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ABSTRACT. We study F(n,m), the number of compositions of
n in which repetition of parts is allowed, but exactly m dis-
tinct parts are used. We obtain explicit formulas, recurrence
relations, and generating functions for Fi(n,m) and for auxil-
iary functions related to F. We also consider the analogous
functions for partitions.

Introduction

One of the problems considered by Wilf in [7] involves the number of dif-
ferent sizes of parts in a partition of the integer ». This paper investigates
the function F(n, m), which gives the number of compositions of n in which
repetition of parts is allowed, but m distinct parts are used in all. For ex-
ample, in the table below we note F(4,2) = 5, from the five compositions
of 4 with 2 distinct parts: 341, 143, 2+1+1, 142+1, and 1+142.

*The second author thanks the Centre for Applicable Analysis and Number Theory
at The University of the Witwatersrand for sponsoring his visit during January and
February 1996.
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The first observation to make about F(n,m) is that for m = 1 there is a
composition of n with one distinct part & if and only if k is a divisor of n.
Hence F(n,1) = d(n), the divisor counting function. We extend this sum
over divisors to the second column in the next section.

On the right hand boundary of the table, we note that the first non-zero
entry in column m is at n = m(m + 1)/2, where F(m(m + 1)/2, m) = m!
This is because there are m! arrangements of the summands in the first
integer with m distinct parts: 14+2+4...4+m.

In order to understand F(n, m) we provide explicit formulas, recurrences,
and generating functions for functions related to F. Some of the formulas
we derive have immediate analogues to formulas for partitions, especially
those in which the ordered structure of compositions manifests itself in a
general summand involving a binomial coefficient. We develop the partition
formulas in the fourth section.

Table 1. Compositions of n with m distinct parts, F(n,m), 1 < n < 16,
1<m<5

n\m 1 2 3 4 5
1 1

2 2

3 2 2

4 3 5

5 2 14

6 4 22 6

7 2 4 18

8 4 68 56

9 3 107 146

10 4 172 312 A4

11 2 21 677 84

12 6 396 1358 288

13 2 606 2666 822

14 4 950 5012 2226
15 4 1414 9542 5304 120
16 5 2238 17531 12514 480

Basic recurrences

Since F(n,1) = d(n), it is natural to look for an interpretation of later
columns involving divisors of n. We begin by offering an explicit formula
for the case m = 2.
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Theorem 1. For n > 2,

In/3] Ln/3)-1 NP
LCUED 3D YD S (At
dl(n—jk)

Jj=2 k=1 J

oy §
_ Lnfj (2?) lﬂlz"—lJ 3 Y A+ (n—k)/d).

= \J k=1 di(n—k)
Fin k#d

Proof: Consider a composition of n into two distinct parts. Write one of
the parts as k, where 1 < k < n —1 and count the number of compositions
according to the number of occurrences of the part k. If k occurs exactly
once then the remainder of the composition is just a composition of n — k
with one distinct part, say d, with d # k. For this to be possible we must
have d | n — k and then the composition of n consists of (n — k)/d parts
equal to d and one part k which can be inserted in any of (n — k)/d + 1
places. Thus the number of compositions of n with exactly two distinct
parts in which one of these parts occurs once only is

nf Y (1+";")—2[";1J.

k=1 dl(n—k)
d#k

The reason for the subtracted term is that compositions into exactly two
parts are counted twice (e.g. for n = 6 and k = 2 we count the compositions
2+4 and 4 + 2, and again when k =4).

Next suppose the distinct part k occurs twice. That leaves a composition
of n—2k consisting of (n—2k)/d copies of part d, where k # d, d | (n—2k),
and d < n — 2k since the case in which either distinct part occurs only once
has already been covered. The number of different orderings of two k’s and
(n — 2k)/d d’s is (2+(;2¥)/4)_ Since the part d appears at least twice we
need n — 2k > d > 2, whence 1 < k < [n/2] — 1. Thus compositions with
two distinct parts in which one part occurs twice and the other part occurs
two or more times are enumerated by

5N (P 20d) {(3) €472 i even
0

,n odd.

