii b) is satisfied for all even A > 4 and all odd n > 3.

Clearly, the construction gives a PETS(2n + 1, A) satisfying (iv).

Case 3: u=2n+ 3, nis odd, X is odd.

Define B* as follows.

(1) BC B*.

(2) Using Lemma 2.3, partition the the edges of K,4+3 on the vertex set
{n+1,...,2n + 3} into the 1-factors Fi,..., Fr12. For each edge
{a,b} € F,, for 1 < v < n, let B* contain A copies of the triple

{v,a,b}.

(3a) Suppose ¢(G(B)) + w(G(B)) + (n + 3)/2 = 0 (mod 3). For each
edge {a,b} € Fnt1, let B* contain (A + 1)/2 copies of the lollipop
{a,a,b} and (X — 1)/2 copies of the lollipop {b,b,a}. For each edge
{a,b} € Fy42, let B* contain (A — 1)/2 copies of the lollipops {a, a, b}
and {b,b,a}, and the remaining loops at vertices in the set {n +
1,...,2n+3}.

(3b) Suppose €(G(B)) + w(G(B)) + (n+3)/2 =1 (mod 3). Let {z;,2n+
3} € Fuy1. For each edge {a,b} € Faoy1 \ {{z1,2n + 3}}, let B*
contain (A + 1)/2 copies of the lollipop {a,a,b} and (A — 1)/2 copies
of the lollipop {b, b, a}. Furthermore, let B* contain (A —1)/2 copies
of the lollipop {z;,z:,2n + 3} and (XA — 3)/2 copies of the lollipop
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{2n + 3,2n 4 3,z;}. In addition, for each edge {a,b} € Fp42, let B*
contain (A —1)/2 copies of the lollipops {a, a, b} and {b,b,a}, and the
remaining loops at vertices in the set {n +1,...,2n + 3}.

(3c) Suppose (G(B))+w(G(B))+(n+3)/2 = 2 (mod 3). Let {z;,2n+3} €
Fuyi, for 1 < i < 2. For each edge {a,b} € Fnoiy \ {{z1,2n + 3}},
let B* contain (A + 1)/2 copies of the lollipop {a, a,b} and (A — 1)/2
copies of the lollipop {b, b, a}. Furthermore, let B* contain (A —1)/2
copies of the lollipop {z1,21,2n + 3} and (X — 3)/2 copies of the
lollipop {2n+3,2n+3,z}. In addition, for each edge {a,b} € Fpy2\
{{z2,2n+3}}, let B* contain (A—1) copies of the lollipops {a, a, b} and
{b,b,a}. Furthermore, let B* contain (A — 1)/2 copies of the lollipop
{z2, z2,2n + 3}, (A — 3)/2 copies of the lollipop {2n + 3,2n + 3, z,},
and the remaining loops at vertices in the set {n+1,...,2n + 3}.

We consider condition (i). Clearly, A(G(B)) < A(n — 1). Furthermore,
dg(B+)() = dg(p)(i), for 1 < i < n, and dg(p-)(j) = 1,3, or 5 (in fact,
only vertex 2n + 3 could possibly have degree 5), forn+1< j < 2n+3
(so w(G(B*)) = w(G(B))). Therefore, A(G(B*)) < An.

Next we consider (ii b). Since ¢(G(B*)) = ¢(G(B)) + (n + 3)/2 in case
(2a), (G(B))+(n+3)/2+2 in case (2b), and ¢(G(B))+(n+3)/2+44 in case
(2c), and since w(G(B*)) = w(G(B)) < n, we have ¢(G(B*))+w(G(B*)) =
0 (mod 3), so W(G(B*)) = w(G(B*)) < n. Therefore, (ii b) is satisfied.

Now we investigate (iii ). We have ¢(G(B*))+W(G(B*)) < A[n?/4])+
(n+3)/24n+4< (A2 +An+2A—n?—4n—15)/2 < 3p(n+2,A - [A/n])
when A > 3 and n > 3 except possibly for the following special cases:
n<1land A = 3; and n = 3 and A = 5. However, direct calculations show
that €(G(B*)) + W(G(B*)) < 3u(n+2,A = [A/n]) for these cases as well,
so (iii c) is satisfied.

