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ABSTRACT. In this paper we prove that there exists an
SCSOIDLS(v) if and only if v = 0,1 (mod 4) other than
v = 5, with 40 possible exceptions.

1 Introduction

A Latin square of order n is an n x n array such that every row and every
column is a permutation of an n-set N. A transversal in a Latin square is a
set of positions, one per row and one per column, among which the symbols
occur precisely once each. A diagonal Latin square is a Latin square whose
main diagonal and back diagonal are both transversals.

A Latin square is called idempotent if its leading diagonal is (1,2, .. .,n).
Clearly any diagonal Latin square can be converted into an idempotent
diagonal Latin square by an appropriate permutation of the symbol names. -

Two Latin squares of order n are orthogonal if each symbol in the first
square meets each symbol in the second square exactly once when they
are superposed. A Latin square is self-orthogonal if it is orthogonal to
its transpose. Clearly the main diagonal of a self-orthogonal Latin square
can contain no repetitions, so a self-orthogonal Latin square can also be
assumed to be idempotent (up to symbol permutation).

In an earlier paper, Danhof, Phillips and Wallis [5] considered a special
type of self-orthogonal idempotent diagonal Latin square, one which is self-
conjugate.
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Given an orthogonal pair A, B of Latin squares of order n, we define the
conjugate pair A*, B* as follows:

fori,j € N, A*(A(i,5), B(i,)) = i and B*(AGi, 5), B(i,3)) = j.

A*, B* is again an orthogonal pair and its conjugate pair is A, B. Thus
forming the conjugate pair is an involutory operation. If A is self-orthogonal,
we define the conjugate of A to be A* where A*, (AT)* is the conjugate pair
of A, AT. In this case we have the simpler formula A*(A(i, 5), A(j,i)) =
i, and (AT)* = (4*)T. We call A self-conjugate if A = A*, so that
A(A(3,7), A(j,3)) = i for all i and 5. An example of a self-conjugate self-
orthogonal Latin square is

W N A=
-k N W
N O =
PN

Any Latin square can be interpreted as the multiplication table of a quasi-
group. A Schroeder quasigroup is one with the property that (zy)(yz) =z
for all x and y. This property is equivalent to the self-conjugacy condition
above, so a SCSOIDLS(n) is equivalent to a special type of Schroeder
quasigroup.

Every Schroeder quasigroup has order congruent to 0 or 1 (mod 4) [7].
So

Theorem 1.1. If there exists an SCSOIDLS(v), thenv =0 or 1 (mod 4).

It is shown in [7] that there is no Schroeder quasigroup of order 5 and no
idempotent Schroeder quasigroup of order 9, so there is no SCSOIDLS(5)
or SCSOIDLS(5). It was conjectured in [5] that there is no self-conjugate
self-orthogonal idempotent diagonal Latin square of order » for any v = 1

(mod 4). In [6] the first author gave a self-conjugate self-orthogonal idem-
potent diagonal Latin square of order 25 and so showed that the conjecture
is false. The purpose of this paper is to prove that there is a self-conjugate
self-orthogonal idempotent diagonal Latin square of order v for any v > 5
and v = 1 (mod 4) with 33 possible exceptions. At the same time we also
consider the case v = 0 (mod 4)'and prove that there is a self-conjugate
self-orthogonal idempotent diagonal Latin square of order v for any v = 0

(mod 4) with 7 possible exceptions. We have therefore shown that the
necessary condition is also sufficient for all v =0 or 1 (mod 4) but v = 5,
with 40 possible exceptions.

Theorem 1.2. There exists an SCSOIDLS(v) if and only if v = 0 or
1 (mod 4) with the exception of v = 5 and the possible exceptions of
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ve EyUE;UEsU EgU Eg where

Ey={12n|n =2},

Ei={12n+1|n=1,7,11},
Es={12n+5|n=1,3,4,5,6,8,11,12,13, 14, 15, 20, 21,27},
Es={12n+8|n=1,3,5,7,11,13},
Es={12n+9|n=0,1,2,4,5,6,7,8,9,10,12,13,17, 21, 24, 33}.

