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Abstract

By Vizing’s theorem, the chromatic index x'(G) of a simple graph
G satisfies A(G) < x'(G) < A(G) + 1; if x'(G) = A(G), then G is
class 1, otherwise G is class 2, A graph G is called critical edge-
chromatic graph if G is connected, class 2 and x'(H) < x'(G) for all
proper subgraphs H of G. We give new lower bounds for the size of
A-critical edge-chromatic graphs, for A > 9.

1 Introduction

All graphs we consider are undirected and have neither loops nor multiple
edges. We denote the vertex set of a graph G by V(G) and the edge set
by E(G). The order of G is |V(G)| and the size of G is |E(G)|. We denote
the degree of a vertex v in G by dg(v) and the maximum degree of G by
A(G). A vertex of maximum degree is called a major vertex; otherwise it
is a minor vertex. The number of vertices in G of degree k is denoted by
g = n(G). For disjoint subsets 4, B of V(G), E(A, B) denotes the set
of edges one end of which is in A and the other end of which is in B. We
write e(A, B) for |E(A, B)| and e(v, B) for e({v}, B). A planar graph is a
graph which can be embedded in the plane in such a way that no two edges
intersect geometrically except at a vertex to which they are both incident.
If a connected graph G is embedded in the plane in this way, it is called
a plane graph. The points of the plane not on G are partitioned into a
number of connected regions. The closures of these regions are called the
faces of G and the number of such faces is denoted by f. Our notation and
terminology generally follows [1].

The chromatic index x'(G) of a graph G is the minimum number of colors
required to color the edges of G so that no two adjacent edges receive the
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same color. Vizing (8] showed that A(G) < x/(G) < A(G) + 1. A graph
G is of class 1 provided that x'(G) = A(G), and G is of class 2 provided
that x'(G) = A(G) + 1. We say G is A-critical if and only if A(G) = A, G
is connected, G is of class 2 and x'(G — e) < x'(G) for every edge e of G.
For a A-critical graph G of order n and size m, Vizing [8] conjectured that
m > 3[(A — 1)n + 3)]. Jakobsen [6] showed that m > Zn for A = 3, thus
verifying the conjecture. Fiorini and Wilson [4] showed that

gn if A =4,
2n ifA =6,

thus verifying the conjecture for A = 4. Yap [10] further improved these
results by showing

m>

2n+1 if A =35,

é(9n+ 1) if A=,
Kayathri [7] improved this results of Yap by establishing the nonexistence
of a 5-critical graph of size 2n+1, thus verifying the conjecture. In general,
the best bounds are due to Fiorini [3] who showed that

ms { JA+Dn if Asodd,
= | #(A+2)n  if Aiseven.

Recently, Clark and Haile [2] further improved the bounds of Yap [10] and
Fiorini [3] by showing that

m2 f(A)n
where
% for 6<ALS,
= 3_Al-i;2 for 13 <A K16,

38430 for 17< A <21

In this paper we give new lower bounds that will improve all known lower
bounds on the size of A-critical graphs for A > 9.

2 Preliminary Results

We give here some further notations and preliminary results we use, some
of which are well-known.
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Theorem 2.1 [4,8] Let G be a A-critical graph and let vw € E(G) where
de(v) = k. Then

(i) if k < A then w is adjacent to at least A — k + 1 major vertices of G.
(it) if k = A then w is adjacent to at least two magor vertices of G. O
Theorem 2.1 is known as the Vizing Adjacency Lemma (VAL).

Theorem 2.2 [4,11] A critical graph contains no cut vertex. Moreover,
there are no regular A-critical graphs for A > 3. o
We now fix a A-critical graph G with A > 3. Let
Ap = {U (S V(G) : dG('v) = k} for 2 <k < A; |Akl = Ng.
Ay = {'U €Ay e('v,AA) = l} for2<I<k<A-1; IAkll = Q.
k

For 2 <k <A -1, VAL gives Ea"’ = Ng.
=2

Now we may restate VAL(i) in terms of the notation introduced above.