k=1 dl(n-:k)
d<n-2k

The subtracted term here deals with compositions of n into two distinct
parts which each appear twice (e.g. 6 =1+ 1+ 2 4 2), which are counted
twice in the left sum. Such compositions are possible only if » is even. In
this case we have (3) orderings of the composition.
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In general, suppose the part k occurs j times and the other part d occurs
4 or more times. In the same manner as above we require d | (n—jk), k # d,
and d < (n — jk)/(j — 1). There are (j+("'j'°)/ 9) ordered arrangements of
j k’s and (n — jk)/d d’s, and n — jk >]d > 7 implies k < [n/jj —-1. In
the case that j | n there are ( ) compositions with exactly j k’s and j d’s
that are counted twice for glven values of k and d. The number of different
possibilities for k and d is given by the number of solutions to n/j =k+d
which just interchange k and d, this number being |(n/j — 1)/2].

Finally, summing all these cases over j yields the formula. Since jk+jd <
n, j < n/(k+d) < n/(1+ 2) =n/3 which provides the limit for the outer
sum.

In the next theorem and in later theorems we will use the auxiliary func-
tion F(n, m, j) to represent the number of compositions of n into m distinct
parts, using exactly j parts altogether.

Theorem 2. For j > 2 and n > j,

1.r?(n,2,j)=l§J lnf:—l (f.)

r=1 k=1
(G—7)l(n—kr)
k#(n—kr)/(G—r)

{(;)[—-n/zJ, if2|j and | 2n

otherwise.

Proof: We proceed as in the proof of the formula for F(n,2) by counting
the compositions according to the number of occurrences of one part k. If
k occurs exactly once then n — k must be given as a sum of j — 1 equal
numbers, each (n — k)/(j — 1), provided this is a positive integer. Thus
we require 5 —1 | n—k, k # (n — k)/(j — 1), and there are j possible
arrangements of the parts. In the case that j = 2 we need to subtract off
compositions into two parts which are counted twice. Thus compositions
with two distinct parts, j parts in all, and one part occurring once are
enumerated by

et Ll =2
0 ,j>2.

G=Dln—k)
kA(n—k)/(G—1)

In general suppose part k occurs r times so that n — rk must be a sum of
j —r equal numbers. Thus we require j—r | n—kr and k # (n—kr)/(5 —7).
There are () ways of arranging the sequences of + summands of size k and
j —r summands of size (n — kr)/(j —r). As in the earlier proof we require

114



n—rk > rsok < |n/r] — 1. To ensure the other distinct part occurs at
least r times we need j —r > r so r < j/2 in the outer sum. Compositions
are counted twice and must be subtracted off in the event that both distinct
parts occur the same number j/2 of times. This is possible only if 2 | 7 and
then %(k + d) = n implies that j | 2n.

We note that from the relation valid for n > 2,
n—1

F(n: 2) = Z F(n’ 2:j)a
Jj=1

we can recover F(n,2) as a threefold sum using the formula for F(n,2, j)
from Theorem 2.

Perhaps these formulas can be extended to later columns, but the num-
ber of special cases to consider becomes forbidding. Another family of
results enumerates the compositions by first considering possible values of
the summands in the composition.

Lemma 3. Denote by F*(n,m,j) the number of compositions of n with
exactly m distinct parts, j parts in all, and at least one part being a 1.
Then

F(n,m,j) = F(n—j,m,j) + F*(n,m, j). (1)

Proof: Divide the compositions counted by F(n,m,j) into two classes:
those with at least one part a 1 and those having no 1’s. Compositions
in the first class are enumerated by F*(n,m,j). For compositions in the
second class, subtract 1 from each of the j parts, to obtain a composition
of n — j into m distinct parts, still with § parts in all.

As an application of this lemma, we can fix m and j and consider the
sequence of values {F(n,m,j)}, n > 1. Even though the sequence may
fail to be monotone, each subsequence consisting of every jth term from an
arbitrary starting point will be monotone.

Lemma 4.
F(n,m,j) = F(n"j:m:j)'FZ‘ J F(n_jsm"" 1,5 _k)s (2)
- k

where 3" indicates a sum over those k for which a composition of n into
m distinct parts, j parts in all, can have exactly k 1’s.