O

For our purpose we need the concept of an incomplete self-conjugate
self-orthogonal idempotent diagonal Latin square (ISCSOIDLS). This is
defined formally as follows. Suppose v = 2t +n, where ¢t and n are positive
integers. Let S and N be disjoint sets with |S| = 2¢t and [N| = n. An
ISCSOIDLS(v,n)is avxwv array A with cell (i, /) empty whent < i < t+n
and ¢t < j <t + n; the other cells are filled with members of SU N in such
a way that:

e every row and every column contains every element of S exactly once;

e every row and every column contains every element of N once except
for rows and columns ¢+ 1, ¢+ 2, ..., t +n;

o if A and AT are superimposed, the resulting array contains every
ordered pair in (S x S)U (S x N) U (N x S) exactly once;

o if there is an element in position (%,?) of A then A(7, ) =1.
e if there is an element in position (%, ) of A then A(A(4, 7), A(j, 1)) = 1.

If an SCSOIDLS of order v contains a sub-SCSOIDLS of order n at
the central position, removing the sub-SCSOIDLS gives an incomplete
SCSOIDLS, denoted by ISCSOIDLS(v,n). It is easy to see that any
SCSOIDLS(v) is an ISCSOIDLS(v,1) when v is odd.

We shall assume for the rest of this paper that every diagonal Latin
square is idempotent. (If not, one can replace the square by an idempotent
one obtained by symbol permutation.)

2 Preliminaries
In this section we shall define some terminology and give some construc-
tions. For more details on GDDs and related designs, the reader is referred
to [2].

Let K and M be sets of positive integers. A group divisible design (GDD)
GD(K, M;v) is a triple (X, G, B) where
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(i) X is a v-set of points,

(ii) G is a collection of non-empty subsets of X (called groups) which
partition X; if G € G then |G| € M;

(iii) Bis a collection of subsets of X (called blocks); if B € B then |B| € K
and |B| > 2

(iv) no block intersects any group in more than one point;

(v) each pair (z,y) of points not contained in a group is contained in
exactly one block.

The group-type (or type) of GDD(X, G, B) is the multiset of sizes |G| of the
G € G and we usually use the “exponential” notation for its description:
group-type 1'293% ... denotes 4 groups of size 1, j groups of size 2, and so
on.

Let(X, G, B) be a GD(K, M;v). A parallel class in (X, G, B) is a collec-
tion of disjoint blocks of B, the union of which equals X. (X, G, B) is called
resolvable if the blocks of B can be partitioned into parallel classes.

We need establish some more notation. We shall simply write GD(k, m;v)
for GD({k}, {m};v). If m ¢ M, then GD(K,M U {m*},v) denotes a
GD(K, MU {m};v) which contains a unique group of size m and if m € M,
then a GD(k, M U{m"};v) is a GD(K, M;v) containing at least one group
of size m. We shall sometimes refer to a GDD(X, G,B) as a K-GDD if
|B] € K for every block B € B. In every acronym we denote resolvability
by a leading R.

For some of our recursive constructions of GDDs, we shall make use of
Wilson’s “Fundamental Construction” (see [9]). We define a weighting of
a GDD(X, G, B) to be any mapping w : X — Z+ U{0}. We present a brief
description of Wilson’s construction relating to GDDs below.

Lemma 2.1. Suppose that (X,G,B) is a “master” GDD and let w :
X — Zt U {0} be a weighting of the GDD. For every = € X, let S,
be the multiset of w(z) copies of z. For each block B € B, assume a
GDD(:?B US:, {Sz|z € B}, Bg) is given. Write X* =% Us:, 6* =

{=.US:|G €6}, and B* = > |JBg. Then (X*,G*,B*) isa GDD.
z€G BeB
The following lemma is our main construction.

