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Abstract A critical set in a latin square is a set of entries in a latin square
which can be embedded in only one latin square. Also, if any element of the
critical set is deleted, the remaining set can be embedded in more than one latin
square. A critical set is strong if the embedding latin square is particularly easy
to find because the remaining squares of the latin square are “forced” one at a
time. A semi-strong critical set is a generalization of a strong critical set. It is
proved that the size of the smallest strong or semi-strong critical set of a latin

square of order n is |_n2/4J . An example of a critical set that is not strong or
semi-strong is also displayed. It is also proved that the smallest critical set of a
latin square of order 6 is 9.

1. Introduction

This paper deals with critical sets in latin squares. A latin square, L, of
order n is a n x n array with elements chosen from a set N, of size n, such that
each element of N occurs precisely once in each row and column. For example,
let us index the rows and columns of the array by the set {0,1,2,...,n-1} . If the
integer i+j (modulo n) is placed in position (i,j) of the array, then the result is a
latin square, called a back circulant latin square of order n. For convenience, we
will sometimes refer to the latin square, L, as a set of ordered triples, (ij;k)
where this notation means that symbol k is in row i and column j. The ordered
triple is referred to as the entry of the latin square.

A partial latin square, P, of order n is an n x n array with the elements
chosen from a set N of size n, such that each element of N occurs at most once
in each row and column. So P may contain a number of empty cells. Note that
P does not have to complete to or embed into a latin square. The partial latin
square may be referred to as a set of triples where only the triples corresponding
to non-empty squares are listed. A partial latin square, P, of order n where
P={(G,jk)lijke{O0,1,..n-1}},is said to be uniquely completable if there
is only one latin square of order n which has symbol k in position (i,j) for each
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(i,j;k) € P. A critical set in a latin square, L, is a partial latin square which has
unique completion to L and all proper subsets of P complete to at least two
distinct latin squares. As an example, consider the critical set { (0,0;0), (0,1;1),
(1,0;1), (3,4;2), (4,3;2), (4,4;3)} in the latin square of order 5 where the (i,j)th
term is i+j modulo 5. Since it is much easier to comprehend these sets as two
dimensional objects, they are presented in Figure 1. The - indicates an empty
square.

01234 0 - - -
12340 1 - - -
23401  -----
34012 ----2
40123 ---23

Figure 1 A latin square (left) and a critical set in that latin square (right)

In the late 70’s, Curran and van Rees [4] and Smetaniuk [10] introduced
critical sets as objects of curiosity. In the first half of the 80’s, Stinson and van
Rees [11] did some basic research on sizes of critical sets and Colbourn,
Colbourn and Stinson [1] proved that the computational complexity of
recognizing whether a partial Latin square has a unique completion is NP-
complete. In the 90’s, Seberry [9] showed that critical sets have applications in
agricultural research and in cryptography. This stimulated a series of papers:
Cooper, Donovan and Seberry[2], Donovan, Cooper, Nott and Seberry[6],
Cooper, McDonough and Mavron[3] and Keedwell[7].

Define scs(n) to be the cardinality of the smallest critical set in any latin
square of order n. Much research has been done on this function but little is
known about it. Curran and van Rees [4] proved the obvious bound that scs(n)2
n-1. This was easily improved by Cooper, Donovan and Seberry to scs(n) 2 n
forn 2 4. With more work, Cooper, McDonough and Mavron proved that
scs(n) 2 n+l for n = 5. The upper bound improves even more slowly. Curran

and van Rees showed that scs(n) < | n2/4 J by showing that a set isotopic to
the following set P was or contained a critical set in the back circulant latin
square of order n: P ={ (i,j;i+j)!i=0,..., L (n-2)/2 J and j=0,...,|. (n-2)/2 J -i}
U { Ggii+j) 1is +2)2 1 ,...n-1 and j= 3n)2 ] -i),...n-1} . When n is
even, Curran and Van Rees showed that P actually was a critical set. Cooper,
Donovan and Seberry [2] showed that for odd n, the set P was actually a critical
set.

This leaves a big gap between the upper and lower bounds. We record this
in the following theorem.