Proof: Consider a composition counted by F*(n,m,j) in (1). Decrease
each part by 1. Then n is reduced to n — 4, m is reduced to m — 1, and
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7 is reduced by the number of 1’s that were in the original composition.
Summing over appropriate k provides

Fom) =3 (§)rm-sim=1,5 -5

Surprisingly, the restriction on k imposed by Y_* is more complicated
for m = 2 than for larger values of m. For k ones to be summands in a
composition of n into j parts for m = 2, n must have a representation of
the formn =k-1+4 (j — k) -d for d > 2. Hence we must have j — k | n — k.
We offer a brief table for m = 2 that makes the pattern clear in this case.

Table 2. Summands k for m=21in Y *,3<n<17,2<j5 <9

n\j 2 3 4 5 6 7 8 9
3 1

4 1 2

5 1 12 3

6 1 2 23 4

7 1 1,2 1,3 34 5

8 1 2 23 24 45 6

9 1 12 3 134 35 5,6 7

10 1 2 123 4 245 46 6,7 8
11 1 12 3 234 15 356 5.7 78
12 1 2 23 4 345 26 4,67 6,8
13 1 1,2 13 1,34 5 14,56 37 578
4 1 2 23 24 245 6 2567 48
15 1 1,2 3 34 35 356 1,7 36,78
16 1 2 123 4 145 46 4,67 2,8
17 1 12 3 1,234 5 256 57 1,78

For m > 3, eventually ¥* is an unrestricted sum.

Proposition 5. Let m > 3. Then for n > '—""—;ﬂ +2(j -m), ¥\ =
£,
Proof: Let n = 192292, n%~ denote the partition n = a;14-a22+. . .4+ann,
where a; is the number of occurrences i in the partition of n. Consider
no = m(m+1)/2+2(5 —m). Then for any valueof k,1 <k < j—(m—1),
we have the partition 1¥2°3! ... (m—1)!(m—1+k)!, where b = j—m—k+2,
which is a partition of (k—1)1+(m—1)m/2+(m+k—1)+2(j —m—(k—1)) =
m(m +1)/2 4+ 2(j — m) = ng into m distinct parts, namely 1,2,...,m —1
and m+-k—1, with total number of parts k+m—2+b = j as required. Note
b=j—m+2—k > j—m+2—(j—m+1) > 1 so the part 2 does occur at least
once. If n > ng, say n = ng +r for r > 1, then the corresponding partition
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withk1l’s,1<k<j-m+1,isn=1¥2"31 . (m-1)!...(m=1+k+1).
We note that no is the smallest value of n for which 3,* = 3°7-"*!, since
if k = 1 the smallest number with m different parts and j parts in all is
14+2434+...+m+2(j —m)=ny.

Corollary 6.
n—1
n—1|%5" , .
re2=3 3 ¥ (- = ()
j=1 =1 k n=a+b jla k|b
j—kln—tj 1<a,b<n k#3

Proof: Observe that F(n — j,1,5 — k) = 1 ,j-k| n ~J . Hence 2)
0 ,otherwise
gives
T (i j
F(u12,.7) = ; (k) +F(n'_2.7a2:.7)= ; (k) +F(n_2.7)2’.(73)5
j—kfn-3 —kin—j

The last equality is justified by the remark before Table 2, where the con-
dition on k imposed in Z* is j —k | n — k. Sincen—k = (n —5) + ( — k),
this condition already holds by the constrain j — k | n — 5. Now (2) can be
applied again to the last term, and iterated for all first arguments n — lk

as long as Ij < n. This gives the limits 1 < [ < ["T-l J The first formula
in the lemma then follows by writing F(n,2) = Z’.:ll F(n,2, 7). Now make
the change of variables a = jl, b=n — a, k = j — k, and note (;7,) = (}).

Corollary 6 is in the spirit of the sum over divisors of Theorems 1 and 2,
but it admits a generalization to later columns.

Theorem 7.