Obviously, condition (iv) is satisfied.

Case 4: u=2n+ 3, n is odd, X is even.

Define B* as follows.

(1) B¢ B*.

2) Using Lemma 2.3, partition the the edges of K, 13 on the vertex set
+

{n.+1,...,2n + 3} into the l-factors Fy,..., F,42. For each edge

{a,b} € F,, for 1 < v < n, let B* contain A copies of the triple

{v,a,b}.

(3a) Suppose €(G(B)) + p(G(B)) = 0 (mod 3). For each edge {a,b} € F;,
i € {n+1,n+2}, let B* contain A/2 copies of the lollipop {a, a, b}
and A/2 copies of the lollipop {5, b,a}.
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(3b) Suppose €(G(B)) + p(G(B)) = 1 (mod 3). Let {z1,2n 43} € Fny1.
For each edge {a,b} € Fn41 U Fnya \ {{z1,2n + 3}}, let B* con-
tain A/2 copies of the lollipop {a,a,b} and A/2 copies of the lollipop
{b,b,a}. Furthermore, let B* contain (A — 2)/2 copies of the lollipop
{z1,z1,2n + 3}, (A — 2)/2 copies of the lollipop {2n + 3,2n 4 3,2},
and the remaining loops at vertex 2n + 3.

(3¢) Suppose €(G(B))+p(G(B)) =2 (mod 3). Let {z;,2n+3} € Fayi,i €
{1,2}. For each edge {a, b} € Fot1UFn42\{{21,2n+3}, {22, 2n+3}},
let B* contain A/2 copies of the lollipop {e,a,bd} and A/2 copies of
the lollipop {b, b, a}. Furthermore, let B* contain (A — 2)/2 copies of
the lollipops {;,z;,2n + 3}, (A — 2)/2 copies of the lollipops {2n +
3,2n+3,z;}, for 1 < i < 2, and the remaining loops at vertex 2n+ 3.

We consider condition (i) and recall that A(G(B)) < A(n—1). We have
that dg(g+)(?) = dg()(é), for 1 < i < n, and dg(s+)(j) = 0, 2, or 4, for
n+1<j<2n+3 (in fact, only vertex 2n + 3 could possibly have degree
4 in G(B*)), so p(G(B*)) = p(G(B)) < n. In any event, A(G(B")) < An.

Consider (ii b). Since ¢(G(B*)) = €(G(B)) in case (2a), ¢(G(B)) +2 in
case (2b), and €(G(B)) +4 in case (2c), and since p(G(B*)) = p(G(B)), we
have that ¢(G(B*))+p(G(B*)) = 0 (mod 3), so P(G(B*)) = p(G(B*)) < n.

Now we investigate (iii a). It is easily verified that 3T (n + 2,2) >
2[n?/4] + n+4 > €(G(B*)) + P(G(B*)) for allodd n > 5. If n = 3,
then 2|n?/4| +n + 4 = 11; however ¢(G(B*)) + P(G(B*)) = 0 (mod 3), so
¢(G(B*)) + P(G(B*)) < 9 =3T"*(5,2), so (iii a) is satisfied for all n > 3.

Next we consider (iii b). We have that ¢(G(B*))+P(G(B*)) < A|n?/4]+
n+4< (An?+An+2)—n?—4n—15)/2 < 3p(n+ 2,1 - [A/n]) for all
odd n > 3 and all even A > 4 except possibly for the case when n = 3
and A = 4. However, direct calculations show that ¢(G(B*))+ P(G(B*)) <
3u(n +2,A — [A/n]) in this case as well, so (iii b) is satisfied.

Once again, condition (iv) is satisfied by the construction.

Case 5: n is even.