Theorem 1.1. n+l < scs(n) < Ln2/4 | forn> 5.
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2. Strong and Semi-Strong Critical Sets

In the paper by Donovan, Cooper, Nott and Seberry [6], they defined an
object easier to deal with than a critical set. Let L be a latin square of order n,
based on the set N. Let L contain a critical set A. They defined the set A to be

a strong critical set if there exists a set {Py,..P,} of m=n2-1Al partial latin
squares, of order n, which satisfy the following properties:
DLD Py D P12 Py Py =A;
2)foranyi, 1< i< m-1,Pju{(rcise) } =Pjyg
and P; U { (rj,ci 5 €) } is not a partial latin square for any e e N\ { ¢;} .

For example, the critical set of the back circulant latin square previously
displayed is a strong critical set. (rj,cj ; €1) must be (0,4 ; 4) because row 1 of

the critical set contains the elements 0 and 1 and column 4 contains the elements
2 and 3 so the entry in position (0,4) is forced to be (0,4 ; 4). It is trivial to
check that at any stage of the procedure there is at least one entry that is forced in
P; in exactly this way. This can be expressed accurately in the following lemma.

Let E; be the set of elements in row r; and column c; in P;.
Lemma 2.2 |Ej| = n-1.

Proof. The only way P; U {(rj.c; ; €)} , where e e N'\ { ¢;} , cannot be a partial
latin square is if row r; or column c; of P; already contain the element e. Q

It should be noted that there may be and usually are many sequences of P;

for a specific strong critical set. The critical sets of Curran and van Rees,
mentioned previously, are strong critical sets. Indeed, all critical sets displayed
in the literature are strong critical sets. Cooper, Donovan and Seberry [2] go on
to prove the following lemma.

Lemma 2.3 Let A be a strong critical set in a latin square L of order n, then
Al 2 (4n-6)/3.

This lemma can be improved by the following theorem.

Theorem 2.4 Let A be a strong critical set in a latin square L of order n, then
IA12 L n24].

75



Proof. From the sequence Py, P, ... P, pick a subsequence P(i’l)’ P(j,2)a
PGLn2ly where (j,1) is 1 and (j,2) is the first subscript i such that r; # G.1)
and ¢; # <G, 1)- In gereral, (j,t) is the first subscript i such that r; # rG,1)
1(j,2)» - OF [(j,t-1) and € # C(j,1)» €(j,2)> - OF C(j,t-1)- If there is no such (j.t)
because all the remaining squares are filled in then Al > Ln2/4] . So let us
assume that the (j,t)'s all exist. Since IE(j 1)} = n-1, A must contain at least n-1
entries in the union of entries from row IG,1) and column <G, 1y Now IE(j’z)l =
n-1. Of these n-1 elements, at least n-1-2 of them are not in row 1G,1) of in
column <G, 1) So A contains at least (n-1)+(n-3) entries from row 1(,1)> oW
I(j,2)> column c(j 1y and column c(j 7). Also, IE¢ yhl = n-1.  Of these n-1
elements, n-1-2(t-1) of them are not in rows r(j 1), 1(j2)---F(jt-1) Of in
columns C(j, 1) €(j,2)r-C(jut-1)- Therefore A contains at least (n-1) + (n-3) +
-+ (n-1- 2(t-1)) entries in rows r(j 1), 1(j,2)» --- I(j,t) and columns c(j, 1), ¢(j 2)»
. €(j,t)- If we consider all the Ej yy's, we obtain IAl > [n2/4]. Q

This allows us to end the debate on the size of the smallest strong critical
set.

Corollary 2.5 The cardinality of the smallest strong critical set of a latin
square of order n isL n2/4 .

Proof. Note that | n2/4 | is the size of the Curran and van Rees strong
critical sets and compare with previous theorem. a

The following is a critical set that is not a strong critical set and the latin
square which is its unique completion.

- 4 - - 1234635
3 - -4 312654

- -5- - 231546
- 4 - -1 546231
-6 -2 - 465123
6 - - -1- 654312

It is easy to check that the set on the left has unique completion and each
element is needed for unique completion. However, if each empty square of the
partial latin square on the left is checked, it will be noted that there are at least
two choices for every element. This means that this critical set is not strong.
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However, if we take the conjugate of this latin square and the conjugate of the
critical set where the conjugate takes the triple (a,b;c) and replaces it with (b,c;a),
we see that the conjugate of the critical square is a strong critical set for the
conjugate of the latin square.