Fam= S ST Ty (B()

n=a1+a3+...+8m ji|a1 jalaa Jslas Jmlam
a:#0 N#aja#ds  Fm-1%Im

» (j';}:). (4)

Proof: The outer summation is over compositions of n into m parts. First
we build from compositions of n into m parts certain partitions of n into
m distinct parts, then permute the parts of the partitions to obtain all
possible compositions of n into m distinct parts.
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Begin by representing the summands in a composition of n as a rectan-
gular array of dots, one row for each summand. This resembles the Ferrars
graph of a partition, except the lengths of the rows do not have to be
monotone decreasing. Now attempt to transform this graph into the Fer-
rars graph of a partition of n with m distinct parts by replacing some of
the rows of a; dots with rectangles of width a;/7; dots and height j; for j; a
divisor of a;. The rows of the rectangle represent the size of the new parts,
ai/ji, that replace the old e;, and the number of parts goes from 1 part of
size a; in the composition to j; parts of size a;/7; in the partition.

For a particular composition n = a; + a2 + ... am, We obtain a partition
of n into m distinct parts exactly when there is a sequence of divisors j; of
a; with 51 > j2 > 73 > ... > jm. Furthermore this process is reversible,
with any partition of n into m distinct parts yielding a composition of n
into m parts when the parts of the same size in the partition are combined
into one summand in the composition, and with the two partitions yielding
the same composition only when rectangular blocks of different dimensions
representing successive rows in the two partitions contain the same number
of dots.

The inner summations in (4) generate all sequences of divisors {j;} that
yield partitions of n into m distinct parts (the conditions that j; # ji;1 are
sufficient, since if j; > j;11 one of the binomial coefficients is zero). With j;
parts of size a;/7;, 1 < i < m, the total number of compositions of n that
can be formed by rearranging the summands is given by the multinomial
coefficient

¢ " )= ()G 05)
'1 —j2,j2 —jS: e ’jm—l _jm,jm .2 '3 jm

Compositions with a fixed part

In [7], Wilf outlines a general technique to obtain mean values for the
number of distinct part sizes in a combinatorial structure. The success
of his method depends on the multiplicativity of the generating function
for the total number of structures of size n. Many common combinatorial
structures have such generating functions, so that in addition to partitions
his results apply equally well to permutations [7], partitions of sets [4],
and polynomials over finite fields [3]. Part of the interest concerning the
number of part sizes in a composition stems from the fact that the familiar
generating function for compositions is not of the above type. Below we
use a different technique based on a simple counting argument to obtain a
generating function for the mean value.

Suppose we wish to guarantee that a particular part ! (perhaps repeated)
occurs in a composition of n. Denote by Cj(n) the number of compositions

118



of n in which at least one ! occurs. It will also be necessary to keep track
of Ci(n, 7), the number of compositions of n into j parts in all, in which at
least one part is I. This notation extends the more standard use of C(n) to
represent the total number of compositions of n, which is 2"~1, and C(n, )
to represent the number of compositions with exactly 5 parts, ;‘:11 .

For a composition 7 of n, let §(w) be the number of distinct parts of ,
and let

1 ,risapartofnw
x{r,m) = {0 , otherwise.
Then
D mFrm) =3 8m =3 x(tm) =3 > x(hm) =) Cin)
m=1 T T 121 21 = 21

Thus the numbers in row X in the table below represent Y 5, Ci(n).
They are of special interest because of the above connection with the aver-
age number of distinct parts in a composition of n.

Table 8. Compositions of n into parts in which at least one part is an I,
Ci(n),1<n<12,1<1<6

2 5 12 28 63 141 311
1 2 5 12 28 64 143

\m 1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 3 6 13 27 56 115 235 478 969 1959
2 1 2 4 9 20 43 91 191 398 824 1697
3 1 2 5 11 25 55 120 258 550 1163
4 1 2 5 12 27 61 135 295 639
5 1

6

£ 1 2 6 13 30 66 144 308 655 1380 2891 60.24

There is a general recurrence satisfied by the rows of Table 3, which we
will recover from the generating functions established in the next theorem.