Suppose (V, B) is a PETS(n,\). Then (V, B) can be embedded in a
maximal PETS(n+1, ) (V4, B:). Since n+1 is odd, we can then apply the
constructions to (V;, B;) to obtain a PETS (V*, B*) in which |V*| = 2n+43
or 2n + 5, where (V*, B*) satisfies all of the appropriate conditions, so the
proof is complete. o]

Proposition 4.2 Suppose (V*, B*) is @ mazimal PETS(u, A), where A >
2andu=2n+1or2n+3 ifnisoddandu=2n+3 oru=2n+51ifn
is even, and suppose (V*, B*) satisfies conditions (i), (ii a), (ii b), (iii a),
(iii b), (iii c), and (iv) of Lemma 4.1. Then (V*, B*) can be embedded in
an ETS(2u +2,)) (V, B).
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Proof: We first note that u is odd in all cases considered. We define
five different types of extended triples:

(a) lollipops of the form {a, a,b}, where a > u+1 and b < u;
(b) loops and lollipops on vertices in the set {u+1,...,2u+2};
(c) triples of the form {a,b,c}, where a,b < u, and ¢ > u +1;
(d) triples of the form {a,b,c}, where a,b,¢ > v+ 1; and

(e) triples of the form {a,b,c}, where ¢ < v and b,e > u + 1.

Type a: First suppose A is even, and let {z,,.. :cp} be the set of p
vertices of odd degree in G(B*). We have that since u is odd and A is
even, each vertex in V must occur in an even number of lollipops in B.
Let B contain lollipops of the form {u + i,u + i yzi}, for 1 < ¢ < p. After
the Type b lollipops are defined, the remaining edges are to be placed in
triples, so the number of such edges must be divisible by 3. Therefore, we
may need to define up to four more lollipops as follows. Let ¢ € Z3 with
¢ = ¢(G(B*)) + p(G(B*)) (mod 3). By (iv) there are at least ¢ vertices of
degree at most An—2 in G(B*), and we can name them p+i, for 1 < i< ¢.
If ¢ > 1, let {{p+i, udp+2i—1,u+p+2i—1}, {p+i, u+p+2i, u+p+2i}|1 <
i < ¢} C B. Now we have defined p+2¢ = P(G(B*)) < n Type a extended
triples.

Now suppose A is odd, and let {z1,...,Z,} be the set of w vertices of
even degree in G(B*). Since u and A are odd, each vertex in V must occur
in an odd number of lollipops in B. Again, a,fter the Type b lollipops are
defined, the remaining edges are to be placed in triples, so the number of
such edges must be divisible by 3. Therefore, we may need to add up to four
more lollipops in much the same manner as before. Again, let ¢ € Z3 with
¢ = ¢(G(B*)) + w(G(B*)) (mod 3). By (iv) there are at least ¢ vertices of
degree at most An—2 in G(B"), and we can name them w+1, for 1 < i < ¢.
fé>1,let {{wt+iutw+2i—lutw+2i—1},{wtiut+w+2iu+
w+ 2z}|1 < i < ¢} C B. Now we have defined w +2¢ = W(G(B*)) < n
Type a extended triples.

Type b: First suppose A = 2 and u = 1 (mod 4). By Lemma 2.13 there
exists an equitable PTS((v +1)/2,2) (S = {u+1,...,u+ (v +1)/2},T)
containing (¢(G(B*)) + P(G(B*)))/3 triples such that the leave of (S, T)
contains a 2-factor consisting of all even cycles except for exactly one 3-
cycle. We can name the vertices in S so that the directed 3-cycle is (u +
1,u+2,u+ (u+ 1)/2), and so that otherwise each directed cycle consists
of arcs of the form (z, n(z)) where n(z) = z+ 1 for each vertex in the cycle
except for the largest. For every a € {u+3,...,u+(u—1)/2}\ {u+3,u+
5,u+7,...,u+p+2¢}, let B include the lolhpop {a,a,n(a)}. In addition:
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if P(G(B*)) = 0 then let {u+1,u+1,u+2}, {u+2,u+2,u+(u+1)/2},and
{u+ (u+1)/2,u+ (u+1)/2,u+1} € B; and, if P(G(B*)) > 2 then let B
contain {u+1,u+1, u+(u+l)/2} and {u+2 u+2 u+(u+1)/2} Because of
the way the vertices in S were named, each vertex in S is contained in two
lollipops (including the Type a lollipops). Next let B contain two lollipops
of the form {u+ (u+3)/2+ 21, u+ (v +3)/2+ 2, u+ (u+3)/2+2i + 1},
for0<i< (u— 1)/4 and let B contain the remaining loops which are
adjacent to vertices in the set {u+1,...,2u+2}.