This can happen because, as is pointed out in Colbourn, Colbourn &
Stinson[1], there are three ways that an entry can be forced. One can look at the
row and column to find that a particular element has to go into the intersection
of the row and column as is used in the definition of strong critical set.
However, one can look at a row and a particular element to see which column
the element must go into in that row i.e. there are a total of n-1 distinct columns
in that row that are either filled or that column already contains that particular
element. Similarly, one can use a column and an element to find that there is
only one row in that column that could contain that element. This leads us to
the following definition. Let L be a latin square of order n, based on the set N.
Let L contain a critical set A. Then define the set A to be a semi-strong critical

set if there exists a set {Py,..P,} of m=n2-/Al partial latin squares, of order n,
which satisfies the following properties:

DL P> Py P Py=A;

2)foranyi, 1 <i<m-1, P; U {(rj.ci; €))} = Py, such that one of P; U
{(rj,ci €)} or Py L {(rj,c i)} or P; U {(r,c;; €;)} is not a partial latin square for
anyeeN\{e}orceN\{cj}orre N\ { r;} , respectively. We will let Ci
be the set of columns in row r; of P; that are either non-empty or if empty that
column contains ej. Let R; be the set of rows in column c; of P; that are either
non-empty or if empty that row contains e;. It is easy to see that Lemma 2.2
can be generalized to the following.

Lemma 2.6 Either IE;l = n-1 or IRl = n-1 or ICjl = n-1.

We now generalize Theorem 2.4 to semi-strong critical sets using the same
techniques as before.

Theorem 2.7 Let A be a semi-strong critical set in a latin square L of order n,
then 1Al > [n2/4] .

Proof. Consider the sequence P, Py, ... Pp,. Let (rj,c; 5 e;) be forced by
consideration of X; where X; is one of R;, C;j or E;. If X; can be forced in more
than one way, let X; be one of R;, C; or E; at random but specified for this
argument. From the sequence Py, Py, ... P, pick a subsequence PG,1) P2y
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- Pln2] y where (j,1) is 1 and (j,2) is the first subscript i such that
I # 1(5,1) Ci # €(j,1) and e #e(j 1). In general, (j,t) is the first subscript i such
that r; # TG, 1) 7G2) - OT T(jt-1) ci# C(j,1) €(,2) -+ OF €(j,t-1) ore; # eG,1y
€(j,2) - O €(j,t-1)- Suppose that there is no such (j,t). Then there are (n-1) +

(n-3)+ ... +(n—1-2(t—1)) elements counted so far in A. There must be (n-t)(n-t)-
t(n-t) entries in the remaining rows and columns of P(j,t) which are not in row

r;, or column c; or have element ¢; where i € { (j,1), (j,2), -.. (.t-1) }. Therefore
IAL > t(n+1-20)+1(t-1)+(n-2t)(n-t) or 1Al > (n-)2. Since t < Ln/2], this would
imply the theorem so let us assume that (j,t) always exists.

At the p'th step, IX(j pyl = n-1. Of the X(j 1) X(j,2) - X(j,p-1) let u of
them be R;, let v of them be C; and let w of them be E;. Clearly u+v+w=2(p-1).
That means that the entry (r(j,p)'c(j,p) ; e(i,P)) does not occur in v+w specific
rows, u+w specific columns or use u+v specific elements. Let X(i,P) be a
R(j,p) (the proof for C(j,p) and E(j,p) are similar). So IRG,p)I =n-1. The entry
added to the partial latin square P(j 1) is ("(j,p)v G.p) ° e(j,p))- This entry is
forced because ("(j,p)’ CG,P)) is the only square (r, c(i,P)) in column <(i.p) of
P(i,P'l) that is empty and does not have element €G.p) in rowr. Now, of the
(n-1) squares in column <G.p) in P(i,p-l)' at most u+v are filled with elements
€(j,s) S < p-1; at most v+w are filled in at square (r(j,s)'c(i,p))* s £ p-1; at most
u+Ww are empty squares (r,cG’p)), where row r contains an element €(j,s)y S <p-l.

So there must be at least n-1-2(u+v+w) = n-1-2(p-1) entries in A, the critical set,
either as entries (r,c(i’p) ; e(i,s)) or entries (r,c ; e(i,P)) where square (r,c(i,p)) is
empty.

Considering this for all X;, gives IAl = (n-1)+(n-3)+...(+1 or 0). Therefore

IAl2 Ln2/4]. Q

Since the critical sets of Curran and van Rees are semi-strong we can give
the following corollary.