Lemma 2.2. Let K be a set of positive integers and s > 0. Suppose there
exists a K-GDD of group-type myms ... my, and

(1) for every k € K there exits an SCSOIDLS(k),

(2) for every i < n there exists an ISCSOIDLS(m; + s,s) and m; is
even.
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Then there exists an ISCSOIDLS(v, mn + s), where v = s+ o Y m;.
<ig

' n
Moreover, if there exists an SCSOIDLS(my +s), then there exists an
SCSOIDLS(v).

Proof: Let us denote G = {G4,Gy,...,Gn}, where |G;| = m;, and denote
|S| = s. We first relabel the elements of G; and S so that

G ={1,2,...,1m1,v—%m1+1,...,v—l,'v},

1 1 1 1 1 1
G’z={§m1+1,—m1+2,...,—m1+—m2,v-——m1——m2+1,...,

2 2 2 2
1 1
v—gm - 1,v - 5m1}'

and so on, S contains the central s elements. Then the standard con-
struction, outlined above, produces the required square, provided the Latin
square used to correspond to each of the groups G; is an ISCSOIDLS{m;+
8,8) (for i < n) or an SCSOIDLS(my, + 8) and each of the blocks size k
is an SCSOIDLS(k). (u]

In order to establish our GDD construction we shall need some “small”
input designs.

Lemma 2.3. [1,3] There exist {4} or {4,8}~GDDs of the following group-
types: (a) 3, (b) 3%, (c) 3'2, (d) 47, (e) 4%, (f) 4%, (g) 4°1%, (h) 411,

Lemma 2.4. [1] Suppose there exists a GD(8, m;8m) and 0 < z,y,z <
m, where £ +y = m. Then there exists a {4,8}-GDD of group-type
(4m)®(4z +y)'(42)".

The following result will be quite useful (see [4]).
Lemma 2.5. A GD(8, m;8m) exists for all integers m > 76.

We shall make use of the following lemma, which is a consequence of
Lemma 2.5.

Lemma 2.6. Define the sequence M = {m;, ma, m3,...} by

M ={7,13,16,19, 25, 31, 37,43, 49, 61, 64, 67, 70, 73}
U{z:z=1 (mod 3),z > 76}.

Then for each i
(1) m; =1 (mod 3),
(2) mity1 —m; <12, and
(3) a GD(8, m;;8m;) exists.
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3 The case v =0 (mod 4)
3.1 The case v =0 (mod 12)

Lemma 3.1.1. There exists an SCSOIDLS(12n) for n=1,3,4 or 8.

Proof: For n = 1, see [5]. For n = 3, we make use of the existence
of a GD ({4,8},{4,8"};36) (see, for example, [1]) and then we obtain an
SCSOIDLS (36) from Lemma 2.2 with s = 0. For n = 4, we have a
GD({4,12}, 4;48) from an RGD(4, 12;48). We then obtain an SCSOIDLS
(48) from Lemma 2.2 with s = 0. For n = 8, we take an RGD (4,3;24)
(see, for example [7]) and give every point weight 4. In our resulting GDD,
we take a parallel class of blocks as groups to form a GD ({4,12}, 4;96).
We then obtain an SCSOIDLS(96) from Lemma 2.2 with s = 0. We also
notice that there exist ISCSOIDLS(12n,4) for n # 1. o
Lemma 3.1.2. [3] For every n, n > 4, there exists a GD(4,12;12n). O
We then have

Lemma 3.1.3. For every n, n > 4, there exists an SCSOIDLS(12n).

Proof: Apply Lemma 2.2 with m; = 12 and s = 0, we obtain the desired
designs. |

Combining Lemmas 3.1.1 and 3.1.3, we have essentially proved the fol-
lowing result.

Theorem 38.1. If v = 0 (mod 12) and v ¢ Ey, then there exists an
SCSOIDLS(v) o

3.2 The case v =4 (mod 12)

Lemma 3.2.1. 3] If v =4 (mod 12), then there exists a GD(4,4;v). O
We then have
Theorem 3.2. If v =4 (mod 12), then there exists an SCSOIDLS(v).