Next suppose A = 2 and u =3 (mod 4). By Lemma 2.13, there exists an
equitable PTS((u+1)/2,2) (S={uv+1,...,u+ (u+1)/2},T) containing
(e(G(B*)) + P(G(B*)))/3 triples such that the leave of (S, T) contains a
near 2-factor which saturates all vertices in S\ {u + (u+1)/2} and consists
of all even cycles except for exactly one 3-cycle. We can name the vertices
in S so that the directed 3-cycle is (u + 1,u + 2,u + (u — 1)/2) and so
that otherwise each directed cycle consists of arcs of the form (z,n(z))
where n(z) = x + 1 for each vertex in the cycle except for the largest.
For every @ € {u+3,...,u+ (u—3)/2}\ {u+3,u+5,...,u+p+ 24},
let B: include the lollipop {a,a,n(a)}. In addition: if P(G(B*)) = 0 then
let B contain {u + 1,u+ 1,u+ 2}, {v +2,u + 2,u + (v — 1)/2}, and
{u+(u-1)/2,u+(u—1)/2,u+1}; and, if P(G(B*)) > 2 then let B contain
{u+(u—-1)/2,u+(u—1)/2,u+1} and {u+(v—1)/2,u+ (u—1)/2,u+2}.
Again, because of the way in which we named the vertices in S, each vertex
in S\ {u+ (u+1)/2} is contained in two lollipops (including the Type a
lollipops). Next let B contain two lollipops of the form {u + (v +1)/2 +
2i,u+ (u+1)/2+ 24, u+ (u+1)/2+2i+1}, for 0 < i < (u+1)/4, and let
B contain the remaining loops which are incident with vertices in the set
{u+1,...,2u+2}.

Now suppose A > 4, Aiseven, and u = 1 (mod 4). Let Hy,..., Hu_1)/4
be a Hamilton decomposition of K(,41)72 on the vertex set {u+1,...,u+
(u+1)/2} where Hiy—1y74 = (u+1,u+2,...,u+(u+1)/2). For every edge
{a,b} € H;,for 1 < i < (u—1)/4, let B contain [A/((t—1)/2)]—1 copies of
the lollipop {a, a, b}, so every vertex in {u+1, ..., u+(u+1)/2} is contained
in ((u—1)/2)([A/((x = 1)/2)] — 1) Type b lollipops. Next for every edge
{a,b} € H, for 1 < i < ((A—2) — ((u—1)/2){[A/((u - 1)/2)] - 1))/2, let
B contain the lollipop {a a,b}. Finally, for every edge {a,b} € H(y_1) /4\
{{{u+2i—1,u+2i}|1 < i < P/2}}, (where P = P(G(B*))) let {a,a,b} € B.
Now every vertex in the set {u+1,...,u+ P} isin one Type a and A — 1
Type b lollipops, and every vertex in the set {u+P+1,...,u+ (u+1)/2}
is in A Type b lollipops.

Next suppose A > 3, ) is odd, and 4 = 1 (mod 4). Again we let
Hy,...,H-1)/4 be a Hamilton decomposition of K(y41)/2 on the vertex
set {u+1,...,u+ (u+1)/2} where Hy_1)74 = (v + Liu+2,...,u+



(u + 1)/2). For every edge {a,b} € H;, for 1 < i < (u—1)/4, let B
contain [A/((u — 1)/2)] — 1 copies of the lollipop {a, a, b}, so every vertex
in {u+1,...,u4(u+1)/2} is contained in ((u—1)/2)([A/((u—1)/2)] -1)
Type b lolhpops Next for every edge {a,b} € H;, for 1 <i < ((A—-1) -
((u - 1)/2)([/\/((u - 1)/2)] — 1))/2, let B contain the lollipop {a,a,b},
so every vertex in {u -+ 1,...u + (u + 1)/2} is contained in A — 1 Type
b lollipops. Finally, for every edge {u+2i — 1,u + 2i} € H(y_1y/4, for
(W +3)/2 <i < (u+ 1)/4, (where W = W(G(B*))) let B contain the
lollipop {u 4+ 2i — 1,u + 2i — 1, u 4+ 2¢}. Therefore, every vertex in the set
{u+1,...,u4+ W} is contained in A — 1 Type b lollipops and one Type
a lollipop, and every vertex in the set {u+ W + 1,...,u+ (u+1)/2} is
contained in A Type b lollipops.