Corollary 2.8 The cardinality of the smallest semi-strong critical set of a
latin square of order n is LnZ/4).

Colbourn, Colbourn and Stinson [1] claimed to display a critical set that
could not be completed by forcing. Unfortunately, there are four typographical
errors in the paper. The first three are mis-typed entries in the critical set and the
fourth is that the set displayed is not a critical set but it is a set (when suitably
corrected) with unique completion that can not be forced. Figure 2 is the set
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with unique completion from Colbourn et al. and the latin square it completes
to: (t=ten, e=eleven and v=zero). The unique completion set is in plain type
(underlined or not) and the latin square.completion is in bold type.

e 8 2 3 4 7 9 t v 5 1 s
£ 4 9 1 8 6 e v 3 2 171 5
9 e 5 t 2 v 7 3 8 6 4 1
3 £t 2 8 e 5 v 4 9 171 6 2
7 2 6 e 1 9 4 5 t v 8 3
¥y 6 e 4 9 3 2 8 5 1 t 1
8 9 7 6 5 1 3 e 2 4 v t
2 3 v 7 t 8 1 6 e 9 5 4
3 v 4 2 6 ¢ 8 1 7 ¢t 3 9
4 7 £ 5 3 2 6 9 1 8 e v
1 5 3 ¥ 7 4 ¢t 2 6 e 9 8
6 L 8 9 v t 5 71 4 3 2 e
Figure 2

In order to get a critical set, we deleted elements from their unique
completion set until the set was a critical set. The critical set is the set of
underlined elements. It has cardinality 63. Note that the underlined set forces
several squares of the latin square to be filled in just one way. But the elements
shown in bold type are not forced by the elements shown in plain type, and
therefore are also not forced by the underlined elements. Hence the underlined set
is a critical set that is not strong or semi-strong. This is the first such example
in the literature. It was checked for minimality by computer.

3. Determination of scs(6)

The previously known values of scs(n), the cardinality of the smallest
critical set in a latin square of order n, are shown in Table 3.1.

scs(n) 0 1 2 4 6 7-9* 8-12
[* Here we will show that scs(6)=9 ]
Table 3.1

By a combination of analytical results and exhaustive computer searches, we
have been able to verify that scs(6)=9. There are twelve main classes of latin
squares of order 6 listed in Denes and Keedwell [5). Donovan, Cooper, Nott, and
Seberry [6] have shown that it is sufficient to determine the size of the smallest
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critical set in one latin square from each of these classes.
We require the following two lemmas.

Lemma 3.1 If a latin square L contains a latin subsquare S of order n = 2, then
any critical set C of L must contain at least scs(n) elements from S.

Proof. If there are fewer than scs(n) elements from S in C, then there will be
more than one way to complete the subsquare S, leading to more than one
possible completion of L itself, which contradicts the assertion that C is a
critical set.

Corollary 3.2 If a latin square L contains a latin subsquare S of order 2, then
any critical set C of L must contain at least one element from S.

Corollary 3.3 If a latin square L contains a latin subsquare S of order 3, then
any critical set C of L must contain at least two elements from S (and these
elements must force a unique completion of S).

Classes 6.1.1, 6.2.1, 6.4.1, 6.5.1, and 6.10.1 (as listed in [5]) of latin
squares of order 6 each contain 9 disjoint latin subsquares of order 2, which
immediately gives scs(6) = 9 for these classes by Corollary 3.2.

UL W
mids ok Wi
s oW
(PSRN SR ) e I -
P WwWihod U
NP W0

Latin square 6.9.1

It can be proven that latin square 6.9.1 (above) has no critical sets with
fewer than 9 elements as follows. Assume that latin square 6.9.1 has 8 elements
in its critical set. Since the square is made up of 4 disjoint 3x3 latin subsquares,
each of these subsquares must contain exactly scs(3)=2 elements in the critical
set and those two elements must be a critical set for the subsquare (by Corollary
3.3). Further, this square contains 9 2x2 latin subsquares all involving the
element 4. But we can have at most one 4 from each 3x3 subsquare in any
crtitical set since a critical set of size 2 in a 3x3 subsquare must consist of 2
distinct elements in different rows and columns. No matter which of the 9 pairs
of 4's we pick, say (1,4) and (4,1), we are then forced to pick elements in the
other 3x3 subsquares that will give a contradiction. For example, by looking at
2x2 subsquares, we must pick
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one of (2,2) and (5,5) one of (3,2) and (5,6)

one of (2,3) and (6,5) one of (3,3) and (6,6)
No choice gives critical sets for the two subsquares. Hence latin square 6.9.1
must have a critical set of size at least 9.