Lemma 2.3 Ifv € Ay with2 < k < A—1 and vw € E(G), then w is
adjacent to at least A — k + 1 major vertices, hence,

w € AaUUa 1345 r>a- k41 Aar- o
The following two results are corollaries of Lemma 2.3.
Lemma 2.4 The sets Azy for 2 < k < A — 2 are independent. O

Lemma 2.5 The sets Ay, for2<k < I'%] are independent. m]

Using Lemma 2.3 and Lamma 2.5, we obtain

Corollary 2.6 For0< j < [%] — 3, we have

aA-1 p—1
[81-i k-1 §-+2 _AZE.H(P — q)apq if A is even;
S Se-pau < | iz
= > S (-qay fAisedd O
p=2F i+l q=2414j

The following result can be read out of the proof of Theorem 13.5 of [4].
We give a proof that is presented in [2]. See [5] for an entirely different
proof.
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Lemma 2.7

>A2i “"‘ (2.1)
3 : :

1=2

Proof. Forv € Aa, consider (vs,...,va—1) where vi = e(v, Ay) for
2<k<A-1Let T={(vz,...,va-1) :v € An}; T*=T-{(0,...,0)};
B, .. Sta-1) = {’U € Aa : (vg,...,va-1) = (%2,...,%a-1)} and
b(iz,...,ta-1) = |B(iz,...,ia-1)|(# 0) for (iz,...,ia—1) € T. Observe
that {B(ia,...,ia—1) : (42,...,%a_1) € T} partitions Aa. For each
2<k<A—1,

k
Y olaw=e(Aa,A)= > irbliz,...,ia1)

=2 (12,0130 -1)ET*
hence,
A-1 &k A-1 .. .
Z layg ixb(iz,- . .,ia-1)
k—1 k—1
k=2 1=2 k=2 (ig,...,ia_1)E€T"

A-1
— Z b(iz,...,‘iA_1)Z
k=2

(i2,...,8a-1)€T"

Fix (i2,...,ia-1) € T", and let ¢ = q(i2,...,ia—1) = min{k : 5 # 0}, so
that, 2 < g < A — 1. Observe that for v € B(ia,...,ia_1) with iy # 0,
there exists vw € E(G) with w € Ag. By VAL(i), v is adjacent to at
least A — ¢ + 1 major vertices, so, at most ¢ — 1 minor vertices. Hence,
tg+---4+ia_1 =12+ +ia-1 < ¢— 1. Consequently,

A-1 k lag, a1 i
I D A D D
k=2 =2 (i2,...,ia1)€T" k=q=q(iz,...,ia-1)

< > b(sz,...,ia_1) < na. m)

(iz,...,iA_l)GT'

Using VAL and Lemma 2.4 we obtain the following result which is proved
in [2].

Theorem 2.8 For A > 5, we have

A-2
na-1
> E .
’nA_2‘n2+3k=3k_l A_3
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3 Main Result

A
Observe that in the expression m = %Z kny, the coefficient of na_; gives

k=2
the coefficient of 7 in Vizing’s conjecture. So we may use the coefficient

of na_; in (2.1) to increase the coefficients of some of the smaller minor
vertices and obtain the following result.

Theorem 3.9 For A > 9, we have

(VA=T+2) 41
k 2 A—-k+1
a2t 3, pyme + 2 [k—1+ Az |™
k=3 k= VA=T+2)+1

A-3 2 1
=+ Z k—lnk+(A—3)nA_2'
[271+1

Proof. Suppose A is even. Using Corollary (2.6), we obtain the following
system of A/2 — 2 linear inequalities

@32 +ag3+2002+ - +aaa_g)+20808 g+ +(A/2- 2)as,
S 04 42)(4+1) + 04434 +2) + 204 43)(441) T Faa-1)(A-2)
+2aa-1) -3+ +(A/2-2)aa 1y 841 (1)
032+043+2042+ - +0a_1y8_9)+20(8 _1ya_z)+ " “+(A/2-3)aa_q)s
S 0(243)(442) T U4 +4)(4+3) + 20814y 549) T FaA-1)(A-2)
+2aa-1)a-3)+ - +(A/2-3)aa_1y(a 42 (2)

az2+a43-+2a40 < a(a-2)(a-3)+a-1)(a-2)+20(a-1)(A-3) (%— 3)

a32 < G(a-1)(a-2) (%‘ 2)

Notice that the coefficient of a(a_1y in (2.1) is zi5. Now we like to choose

suitable multipliers so that in taking a linear combination of the above

A/2—2 inequalities, the coefficient of a(a-1yi, for each %— +1<I<A-2,
i

does not exceed x—;. This can be done by multiplying both sides of in-

equality (1) with

AJ2+1 _ A+2
(A-2)(A/2-2)  (A-2)(A+14)
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and both sides of inequality (j), for 2 < j < § — 2, with