Theorem 8.

n_ : t_tl_l_tl-l-l
ZC‘("')t -2t 1—2t+8 — g1 )

n=1

Proof: Write C}'(n) to be the number of compositions of n with no part
equal to I, and C}(n, m) to be the number of such compositions with m
parts in all. Thus

C(n) - Ci (n) = Ci(n). (6)
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Observe that the generating function for Cy(n,m) is

©0
Y Ctln,mitt =+ +.. .+ )= (T-i—t —th™,
n=0

Now account for all possible numbers of parts m via

e > t m t—th 4t
n __ P | = .
D, G _Z(l—t t) 126+ 8 — ¢

n=0 m=1

The last step is to recall that the generating function for arbitrary compo-
sitions is ﬁ Thus the generating function for the table entries in row !
follows from (6).

Corollary 9. Forl>1,n>21+2,
Ci(n) =2Ci(n-1) - Ci(n =) + Ci(n -1 -1) +2"+"2,

Proof: From the generating function for Cf(n) above we obtain

ittt = (1 -2 ¢ -ttt E Ct (n)t"

n—O
=Y Cin)t" -2 Z Crn)t*t! + Z Cr(n)t™t — Z C} (n)tn it
n=0 n‘-O n=0
=Y Ci(n)t" -2 Z Cln-1)t"+ Zc, (n—1)t" — Z Ci(n—1-1)t"
n=0 n={+1

Equating coefficients of t” for n > 1 4+ 2 gives
Cin)=2Ct(n-1)-Ci(n-D)+C{(n-1-1). (7
The last step is to note

Ci(n) =2""' = C}(n)
=21 (2Ct(n—-1)-C{(n=1)+C}(n—-1-1))
=22"%-Cl(n-1)) - -Ct(n-1))
+@ 2 —Cl(n-1-1))+ 202
=2C(n-1)-C(n-1) +Ci(n—1-1) + 272

The first row therefore satisfies the recurrence

Cl(n) = Cl(n - 1) + C1(n - 2) + 2"_3,
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where w(u) is a periodic function of small amplitude. This result and others
are contained in [2].

It is interesting to observe that the first ! (nonzero) terms of row ! in
Table 3 are also the first { terms of every subsequent row of the table. Thus
there is a sequence beginning 1,2, 5,12, 28, .. . which we will call an envelope
for the rows of the table. We account for this series in the next result.

Corollary 11. The envelope 1,2,5,12,28,64,144, ... of Table 3 has gen-
. . 1-1t
erating function (1—_§) .

Proof: In the generating function in Corollary 10 the significance of the
! factor is only that row ! is offset. For the envelope, we first consider
1/(1 — 2t + ¢! — t*+1). Note (by long division) that the series expansion of
this function of ¢ matches the series expansion of 1/(1 — 2¢t) for ! terms.
Thus the first ! terms of

14 t2 1
1-2t)1-2t+8 — ¢l

are provided by the simpler function

£2 1 1-t)°
1+ =
1-2t/1-2¢ 1-2¢t
From the generating function we deduce that the nth entry of the enve-
lope sequence (numbered from n = 0) equals 2"~2(n + 3) for n > 1.

By studying the generating function of Corollary 10 we can provide a
family of “nested recurrences” for the numbers Z.
Theorem 12. Denote by S(n) and D;(n) sequences defined for n > 1 by
the initial conditions S(1) =1, 5(2) = 2, and for any i Di(1) = Ds(2) =1,
and by the recurrences

S(n) =25(n—-1)— Di(n-1)+Di(n-2)+ @342 )+1

1,if2|n-1
0, otherwise
1,if3|n-1
0, otherwise
1,ifd|n-1
0, otherwise

Di(n) =2Dy(n—1)— Da(n—1)+ Da(n—2)+ (2" > +2"* +...) + {
Da(n) =2Da(n—1) — Ds(n— 1)+D3(n—2)+(2"‘3+2"'°+...)+{
D3(n) =2D3(n—-1) - Dy(n—1)+ Dy(n—2)+ (2"_3 +2% 74, )+ {

Then S(n) is the nth entry of row I of Table 3. The sums of powers of 2
include terms as long as the exponents remain non-negative.
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Proof: The proof will be by induction on k, the subscript of D. Summing
the entries in column n, we apply the recurrence of Corollary 9 summand
by summand to obtain

n-2

S(n)=2S(n-1) —f:C;(n-l) +i0¢(n -l-1)+ ZZ‘.
=1 =1 =1

We denote )",°, Ci(n — ) by Dy(n), where D is chosen mnemonically to
represent a sum over a diagonal. The diagonal sum D,(n) steps through
Table 3, repeatedly moving down one entry and to the left one entry from
entry Ci(n) in the first row. There is an extra summand of 1 because
Cn(n) = 1 did not arise from a recurrence but from an initial condition.
This explains the first recurrence.