In order to complete the determination that scs(6)=9, a computer program
was used to rule out the existence of smaller critical sets in the latin squares
from the remaining classes (6.3.1, 6.6.1, 6.7.1, 6.8.1, 6.11.1, and 6.12.1) by
using exhaustive backtrack search techniques. A program was written which will
take a particular latin square L, and search for all possible critical sets S of a
given size K in that latin square. (It verifies that the set S may be embedded
only in the given square, but does not check to that no subsets of S also have
this property. This is easily verified, and in most cases it is known in advance.)

The program operates by generating all possible candidate sets C of size K
which satisfy the following conditions:
1. IfSisa 2x2 latin subsquare of L, then at least one element of S§ must
appear in C.
2. C must contain elements from at least N-1 of the rows of L, at least
N-1 of the columns of L, and at least N-1 distinct elements, where N is
the size of L.
Each candidate is then tested to see if it may be embedded in any latin square
other than L. If not, then it is a critical set and is written.

In order to take advantage of the automorphisms of L, and also to provide
checkpoints and progress indicators, the program provides a mechanism for
manually directing the higher levels of the search. The user may specify a file
containing a list of individual cases, and each case may force certain elements to
be included in C, and also prevent other elements from being included in C. A
specification of the form “U r ¢” will guarantee that L[r,c] is included (Used) in
C, and a specification of the form “R r ¢” will prevent (Reject) L[r,c] from being
included in C. Each line in the file is treated as a separate case and may contain
any number of such specifications.

For example, in the search for critical sets in the following latin square L
(6.11.1 in Denes and Keedwell):

123456
214563
342615
456231
561324
6 35142
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it was determined that L[1,1] and L[2,2] are in the same orbit of the
automorphism group, as are L[1,2] and L[2,1], by using the Groups and Graphs
program written by W.L.Kocay [8]. Since one of these four elements must be
chosen (they form a 2x2 subsquare of L), only 2 cases need be considered: 1)
L[1,1] is used in C; 2) Neither L[1,1] nor L[2,2] are used in C, but L[1,2] is
used in C. Note that case 1) does not preclude L[2,2] from also being included in
C, nor does case 2) preclude L{2,1] from also being included in C. Since without
direction the program would try to use all four elements of this subsquare, the
specification of these two cases immediately reduces the running time of the
program by half. Each of these two cases may now be treated similarly. For
example, using case 1), once L[1,1] has been chosen, there is still an order 8
automorphism in L, and L{3,3] and L[4,4] are in the same orbit, as are L[3,4]
and L[4,3]. These elements form another 2x2 latin subsquare, and so the same
technique may be applied again. After a third application of this technique in
every subcase, the search has been pruned from 64 cases to only 13. Here is the
complete file of cases that was used in the search for critical sets in the above
latin square:

o
(8]
'
(=]
[04]
v

U6 4

2o I - - I~ - B~ I B o S o B o B oo Y o o ] o
PR R PR R RERRRRRRSR
B RRERBRRRRRR R R
W™ ™™O™ ™M g aa
DNV NODNWWWWWWW
DN NDNWWWWWWW
cccocccw®nxmwwC
PR REPRRME SR,
ISR S IO SO X O N
mmmccoQcocoaacm®
WWWwWwWwWwwwwwnsn
WWWwWwwwads bow
W m ™ a oG
N N N N R N N N N N

o

]
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(S, I5 T B« o))

R66US56
R66R56U6S5
Similar techniques were used to reduce the size of the search for critical sets
in the latin squares 6.3.1, 6.6.1, 6.7.1, 6.11.1 (above), and 6.12.1. In each of
these cases, no critical sets of size 7 or 8 were found. The program which was
used (written in Pascal), together with all of the data files, files of case
specifiers, and files of results, are available for inspection at the ftp site
ftp.cs.umanitoba.ca in the directory pub/bate/critset (The URL is

ftp://ftp.cs.umanitoba.ca/pub/bate/critset/).
We now have

Theorem 3.4 scs(6) = 9.
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Since there is now more known about scs(n), it is an appropriate time for
the following conjecture.

Conjecture 3.5 scs(n) = L n2a].
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