1 A+2%  A+2-2
A-2\A-2j—-2 A-2

Then taking the sum of the resulting inequalities, we obtain

L+1-k

a
3 k-1

A+2j A+2j-2
ZZ[I_A—%T_M-4 +z5 ), (A_zjfg— =T )] (k — Dax

k=3 I=2 j=2

A-1 p-1
<Y Y whEdno (32)

p=4+29=4+1

But for any » > 2 we have

z': A+2j A+2j-2\_ A+2r A+2
A-2j-2 A-2j ] A-2r—-2 A-4

(3.3)
=2

Using (3.3) in (3.2), we get

k—

b

A-1 p-1

%%%_272“"‘< Z Z '('A'_z)('(A_ﬁam' (3.4)

p=5+2q=4+1

M-

>
[

31

Il
)

For%—+15q<p—15A—4,

q_ _ q9(p—q) _ dA+p—q-2)(A—-p-1)
p—1 (A-2)(A-q-1) (p-1)(A-2)(A-q-1)
4q
(p—1)(A-4)
12 1
For%—+15q$p—1=A—3,wehave
g a(p—q) 1
-1 B-9@B-¢-1) > @-3) (®)
Now using (3.4), (3.5) and (3.6) in (2.1) we obtain
a a
: L, (A-k+1)(k=1) 2
>2 + +
na = 4n2 kz_ag[ S S Y /) ]“"’ kz_:_sk—lakk
S 2 1
+ g + nAa-
k=€_+lk—1 (A-3) 27
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If A is odd, by a similar argument, we obtain

Ag;lk_l (IA )( ) A4l
l —k+1) k-1 2 k
na = 2n2 + E [k—1+ *=2a-2) ]akl-l-kE: —Qkk

2 1

“‘““‘[ I (A—k+1)(k—1) Sk
P +

1T T R-9@a- Mt Lo

o>

2 1
+ ) ot (A—3)"a-%

For a fixed k, 3< k < [4],

: I (A—k+1)(k—1)
25?21?—1{k—1+ (k-2)(A-2) }

14, 82k k< [VATT+2);

= (’C—2)(A~22
2 if [VA—T+2] <k<[4].

ANk
k—11 A-2

Now as 1+(kTA2_RkZ%5 > % for3<k < |VA-1+2),and 7ﬁ—1+—Ai—f;;1- <
2 for [VA=1+2|+1<k < [4], the result of the theorem follows. O
k-1 2

Using the result of Theorem 3.9, we obtain

A a-1
2m = ank=2knk+an+(A—c)nA
k=2 k=2
A-1 (VA=I+2] k
> —
> ank+an+(A c) [2ng + Z P
& 2 A—k+1
> (k-l*‘ A-2 )"k
k=| VA=14+2|+1
A-3
2 1
+ Y k_lnk+A_3nA_2}
k=[£1+1
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[vE=T1+2] k
= [2+2(A —c)]n2+ Z [k+ m(A—C):I Nk
k=3

21

2 A-k+1
+ Z [k+(k—1+ A—; )(A—c)]n
k= [\/—+2J+1
2 A—-c
b S e tya-|me [a-24 525 na
k=[£1+1
+(A —1)na-1 +cna. (3.7)
The next lemma is proved in [2].
Lemma 3.10 Let fa(c), fa(c),...,fa-1(c) be positive, decreasing linear

functions on [0, A] and fa(c) = c. Set g(c) = mm {fk(c)} force [0, A

Then g is continuous on [0, A] and

0r<r!:a<xAg(c) 2<Jl;212 1{c file) = fale)} O

By Lemma 3.10, the value of ¢ that gives an optimal value for the coefficient
of n in (3.7) is min{c(k) : 2 < k < A — 2}, where c¢(k) is the point where
fr(e) = ¢ with

fa(c) =2(A+1-c);

fu(c) = HEra-l-d if 3<k<|VA—T1+2);
ful)) =k (—+A ) (A-o if [VA-T+2]+1<k<[4];
fr(c) = k+7c—(A—c) if [8]1+1<k<A-3;
fa-a(c) = A2=fAg6=c,
Moreover,
o2) = Z(A_;’i) (3.8)
o(k) = % if 3<k<|VA=T+2 (3.9)
_ Kk[AZ4+ A+2]—2k*+ A% —5A
k) = 2%kA — K2 —3
if [VA-T+2]+1<k<[4] (3.10)
c(k) = WT“:ZA if [$1+1<k<A-3(3.11)
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2 _
(A-2) = AA;_A;G (3.12)

Letting c2,c3,¢4,¢5 and ca_o to be the minimum values of the functions in
(3.8) to (3.12), respectively, we obtain c; = (2A + 2)/3,

o — [ Ea+2 if 9<A<13;
A U Y0707, yuy S ) L Y PSS 7Y
G 2 (B+2)/2+/(a-2)%2(A2 - 3),
A(A + 10) A
" = m if A is even;
- A®+12A 43 . .
m— if Ais Odd,

and ca_g = (A2 — 4A + 6)/(A — 2). Analysis of each A € {9,11,13}
gives ¢ = ¢z = —(A + 2). Observe that ca_s > co > ¢ for A > 10. For
A > 10 & A # 11,13,15, we have c3 > cs and ¢4 > cs. Moreover, at
A =15, we have ¢4 > ¢5 > c3. Consequently, we have the following result.