Now consider the recurrence appropriate for Di.;. Recurrence (8) ap-
plies to the summands of Dj as well, which arose by stepping down one
entry and to the left k entries from entry Cj(n) in the first row. Recurrence
(8) applied to the summands of D gives a shallower diagonal, stepping
down one entry and to the left k + 1 entries, with an extra summand of
1 arising for k41 | n — 1 because in every k + 1st shallow diagonal the
initial condition C|y/(k+1))(n) = 1 gives a term that does not arise in any
recurrence.

The partition A1l + A22 + ...+ Aan = n (with ); occurrences of i) can
be ordered in (A; + Az + ... + M)/ (A1hh2!. .. A,!) ways. If we count com-
positions of n with j parts by taking ordered arrangements over partitions
of n with j parts we get the well known identity

i~-1/) SV NI Wk
(J 1 M1+A22F e FAnn=n Al.)\z.. ..A,.,.

Art+Az+.. . FAn=j
Similarly we can count compositions of n with j parts of m different sizes by
taking ordered arrangements of partitions of n into j parts with m different
sizes. The result is expressed in the following proposition.

Proposition 18.

. —_— ——j!
F(namij)— z AI!AQ!.--An!'

A114222+...+Aan=n
A +Agt.tAn =j
F#{i:A:>0}=m

As this proposition shows, there is a close connection between partition
identities and composition identities. Now we go the other way, and note
some results for partitions analogous to the composition results we have
derived.
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Partitions with m distinct parts

Since partitions may be regarded as compositions with decreasing part size,
and compositions may be generated from partitions by permuting the parts,
it is not surprising that many of the formulas generated above have ana-
logues for partition counting functions. We begin by recasting Table 1 as
a table about partitions.

Table 4. Partitions of n with m distinct parts, G(n,m), 1 < n < 16,
1<m<5

n\m 1 2 3 4 5
11

2 2

3 2 1

4 3 2

5 2 5

6 4 6 1

7 2 11 2

8 4 13 5

9 3 17 10

100 4 22 15 1

11 2 271 25 2

12 6 29 37 5

13 2 37 52 10

14 4 4 67 20

15 4 4 97 30 1
16 5 55 117 52 2

The first column of Table 4 is again d(n), the divisor counting function.
The sums over divisors of the first two theorems have the following versions
for partitions, obtained by counting partitions according to occurrences of
the distinct part that occurs least often.

Theorem 14. For n > 2,

In/3] In/j]-1 Ln/3] nfj—1 n—1
cma=3 > ¥ 1-3 [ME+Y ¥
j=2 k=1 d|(n—jk) j=1 k=1d|(n—k)
k#d< 2=k Jin k#d

Theorem 15. For 5 > 2 and n > j,

Li/2) n/r|—1 2 ) . .
r=1 k=1 0, otherwise.
G-r)(n—kr)
k#(n—kr)/(G—r)
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Formula (4) in Theorem 7 has a version for partitions whose proof is
immediate: From a composition of n into m parts one seeks the Ferrars
graph of a partition into m distinct parts by replacing summands a; with
groups of j; summands each of size @;/j;. All that is different is that, when
an acceptable Ferrars graph is found, the partition counts once, instead
of having its parts permuted to generate a family of compositions. What
results is

Theorem 16.

G(n,m) = Z Z E Z Z 1.

n=a1+aa+...+am j1|a; ,?‘ala_z ._-iala§ j,,.la,,!
a;#0 N>j2ja>ds  Im—1>dm

In structure Table 4 resembles Table 1, but it has an envelope for its
columns reminiscent of the envelope for the rows of Table 3.

Theorem 17. The first m+ 1 non-zero entries in column m of Table 4 are
the first m + 1 non-zero entries of all subsequent columns. The envelope,

1,2,5,10,20,36, ...,

has generating function

ﬁ(l —t)72,
i=1

Proof: The first non-zero entry in column m occurs at the smallest n for
which it is possible to have m distinct summands in a partition of n, which
is at T;y, the mth triangular number. The farthest term in the envelope
occurring in column m counts partitions of T,, + m = Tjhyy — 1 into m
distinct parts.