Now suppose A > 4, Aiseven, and u = 3 (mod 4). Let Hi, ..., Hy_3)/4
be a Hamilton decomposmon of K(y-1)/2 on the vertex set {u + 1,...,u+
(u—1)/2}, where Hy_3)y4 = (u+1,u+2,...,u+(u—1)/2). For every edge
{a,b} € H;, for 1 < i < (u—3)/4, let B contain [A/((u—3)/2)] — 1 copies
of the lollipop {a, a, b}, so every vertex in {u+1,...,u+ (u—1)/2}is in
((u=3)/2)(J M/ ((u— 3)/2 )1-1) Type b lollipops. For every edge {a,b} € H;,
for 1 <i<((A=2)—((u—3)/2)([M/((u—3)/2)] —1))/2, let {a,a,b} € B.
Finally, for every edge {a, b} € H(y_3);4\{{{u+2i—1,u+2i}|1 < i < P/2}},
let {a,a,b} € B. Now every vertex in the set {fut+1,...,(u—-3)/4} is
contained in the appropriate number of Type a and Type b lollipops.

Finally, suppose A > 3, A is odd, and v = 3 (mod 4). Again let
Hy, ..., Hy-3)/4 be a Hamilton decomposition of K(y_1)/2 on the vertex set
{u+1,...,u+(u—1)/2}, where Hy_ay/4 = (u+1,u+2,...,u+(u—-1)/2).
For every edge {a,b} € H;, for 1 < i < (u— 3)/4, let B contain [A/((u —
3)/2)] — 1 copies of the lollipop {a a,b}. Next, for every edge {a, b} € H;,
for 1 <i < ((A=1)=((u—3)/2)([A/((x—3)/2)] —1))/2, let B contain the
lollipop {a,a, b}. Finally, for every edge of the form {u + 24, u + 2i + 1}, for
(W +1)/2< i < (u—3)/4, let B contain {u+ 2i,u+ 2i,u+ 2i + 1}. Now
every vertex in the set {u+1,...,(u—1)/2} is contained in the appropriate
number of Type a and Type b lollipops.A

In addition: if « = 1 (mod 4), let B contain X copies of the lollipops
{{u+2¢4,u+2, u+2i+1}|(u+3)/4 <i< (u+1)/2}; and if u = 3 (mod 4),
let B contain A copies of the lollipops {{u 24, u+ 21, u+2z+1}|(u+1)/4 <
i < (u+1)/2}. In any event, let B contain the remaining loops at vertices
in the set {u+1,...,2u+2}.

Type c: Form a gra,ph H consisting of the edges of G(B*) along with
the Type a lollipop edges (but not the loops) {z;,u + £}, where z; €
{1,...,u}forie {1,...,p+d}orie{l,...,w+¢}and £ € {1,...,p+24}
or L€ {1,...,w+ 2¢} if X is even or odd, respectively. We want to give H
an equalized edge-coloring with (u+1)/2 colors, say u+1,...,u+(u+1)/2,
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where: |Cyut1| > -+ 2 |Cututr)/2l; [Ci(v)| L Aforu+1 < i < u+(u+1)/2
and for all v € V(H); and the Type a lollipop edges in H all receive different
colors, say {z;,u+£} is colored with u+£ for 1 < £ < p+2¢ if X is even and
for 1 < £ < w+2¢if A is odd. Do this by forming a graph H' from H by
contracting vertices u+1,...,u+ P if Ais even and vertices u+1,...,u+W
if A is odd into a single vertex vy. We have dy(7) < A(G(B*))+ 1< Anif
n is odd and dg+ (i) < A(G(B*))+1< A(n+1)ifniseven,for1 <i<u
by (i) and (iv). In addition, dg:(y) < n if n is odd and dp:(y) < n +1
if n is even by (ii a) and (ii b), as du/(y) = P(G(B*)) if X is even and
dui(v) = W(G(B*)) if X is odd. Therefore, H' can be given a proper
equalized A((u+ 1)/2)-edge-coloring by Lemma 2.4 (since (z+1)/2>n+1
if n is odd and (u+ 1)/2 > n + 2 if n is even). Name the color classes
Cij, where1<i<Aand u+1<j <u+(u+ 1)/2, and name the colors
so that: |C; ;| > |Ckyl if and only if (4, j) is lexicographica.lly less than
(k,1); and if e; and ey are any two edges incident with v in color classes
Ci;j and Cy ¢ respectively, then j # £. Then letting Cpny; = U, Ci j for
u+1<j <u+(u+1)/2 be the color classes of an equalized edge-coloring
of H' produces the desired (n + 1)-edge-coloring of H. For each edge {3, j}
in G(B*) colored k, let {i,j,k} € B.

