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Abstract

An abdiff-tolerance competition graph, G = (V, E), is a graph for
which each vertex i can be assigned a non-negative integer t; and at
most [V subsets S;j of V can be found such that xy € E if and only
if x and y lie in at least lty-tyl of the sets Sj. If G is not an abdiff-
tolerance competition graph, it still is possible to find r > IVI
subsets of V having the above property. The integer r - IV is called
the abdiff-tolerance competition number. This paper determines
those complete bipartite graphs which are abdiff-tolerance
competition graphs and finds an asymptotic value for the abdiff-
tolerance competition number of K .

1. Introduction

In 1968 Cohen [4] defined the competition graph of a food chain as a
directed graph, D, in which the vertices represent species and there is an arc
from u to v if species u preys on species v. The competition graph, G, of
arbitrary digraph D has the same vertex set as D, and vertices x and y are
adjacent if and only if in D they compete for the same prey, that is, there is a
vertex z such that xz and yz are arcs of D. After some time a body of research on
the properties of competition graphs appeared [5, 9, 11, 12] and before long
related concepts were defined. In particular, there has been interest in the
common enemy graph [10, 14], G, of D in which vertices x and y are adjacent in
G if and only if there is a vertex w such that wx and wy are arcs of D, the
competition-common enemy graph [6, 7, 13] in which adjacencies exist when
both of the conditions for competition and common enemy graphs are met, and
the niche graph [3] for which there are adjacencies when at least one of those
conditions is met.

Related to each of the above concepts is a determination of how far an
arbitrary graph deviates from a competition graph, a common enemy graph, a
competition-common enemy graph, or a niche graph. In most cases it can be
shown that the addition of a sufficient number of isolated vertices to any graph
can produce a graph in any of the four categories [11]. The one exception
concerns niche graphs. There are some graphs which can not be turned into
niche graphs by adding a finite number of vertices [3].

A different type of generalization of competition graphs was given in 1989
by Kim, McKee, McMorris, and Roberts [8]. They defined the p-competition
graph G of digraph D as the graph with the same vertex set as D and two
vertices adjacent if and only if they compete in D for at least p distinct species.
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When p = 1, this concept agrees with the conventional competition graph
discussed above. It was observed (1) that if Sj = {x: xi is an arc of D} for vertex
i=1,2, ..., IV(D), any intersection of p of the S; induces a (possibly empty)
complete subgraph of the p-competition graph G, and (2) the collection of all
such p-intersections forms an edge clique cover of G. In this case the S; are said
to be a p-edge cligue cover of G.

The most recent generalization is the ¢-folerance competition graph defined
by [1]. Here ¢ is a non-negative valued symmetric function whose two
arguments are usually assumed (but are not required) to be non-negative
integers. A graph G = (V, E) is a ¢-tolerance competition graph if each vertex x
can be assigned a value (tolerance) ty such that there exists a collection of at
most IVI subsets of V having the property that edge xy is in G if and only if x
and y lie together in at least §(tx, ty) of the subsets. If such an assignment of
tolerances allows such a collection of sets, the collection is said to be a
¢-tolerance edge clique cover, or ¢-T-ECC, of G. Brigham, McMorris, and
Vitray [1, 2] investigated such graphs when all tolerances are non-negative
integers and ¢ is “maximum,” “minimum,” or “sum.” Notice that a
p-competition graph is both a maximum- and a minimum-tolerance competition
graph where every vertex is given tolerance p. It is known {1] that any graph can
be transformed into a ¢-tolerance competition graph by adding isolated vertices,
and the minimum number of such vertices required to accomplish this is known
as the ¢-tolerance competition number. Of course, this number is 0 if the graph
is a ¢-tolerance competition graph.

Competition and p-competition graphs have application, of course, to any
situation in which two or more entities compete for a common prize. Preliminary
work indicates that ¢-tolerance competition graphs may be useful in the area of
resource allocation among users subject to inter-user relationships defined by the
relative tolerances.

Unfortunately, although study of these graphs seems warrented, even simple
classification problems appear to be extremely difficult. This paper attempts to
establish some proof techniques applicable when ¢ is the absolute difference
function, abbreviated abdiff; that is, abdiff(s, t) = s - ti. It uses these techniques
to determine which complete bipartite graphs are abdiff-tolerance competition
graphs and to find the asymptotic order for the abdiff-tolearance competition
number of K| 5. It will be convenient to say that a collection of sets forces an
edge uv of the graph G if u and v have tolerances ty and ty, respectively, and are
together in at least ¢(ty, ty) = Ity - tyl of the sets.

2. Km,n which are Abdiff-Tolerance Competition Graphs, with2<m <n

In this section we consider complete bipartite graphs, Ky n, where2<m <
n. As indicated above, if {u, v} € E, then u and v must be in at least Ity - tyl sets
together, and, if {u, v} ¢ E, then It - tyl 2 1, that is, nonadjacent vertices must
have distinct tolerances. Recall that, for a graph to be an abdiff-tolerance
competition graph, the number of sets available is IVI. Showing that a graph is
not an abdiff-tolerance competition graph involves proving that, under any
feasible assignment of tolerances, the number of sets needed to force the edges is
more than IVI. The flexibility in assigning tolerances makes this quite difficult



in general. However, the following lemma does give a lower bound on the
required number of sets.

Lemma 2.1. Let x and y be non adjacent vertices which are both adjacent to v.
Then the number of sets which contain v but do not contain x is at least

Ity - tyl - Ity - tyl + 1.