Theorem 3.11 Let G be a A-critical graph of order n and size m. Then

m 2 f(A)n
where
1O(A.|.2) for A =9,11,13;
LW2A—1+1)" forA=15
f(A) = A&i(zAA*:zll())) for A>10, A is even;
—AllT+A13-A.5—)+3 for A > 17, A is odd. o

Vizing [9] conjectured that a simple planar graph of maximum degree equal
to 6 or 7 is class one. On the assumption that it is not easy to prove
this conjecture, various restriction on graphs were considered to solve the
problem at least partially. One such a result is due to Yap [12] who proved
that if a 6- or 7-critical planar graphs G exist, then G has quite a few minor
vertices. In fact, he showed that

Theorem 3.12 [12] (i) If G is a 7-critical graph, then

4 1 2 1 3
2n3+§n4+§n52 12 4+ 3"6 & n726+2n2+2n5+gn6

93



(it) If G is a 6-critical graph, then

1
2ng + 3ng + 2n4 +n5 > 12 & n324+§-n2+§n5.

Using VAL and Theorem 2.8, we slightly improve the results of Theorem
3.12 and prove that if a 7-critical planar graph G exists then the number
of major vertices of G is at least 12.

Theorem 3.13 Let G be a 7-critical planar graph. Then

3 1 1 1 1
e ~ng > 124 - >12 - =ng.
2n3+n4+ 4n5 > 12+ 4n6 and nq7 > 12420y + 2n5+ 2n6

Proof. Clearly, G \ Ag is planar. Every vertex in Ag, by VAL, is adjacent
to exactly two major vertices in G. Thus in deleting a vertex of A2 we lose
a face and two edges. Now since each face in G \ Ay is bounded by at least
three edges and since each edge bounds at most two faces, we have

3(f - ng) < 2('rn - 2"12) —~ 3f < 2m — ns. (313)

Using (3.13), VAL and the Euler’s Polyhedral formula we obtain

124+6m—6n < 4m-—2ng
7 7
=>12+ank—26nk < —2ng
k=2 k=2

= 12407 < 2n2+ 3n3+ 2n4 + ns.

Then using Theorem 2.8, we have

3 3 1
2ng + =nz + N4+ N5 + =Ng

w2 ) 4™y
= 2no+3ng+2n4+n5 2> 12+2n2+gn3+n4+§n5+%n3
= gng +n4 + ins > 12+ %ns,
and hence
m22n2+gn3+n4+§n5+%n6212+2n2+%n5+%n5. ]
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For A = 7, by VAL the sets A3, A4 and Asy are independent. Using the
notations introduced in section 2, we have

ags + 2ag4 + 3ags + asy
g5 + 2a64 + Q54

@32 + 2042 + a43 + 3059
a3z + 2a49 + a43

IA N IA

az2 ags

Now we use an argument similar to the one used in the proof of Theorem 3.9.
Multiply the above three inequalities by ¢, # and v, r%pectlvely We choose
th&se three multlphers in such a way that 1+ a+G8+v= + 2a+28 =

1+a+/3-— % 2+3a=1-—a—-4 and moreover 1—a—[3 fy>
0 ——2a 23>0, £ —3a>0. Thus, we have o = L 8 g=3 g andy=
Usmg these values and taking the linear combination of the above three
inequalities, we get

1 2 1 1 1 2 1 1
- st < 3.14
593 + 3042 + 3043+ 552 < 5065 + 3064 + g 63 + 3054 (3.14)

Now using (3.14) in (2.1), we have

ny > 2 +3n +4n +2'n +3n
7 n223343s 57

By an argument similar to the one used in the proof of Theorem 3.13, we
therefore obtain

3 2 1 2 2 1 4
- — - > 1 — > - p—
2n3+ 3'n,4+3n5 > 124 lsns and n7 2> 124 2n,+ 3'n4+ 3ng,+ 15ns

Corollary 3.14 If G is a 7-critical planar graph, then

n3g+ng+ns>8 and ny 2 124 2ns. O

Similarly we have

Theorem 3.15 If G is a 6-critical planar graph, then

1 1 1
> - - —T4. [m]
ng > 5+ 3'n2+ 4'n;;+ 6n4
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