Type d: Consider the edge-coloring of H just obtained and let ¢,
denote the number of edges of H colored z. First assume A = 2. Let
(8 = {u+1,...,u+ (u+1)/2},T') be an equitable PSTS((u + 1)/2,2)
and let |T'| = (e(G(B*)) + P(G(B*)))/3; by the definition of P(G(B*)),
|T’| is an integer. By Lemma 2.13, such a PSTS exists, since by (iii a),
|T'| < T*((u + 1)/2,2). Name the symbols so that d; = r(z), the number
of triples in 7" which contain symbol z, for u +1 < z < u+ (u + 1)/2.
Since the leave of (S, T”) contains a (near) 2-factor from which the Type b
lollipops were obtained, no edge of the form {a, b} will occur in too many
extended triples up to this point. Let TV C B.

Next assume A > 3. If (u+1)/2isodd, let (S={u+1,...,u+ (uv+
1)/2},T") be an equitable PSTS((u + 1)/2,A — [A/((z — 1)/2)]) and if
(u+1)/2 is even, let (S ={u+1,...,u+ (u+1)/2},7") be an equitable
PSTS((u+1)/2,A—= [A/((u— 3)/2)]). Let

|T’|={ (e(G(B*)) + P(G(B*)))/3 ,if Xis even
(e(G(B*)) + W(G(B*)))/3 ,if A is odd.

Such a PSTS exists by Lemma 2.9. Name the symbols so that §, = r(z),
the number of triples in 7 which contain symbol z, for u +1 < z <
u + (u + 1)/2. In addition, since any edge of the form {a,b}, for u+ 1 <
a,b < u+(u+1)/2,is in at most [A/((u—1)/2)] Type b lollipops if (u+1)/2
is odd and in at most [A/((v — 3)/2)] Type b lollipops if (u+1)/2 is even,
then no edge of the form {a, b}, for u+1 < a,b < u+ (v +1)/2 will be in
too many extended triples in B up to'this point. Let 7" C B.
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Type e: We use Theorems 2.6 and 2.7 to place the remaining edges
in triples. We first form a partial array L{oo) or order (u + 1)/2 and
multiplicity A on the symbols 1, ... ;u as follows:

(1) place symbol j < u in cell (¢,%) if an edge colored u + ¢ is incident
with vertex j in H,

(2) for1 <i<j<(u+1)/2,if {i +u,j+ u} is an edge of k; triples in
T’ and a lollipop edge of k; Type b lollipops, then fill cells (%, j) and
(4,7) with symbol co ky + k2 times, and

(3) for 1 < i< j<(u+1)/2,fill cells (z,4) and (4,7) greedily with A —
(k1 + k2) symbols in {1,...,u}, preserving symmetry and preserving
the property that each symbol occurs at most A times in each row
and at most A times in each column.

Let L be formed from L(oco) by deleting all the co symbols. Then L
is a symmetric quasi-latin square of order (u + 1)/2 and multiplicity A on
the symbols in {1,...,u}. In order to apply Theorems 2.6 and 2.7 (with
r = (u+1)/2 and ¢ = u in both cases), we need to check that L satisfies
the appropriate conditions. We first show that the number of times each
symbol occurs on the main diagonal of L is congruent to A (mod 2). We
consider the cases where dg(p-)(z) is odd and even in turn.