Proof: Apply Lemma 2.2 with m; = 4 and s = 0, we obtain the desired
design. We also notice that there exists an ISCSOIDLS(v, 4). o

3.3 The case v =8 (mod 12)

Lemma 3.3.1. Let M be as defined in Lemma 2.6. If m € M, then there
exist SCSOIDLS(v) for all v =8 (mod 12) in the interval 25m+4 < v <
32m.

Proof: We shall apply Lemma 2.4 with m €M. Since m = 1 (mod 3), we
can choose 4x+y =4 (mod 12), where 0 < z,y <m,z+y=m, and m <
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4z +y < 4m. We choose 4z = 4 (mod 12), where < 4z < 4m. Note that
there exist SCSOIDLS(4m), SCSOIDLS(4z +y) and SCSOIDLS(4z).
Let v = 24m + 4z + y + 42. Then it readily follows that there exists an
SCSOIDLS(v) from Lemma 2.2 with the resulting GDD and s=0. O

Lemma 8.3.2. If v = 8 (mod 12), then there exist SCSOIDLS(v) for all
v > 188, v ¢ {236, 248, 260, 272, 284, 296, 308, 320, 620}.

Proof: We shall apply Lemma 3.1.1. If m = 7,13,16,18,25, then we
obtain SCSOIDLS(v) for all values of v = 8 (mod 12) in the interval
188 < v < 800; apart from the exceptions listed in the statement of the
lemma. For m > 25, if we apply Lemma 3.3.1 repeatedly, then we find
that the intervals for v overlap and we obtain SCSOIDLS(v) forall v =8

(mod 12) where v > 632. This completes the proof of the lemma. o

Lemma 3.3.8. There exists an SCSOIDLS(v) for v =8 and v = 32.

Proof: For v = 8, see [5]. For v = 32, we have an RGD(4, 8;32) and then
we obtain an SCSOIDLS(32) from Lemma 2.2 with s = 0. We notice that
there exist an 1SCSOI DLS(32,4) and an ISCSOIDLS(32,8). o

Lemma 3.3.4. If v € {56,80,104,128,152, 176, 248, 272, 296, 320}, then
there exists an SCSOIDLS(v).

Proof: Write v = 8- %. We make use of the existence of a GD(4,8;v)
(see, for example, [3]) and obtain an SCSOIDLS(v) from Lemma 2.2 with
s§=0. (]

Lemma 3.3.5. There exists an SCSOIDLS(116).

Proof: We have GD({4, 8},4;116) from an RGD(4,29;4 - 29), and we use
this to obtain an SCSOIDLS(116) from Lemma 2.2 with s = 0. o

Lemma 3.3.6. There exists an SCSOIDLS(284).

Proof: We first adjoin 8 infinite points to an RGD(7,9;63) so as to form
a GD({7,8,10}, {7,8"}; 71), and then give each point weight 4 to obtain
GD({4,8}, {28,32*}; 284), using {4,8}-GDDs of type 47, 4® and 41°. We
obtain an SCSOIDLS(284) from Lemma, 2.2 with s = 0. a

Lemma 38.3.7. There exists an SCSOIDLS(308).

Proof: Take an RGD(4,76;304) and adjoin 4 infinite points to the groups
and applying Lemma 2.1 with the fact that a GD({4, 8}, 1; 80) exists (see,
for example, [1]). Consequently there exists a GD ({4, 8},4; 308) and then
there exists an SCSOIDLS(308, from Lemma 2.2 with s =0. (u}

Lemma 3.3.8. There exists an SCSOIDLS(v) for v = 236, 260 or 620.
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Proof: Apply Lemma 24 with m =8 o0r 9, 4z 4y = 32 and 2z = 3, we
know the result is true for » = 236 or 260 from Lemma 2.2 with s = 0.