Consider the triangle of dots that is the Ferrars graph of the partition
1+2+...4+m, and let 1 < a < m be given. Any partition of a can be
represented as a Ferrars graph on its own, and appended to the triangular
Ferrars graph by either of two different methods. One method is to adjoin
dots representing the successive summands in the partition row by row to
the rows of the triangular Ferrars graph, top to bottom. This results in a
partition of T}, +a into m parts in all, all of them distinct. Another method
is to adjoin dots representing the successive summands in the partition
column by column to the columns of the triangular Ferrars graph, left to
right. This results in a partition of T + a in which the largest part is m,
in which there are more than m parts in all, but in which there are only m
distinct parts.

For any representation of m = a + b, any of the p(a) partitions of a may
be appended to the triangular Ferrars graph of 1 +2+...4+m by the first
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method, and any of the p(b) partitions of b may be appended by the second
method. This results in a Ferrars graph for a partition of T, 4+ m into
exactly m distinct parts. Furthermore the process is reversible. Thus in
the Ferrars graph of any partition of T;, + m into m distinct parts, it is
possible to strip off the first m dots in the first row, the first m —1 dots in
the second, .. ., the first dot in the mth row. This leaves m dots, in clusters
of dots in the upper right and/or lower left, that can be interpreted as
partitions of a (upper right) and b (lower left).

Overall the number of partitions of Ty, + m into m distinct parts is thus
given by Y- ..., p(a)p(b). This sum allows a or b to be 0. This is the
coefficient of ™ in the series expansion of (1 + p(1)t + p(2)t2 +...)%, and
hence the generating function is the square of the generating function for
unrestricted partitions: -

[[a-#2
i=1

Figure 1. The Ferrars graph construction of Theorem 16 for m = 7,
a=4=24+14+1and b =3 =1+1+1, yielding the partition of
Ty +7=35=94+7+6+4+3+3+2+1 with 7 distinct parts.

Before
0 0 0o 0o o0 0 O +— o o
o o 0o o o o ~— o
o O o o o O
o o o o
o O O
o o
o
T v 1
o O o
After
o 0 0 o o o o o o
O 0o o o o o o
o o o o o o
o ©o o o
o O o
o o o
o o
(o]

The combinatorial approach of Theorem 17 also explains the values of
the next term beyond the first m+ 1 terms of the envelope, G(m(m+1)/2+
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m + 1,m), because in this case when the partitions of a and b consist of
all 1’s, the appended partitions span the ¢ + 1st diagonal to give a Ferrars
graph of the partition of T;5+; into m + 1 distinct parts. Excluding these
m + 2 cases gives the correct value of G(m(m +1)/2+m +1,m).

Given the simplicity of the generating function, it is not surprising that
the envelope has arisen in many enumeration problems. See, for example,
(1, p. 90] in connection with partitions into parts of two kinds.

In analogy with Lemma 3 we have

Lemma 18. Denote by G(n,m,j) the number of partitions of n with
exactly m distinct parts and j parts in all, and by G*(n,m, j) the number
of compositions of n with exactly m distinct parts, j parts in all, and at
least one part being a 1. Then

G(n,m,j) = G(n_j) m:]) +G‘(n: m’J)

The parallel development continues.

Proposition 19.

Gln,m,j) =G(n—j,m3)+Y Gln—jm—-1,j—F),
k

where 3° indicates a sum over those k for which a partition of n into m
distinct parts, j parts in all, can have exactly k 1’s.

The same results about the summands of &* earlier, in Proposition 5 and
the preceding remarks, apply here as well.

Corollary 20.

n—1

G’(n,2,j)=£ > o1
1=

1 k
G~R)l(n—13)

In conclusion we mention that the mean value for the number of distinct
parts in a partition of n was obtained by Wilf [7]. He showed that

n n—1
Zm= lprz:g(n’ m) = Z P(z)/ p(‘n) ~ ?ﬁ’
i=0

as n — oo.
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