Suppose dg(g+)(z) = 2m+ 1. Since = has odd degree in G(B*), then H
contains a lollipop edge of Type a incident with & colored with some color
o only if A is even. Therefore, symbol z occurs once in a cell of the form
(¢ — u, — u). In any event, z is contained in 2m + 1 triples of the form
{z,y, 8}, where 8 is the color of an edge {z,y} in H, so symbol z is placed
2m+1 times in cells of the form (8 — u, # — u). Therefore, symbol z occurs
an even (odd) number of times on the main diagonal of L if A is even (odd).

Now suppose dg(p.) = 2m. Since z has even degree in G(B*), H
contains a lollipop edge of Type a incident with z colored with some color
o only if A is odd. Therefore, if A is odd, symbol x occurs in a cell of the
form (o — u,@ — u). In any event, ¢ is contained in 2m triples of the form
{z,y, 8} where 8 is the color of an edge {z,y} in H, so symbol z is placed
2m times in cells of the form (8 — u, # — u). Therefore, symbol z occurs an
even (odd) number of times on the main diagonal of L if X is even (odd).

In either case, the number of times that symbol z occurs on the main
diagonal of L is congruent to A (mod 2).

We now check that L contains the appropriate number of symbols in
each row as required by Theorems 2.6 and 2.7, considering the cases (u +
1)/2 is odd or even in turn.

Suppose (u + 1)/2 is odd. Then, for 1 < i < (u+1)/2, row i of L
contains A((u — 3)/2) symbols. Since r(u + £) is the number of triples in
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T’ containing symbol u + 4, from (1) the number of symbols in cell (3, )
is 2r(u + 1) — 1 if symbol i occurs in a Type a lollipop and 2r(u + ),
otherwise. From (2) and (3), the number of times symbol oo occurs in row
i of L(0o) is 2r(u+ ) + (A — 1) if vertex 7 is contained in a Type a lollipop
and 2r(u + %) + A, otherwise. Hence, from (1), (2), and (3), we get that
M(u=1)/2) +2r(u+1) - 1= Q2r(u+) + (A-1)) = M(u-1)/2) - A =
A((u — 3)/2) symbols are placed in row i of L if symbol u + i is contained
in a Type a lollipop; otherwise, A((u —1)/2) + 2r(u+1i) — (2r(u+i) +A) =
A({w = 1)/2) = A = A((u — 3)/2) symbols are placed in row i of L, so each
row of L contains A((u — 3)/2) symbols if (u + 1)/2 is odd.

Now suppose (u+1)/2 is even. Then u = 3 (mod 4). The same argument
holds for the first (u—1)/2 rows of L, but in this case we must have that row
(u+1)/2 of L contains A((u—1)/2) symbols. However, since u = 3 (mod 4),
symbol (u+1)/2 occurs in A Type b lollipops with vertex (u+3)/2, and these
lollipops contribute no co symbols to row (u + 1)/2 of L(co). However, as
before, row (u+1)/2 of L(c0) contains symbol co 2r(u+(u+1)/2) times and
cell ((u+1)/2, (u+1)/2) of L contains 2r(u+ (u+1)/2) symbols. Therefore,
row (u+1)/2 of L contains A((u—1)/2)—2r(u+(u+1)/2)+2r(u+(u+1)/2) =
A((u — 1)/2) symbols.

We now have the following;:

(1) Np(?) = A (mod 2), for 1 < i<y

(2) L is symmetric;

(3) Np(3) > Mu+1—(u+2))>—-) forl1 <i<u;and
)

(42) each row of L contains A((u—3)/2) symbols from {1, ..., u} if (u+1)/2
is odd, or

(4b) row j (1 < j < (u —1)/2) of L contains A({(u — 3)/2) symbols, and
row (u + 1)/2 contains A((u — 1)/2) symbols if (u + 1)/2 is even.