Apply Lemma 2.4 with m = 23, 4z + y = 32 and z = 8. In our resulting
GDD we apply Lemma 2.2 with s = 4. Notice that ISCSOIDLS(96,4)
and ISCSOIDLS(36,4) both exist (see the proof of Lemma 3.1.1). Con-
sequently we obtain an SCSOIDLS(620). (u]

Combining Lemmas 3.3.2-3.3.8, we have essentially proved the following
result.

Theorem 8.3. If v = 8 (mod 12) and v ¢ Eg, then there exists an
SCSOIDLS(v). o

4 The Case v=1 (mod 4)
4.1 The case v =1 (mod 12)

Define
F = {265,457, 553,661, 853, 865}

Lemma 4.1.1. [4, p.191] If v = 0 (mod 12) and v+ 1 ¢ E; U F, then
there exists an RGD(4, 3;v). a
We then have

Lemma 4.1.2. If v =1 (mod 12) and v ¢ E; U F, then there exists an
SCSOIDLS(v).

Proof: We adjoin one infinite point to an RGD(4,3;v — 1) so as to form
a GD(4,{4,1*};v), and then we can construct an SCSOIDLS(v) from

Lemma 2.2 with s = 0, m]
Lemma 4.1.3. [3] For every n > 4, there exists a GD(4, 6;6n). o
We then have

Lemma 4.1.4. For every n > 4, there exists an SCSOIDLS(24n + 1).

Proof: We first give every point of GD(4, 6; 6n) weight 4. From Lemma
2.1 the resulting design is a GD(4, 24; 24n), using {4}-GDD of type 4¢. We
then adjoin one infinite point to the groups of this GDD and then, make use
of the existence of a GD(4, {4,1*};25) to obtain a GD(4, {4,1*};24n +1).
From Lemma 2.2 with s = 0 we know there exists an SCSOIDLS(24n +
1). O

We now have
Lemma 4.1.5. If v € {265,457, 553, 865}, then there exists an SCSOI DLS(v).C

Lemma 4.1.6. If v € {661,853}, then there exists an SCSOIDLS(v).
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Proof: Apply Lemma 2.4 with m = 25, 4z + y = 25 and z = 9: we see the
result is true for v = 661 from Lemma 2.2 with s = 0.
Apply Lemma 2.4 with m = 31, 4z+y = 73 and z = 9: we see the result
is true for » = 853 from Lemma 2.2 with s = 0. m]
Combining Lemmas 4.1.2, 4.1.5 and 4.1.6, we have essentially proved the
following result.

Theorem 4.1. If v = 1 (mod 12) and v ¢ E,, then there exists an
SCSOIDLS(v). o

4.2 The Case v=5 (mod 12)

Lemma 4.2.1. Let M be as defined in Lemma 2.6. If m € M, then there
exist SCSOIDLS(v) for all v=>5 (mod 12) in the interval 25m+4 < v <
32m — 3 (provided also that v > 24m + 29, if m =7, or 13).

Proof: The proof is similar to that of Lemma 3.3.1. Here we also apply
Lemma 2.4 with m € M. We can choose 4z + y = 1 (mod 12) such that
the conditions 0 < z,y < m,z+y=m, m<4z+y<4m—-3 (4z+y > 25
when m =7, or 13) all hold. We choose 4z =4 (mod 12). Note that there
exist SCSOIDLS(4m), SCSOIDLS(4z + y) (except for 4z + y = 85 or
133, but we can write 2dm+(4z +y) +42z = 24m+ (dz+y+12)+ (42F12))
and SCSOIDLS(4z). From Lemma 2.2 with s = 0 the result is true for
all v =5 (mod 12) in the interval 256m + 4 < v < 32m - 3(v > 24m + 29,
if m =7,13). 0

Lemma 4.2.2. If v =5 (mod 12), then there exist SCSOIDLS(v) for all
v > 197 and v ¢ {233, 245,257, 269, 318, 293, 305, 317, 329,617}.