Therefore, by Theorems 2.6 and 2.7, L can be embedded in the top left
corner of a symmetric quasi-latin square L’ of order u + 2 on the symbols
1,...,u such that cells (7, %), for (u+ 3)/2 < i < u+ 2 are empty and cells
((u+2(i+2)+1)/2, (u+2(i4+2)+3)/2) and ((u+2(i+2)+3)/2, (v +2(i +
z) + 1)/2) are empty, where £ = (u+1)/2 (mod 2), and 0 < i < (u+1)/2.
Form triples using L’: if symbol w occurs in cells (y, 2) and (z,y), y # z,
then let {w,u+y,u+ z} € B. ) )

This completes the definition of B, so it now remains to show that (V, B)
is an ETS(2u + 2, A); that is, we must show that every pair of points of V
occurs in exactly A extended triples.

Consider edges of the form {a, b}, a,b < u. Some of these edges already
occurred in extended triples in B*. Suppose {a,b} occurred in o extended
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triples in B*. Then {a, b} occurred as an edge A — « times in G(B*), and
was therefore included in A — o Type c triples. Since (V*, B*) was taken
to be maximal, all loops incident with vertices a and b already occurred in
B*. Therefore, every edge of the form {a, b} occurs in exactly A extended
triples in B.

Now consider edges of the form {a, b}, where a < v and b > u+1. Since
every symbol 1, ..., u occurs exactly A times in each row of L', {a, b} occurs
in extended triples of Type a or Type c if a is in a diagonal cell of L’ and
of Type e if a is in an off-diagonal cell of L’. In any event, {a, b} occurs in
X extended triples of B.

Finally, consider edges of the form {a,b} where a,b > u + 1. Each cell
(a—u,b—u), a # b, in L' contains # symbolsfrom 1,...,u, where 0 < 8 < A.
For every symbol in 1, ..., u found in cell (¢ — u,b— u), {a, b} is in a Type
e triple; the remaining A — 8 edges joining z to y are contained in either
Type b lollipops or Type d triples (corresponding to the A Type b lollipops
if (z,y) is a near-diagonal cell of L’ outside L, and to the A — 8 copies of co
in cell (z,y) of L(co) otherwise). In any event, {a, b} is contained in exactly
A extended triples, and all loops incident with vertices v +1,...,2u+2 are
contained in A extended triples of B.

Therefore, every edge of the form {a,b}, for 1 < a,b < 2u+2,isin
exactly A extended triples of B, and the proof is complete. a

This leads to the following theorem.

Theorem 4.3 Any partial extended triple system (V, B) of order n and
indez A > 2 can be embedded in an extended triple system (V, B) of order
v and index X for allv>4n+8, v =0 (mod 4).

Proof: First suppose n € {1,2}. Clearly, any PETS(1,)) can be
embedded in an ET'S(v,A) for all v > 4n + 4, v = 0 (mod 4) since this
corresponds to the existence of such ETS(v,A)s. If n = 2, consider a
PETS(2,)) with ¢(G(B)) = A — z. We can think of this PETS(2,)) as
(A—z) PETS(2,1)s and z ET'S(2,1)s. By [12] each of the PETS(2, 1)s and
ETS(2,1)s can be embedded in an ET'S(v, 1) for all v > 4n+4, v = 0 (mod
4). If we put these A ETS(v, 1)s together, we have the desired ETS(v, A).

Now suppose n > 3 and k > 0. Embed (V, B) in a maximal PETS(n +
k,A) (1, B1). If n+k is odd, then by Lemma 4.1 (V;, B;) can be embedded
ina PETS(2(n+k)+1,)) or a PETS(2(n+k)+3, \) satisfying conditions
(i)-(iv). Also, if n+k is even, then by Lemma 4.1 (V;, By) can be embedded
ina PETS(2(n+k)+3,)) or a PETS(2(n+k)+5, A) satisfying conditions
(1)=(iv). Ineither case, these PETSs can be embedded in an ETS(4(n+k)+
4,}) or an ETS(4(n+k)+8,A) if n+k is odd and in an ET'S(4(n+k)+8, A)
or an ETS(4(n+ k) + 12, A) if n+ k is even. Therefore, we have the desired
result and the proof is complete. 0O

We now have the following corollary.
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Corollary 4.4 Any partial extended triple system of order n and indez
A > 2 can be embedded in an extended triple system of order v and index A
for all even v > 4n + 6.

Proof: This follows directly from Theorem 3.3 and Theorem 4.3. 0O
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