Proof: We apply Lemma 4.2.1 repeatedly. If m = 7,13,16,19, 25, then
we obtain SCSOIDLS(v) for all, values of v = 5 (mod 12) in the interval
197 < v < 797, apart from the exceptions listed in lemma. For m > 25, the
intervals of v overlap and we obtain SCSOIDLS(v) for all v =5 (mod 12)
where v > 641. This completes the proof of the lemma. m]

Lemma 4.2.3. If v € {29, 89}, then there exists an SCSOIDLS(v).

Proof: Take an RGD(4, 7, 28) and adjoint one infinite point to the groups
so as to form a GD({4, 8}, {4, 1*};29), and then there exists an SCSOIDLS
(29) from Lemma 2.2 with s =0.

Take an RGD(8,11;88) and adjoin one infinite point to the groups so as
to form a GD({8,12}; {8 1‘} 89}, and then there exists an SCSOI DLS(89)
from Lemma 2.2 with s =

Lemma 4.2.4. If v € {113,281, 617}, then there exists an SCSOIDLS(v).
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Proof: For n =1, 3 or 7, take an RGD(4,1;12n + 4) and give each point
weight 7. In our resulting GDD, we give one infinite point to the groups
and obtain a GD({4, 8}, {4,1*}; 84n + 29). We then obtain the desired
designs from Lemma 2.2 with s = 0. (m}

Lemma 4.2.5. If v € {125,317}, then there exists an SCSOIDLS(v).

Proof: For n =1 or 3, take an RGD(4,24n + 7; 96n + 28) and adjoin one
infinite point to the groups to obtain a GD({4, 24n + 8}, {4,1*}; 96n+29).
We then obtain the desired designs from Lemma 2.2 with s = 0. ]

Lemma 4.2.6. There exists an SCSOIDLS(233).

Proof: Apply Lemma 2.4 with m = 8, 4z 4+ y = 29 and z = 3, we obtain
the desired design from Lemma 2.2 with s =0. a

Lemma 4.2.7. There exists an SCSOIDLS(269).

Proof: Apply Lemma 2.4 with m =9, 4z+y = 21 and z = 7. In our result-
ing GDD we apply Lemma 2.2 with s = 4. Notice that ISCSOIDLS(40,4)
and ISCSOIDLS(32,4) both exist (see the proof of Theorem 3.2 and
Lemma 3.3.3), we obtain the desired design. (m]

Lemma 4.2.8. There exists an SCSOIDLS(293).

Proof: We first adjoin 7 infinite points to an RGD(8, 11; 88) so as to form
a GD({8,9,12}, {8,7*}; 95), where one of the infinite points is adjoined
to the groups. In the resulting GDD, we give each point weight 3 to form
a GD(4,{24,21*}; 285), using {4}-GDDs of types 3%, 3°, 312, Finally, we
adjoin 8 infinite points to this GDD, using Lemma 2.2 and the fact that
an ISCSOIDLS(32,8) exists (see the proof of Lemma 3.3.3) to obtain the
desired design. a

Lemma 4.2.9. There exists an SCSOIDLS(305).

Proof: Take a GD(8, 11;88) and delete one block entirely to get a GD({7, 8},
10;80). In all but one of the groups, we give weight 4 to each point. In the
last group, give weight 1 to five points and weight 4 to the remaining five
points. This gives a GD({4, 8}, {40, 25*}; 305), using {4,8}-GDDs of type
47,48, 4711, It follows that there exists an SCSOIDLS(305) from Lemma
2.2 with s =0.

Combining Lemmas 4.2.2-4.2.9, we have essentially proved the following
result.

Lemma 4.2. If v = 5 (mod 12) and v ¢ {5} U E5 then there exists an
SCSOIDLS(v). ]
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4.8 The Case v=9 (mod 12)

Lemma 4.3.1. Let M be as defined in Lemma 2.6. If m € M, then there
exist SCSOIDLS(v) for all v =9 (mod 12) and v # 765 in the following
interval:

(1) 25m+ 8 < v < 32m — 11, if m ¢ {7,13,19,25,37,43},

(2) 25m+8 < v < 32m — 23, if m ¢ {7,13,19, 25,37,43}(v > 24m + 33,
ifm=17,13).

Proof: We apply Lemma 2.4 with m € M. In each of (1) and (2), we take
4z +y < 1 (mod 12) such that the conditions 0 < z, y < m, z+y =m,
m < 4z +y < 4m —3(4z+y > 25, if m = 7,13) hold. Note that there exist
SCSOIDLS(4m) and SCSOIDLS(4z+y) (except for 4z +y = 85 or 133,
but we can write 2dm+ (4z+y)+42 = 2dm+ (4z+y+12)+((42F12)). For
(1) we choose 4z = 8 = (mod 12) such that 8 < 4z < 4m — 8 and for (2),
choose 4z = 8 (mod 12) such that 8 < 4z < 4m — 20, where the existence
of SCSOIDLS(4z) form Theorem 3.3. The gap is at most 24 between
consecutive values of v for which SCSOIDLS(v) exist in Theorem 3.3.
If we put v = 24m + 4z + y + 4z, then it is not difficult to check that we
obtain SCSOIDLS(v) for all v =9 (mod 12) in the specified interval from
Lemma 2.2 with s = 0. O

Lemma 4.3.2. If v =9 (mod 12), then there exist SCSOIDLS(v) for
all v > 201 and v ¢ {213, 225, 237, 249, 261, 273, 285, 297, 309, 321, 333,
405, 597, 609, 621, 765}.

Proof; We apply Lemma 4.3.1. If m = 7,13,16,19,25, then we obtain
SCSOIDLS(v) for all v =9 (mod 12) in the interval 201 < v < 753, apart
from the exceptions listed in the lemma. If we choose m € M, m > 25, and
apply Lemma. 4.3.1 repeatedly, then it is readily checked that the intervals
for v overlap and we obtain SCSOIDLS(v) for all v = 9 (mod 12) where
v 2> 633. o

Lemma 4.3.3. If v € {45,141,177,189, 285}, then there exists an
SCSOIDLS(v).

Proof: For n = 11,35,44,47 or 71, take an RGD(4, n;4n) and adjoin one
infinite point to the groups to obtain a GD({4,n+1}, {4,1*}, 4n +1), we
then obtain an SCSOIDLS(4n + 1) from Lemma 2.2 with s = 0. u}

Lemma 4.3.4. If v € {225,237, 249, 765}, then there exists an SCSOIDLS(v).

Proof: Apply Lemma 24 with m=8,4x+y=29andz=1,4o0r 7, we
know the result is true for v = 225,237 or 249 from Lemma 2.2 with s = 0.
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Apply Lemma 2.4 with m = 27, 4z + y = 45 and z = 18, we know the
result is true for v = 765 from Lemma 2.2 with s = 0. (]

Lemma 4.3.5. If v € {273,309, 321, 333,597, 609, 621}, then there exists
an SCSOIDLS(v).

Proof: Apply Lemma 2.4 withm =9, 4z+y = 21 and z = 8. In our result-
ing GDD we apply Lemma 2.2 with s = 4. Notice that ISCSOIDLS(40,4)
and ISCSOIDLS(36,4) both exist (see the proof of Theorem 3.2 and
Lemma 3.1.1), we obtain an SCSOI DLS(273).

Apply Lemma 2.4 with m = 11 or 23, 4z +y = 41 and z = 0,3,
or 6. In our resulting GDD we apply Lemma 2.2 with s = 4. Notice
that ISCSOIDLS(48,4), ISCSOIDLS(196,4), ISCSOIDLS(16,4) and
ISCSOIDLS(28,4) (see the proof of Lemma 3.1.1 and Theorem 3.2), we
obtain the remaining designs. m]

Combining Lemmas 4.3.2-4.3.5, we have essentially proved the following
result.

Theorem 4.3. If v = 9 (mod 12) and v ¢ Ey, then there exists an

SCSOIDLS(v). (]
Proof of Theorem 1.2: The result now follows from Theorems 3.1-3.3
and Theorems 4.1-4.3. a
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