Proof: Let M be the number of sets which contain v but do not contain x. Since
y and v are adjacent, they are together in at least It - tyl sets. At most M of

these sets do not contain x; hence, v, x, and y are together in at least Ity - tyl-M
sets. If M <lty - tyl - Ity - tyl, then x and y are together in at least

Ity -tyl -(Ity - tyl - Ity - tyl) =t - tyl sets which contradicts the assumption that
x and y are non adjacent. )

Corollary 2.2. Let x and y be non adjacent vertices which are both adjacent to
v.Ifty Sty <tyorty 2 ty 2ty, then v is in at least 2lty - tyl + 1 sets.

Proof: The number of sets containing v is the number of sets containing v and x
plus the number of sets which contain v but do not contain x. The first of these
numbers is at least Ity - ty| and the second is greater than or equal to

Ity - tyl - Itx - tyl + 1 by Lemma 2.1. Thus, v is in at least

Ity - txl + Ity - tyl - Ity - tyl + 1 sets, which equals 2lty - tyl + 1 because of the
assumed inequality conditions. QO

Consider K where 2 < m < n. We adopt the following notation. The
vertices on one side of the bipartition are labeled with v|, v, ..., vp, and those
on the other with x1, x3, ..., xp. Without loss of generality, we assume that

<i<m- <j<n- i
ty, <ty,,, and txj <txj+,f°1' I<i€m-1land1<j<n- 1. Note that this
assumption implies that ty; —ty; 2i-jand ty —t,(j 2 i—jforalliandj

such thati>j.

Theorem 2.3. K3 p is an abdiff-tolerance competition graph if and only if n < 4.
Proof: We first show that, if n > 5, K2 p is not an abdiff-tolerance competition
graph. Since t, >ty,,either ty, >ty or ty, Sty . Weassume
ty, 2 tx, and note that a similar argument can be given if ty, Stg,_,. We
have that tx, < tx, < ty,; hence, by Corollary 2.2, v, must be in at least
2tv2-2t,(2 + 1 sets.

The total number of available sets is n + 2; hence 2 ty,-2tx, +1<n+2,

n+l n—1 . .
orty, < > + ty,. Thus t, < = + ty,. When n 2 5, this inequality

and the increasing tolerances for the vertices x1, x2, ..., Xp imply that
ty, Stx, ;- Thus, ty, <ty <tx, and, by Corollary 2.2, v| is in at least

2ty, -2ty + lsets.



The two vertices v and v are nonadjacent, so they are in at most
ty,- ty,- 1 sets together. Hence we need at least

(2ty,-21ty, + D+Q2ty,_ -2ty + - (ty,- ty,- ) sets altogether. This
implies ty,- ty +2tx - 2tx,+3<n+2. On the other hand, since n 2 5,
txo " tx, 2n-3and ty,- ty, 21550,

ty,- tvl+2(txn_|- tx,) +32>2(n-3)+4=2n-2. However, forn235,

2n - 2 > n + 2, a contradiction.

Next, we will show by an assignment of tolerances to vertices and vertices
to sets that, if n = 2, 3, or 4, K3 ; is an abdiff-tolerance competition graph.
Case 1: n=2. Weassign t, =ty =0and ty, = ty, = 1. Then we need
only two sets: {v], x2} and {v7, x1}.

Case2:n=3. Weassign ty =ty =0, ty,=ty,= 2,and ty,=1. We need

five sets: {v2, X1 }, {v2, x1}, {v1. x3}, {vi, x3}, and {x2, vy, v2}.
Case 3: n=4. We assign x| through x4 the tolerances 0 through 3, ty, = 1, and

tV2=2. We employ all six allowable sets as follows: {vi, x1, x4}, {v1, x4},
{vi, x3}, {v2, x1, x4}, {v2,x1},and {v2,x2}. Q

For the remainder of this section we focus attention on Ky n, where3<m <
n. The next lemma is an easy technical result.

Lemma 2.4. Forany vin {v{, v2, ..., vy}, either

a) ty—ty, Z[%J—l or

n
b) txn—l -ty ZIVE“—I.

Proof: Suppose ty —ty, <[—;—J-— I,sothat ty <ty, +l%J—2. Also, since

nz=3, [xn-l —t,(2 2(n-1)-2. Hence,

tey —tv 2ty - (IXZ +l%J-2] >2(n-1)-2- EJ +2= [ﬂ -1. 0

We now use Lemma 2.4 in the proof of a slightly more difficult technical
result which is used to divide the rest of the argument into two cases.

Lemma 2.5. Either o™ vy 2 ‘VE-I + ‘7%1—] -3or

2
n m
th-I - lx2 P4 {EJ + ‘\?)\ -2.



|

Proof: Leti= I'm" By Lemma 2.4, either (a) ty, - tx, 2 [%J -1, 0r

(b) by tv; 2 ’V ]-1. We proceed by cases.

[SR-]

Case 1: ty; - tx, 2 [

m m
ty,_,- ty, >m-1- [?-I = [E-J - 1. Hence,

n m
by txp =ty - ty )+ (ty, - ty,) 2 [—J + {.—J -2,

J -l.Form=23,m-12 [%] 50, as always,

A=

2 2
Case2: t, -t 2 [E.’ -1. Similar to above, t,, - t, 2 [E] -2, and we
n-1 i 2 i 2 2
conclude ty - ty, =(tg -ty )+(ty -ty )2 P]Jr[ﬂ]-& o
n- n- i i 2 2 2

The next lemma determines the consequences of the first inequality in
Lemma 2.5.

Lemma 2.6. If 3<m<n, by ™ tv, 2> "%-, + I-%} - 3, and Ky, ; is an abdiff-

tolerance competition graph, thenm =n=4.

Proof: Since m and n are both at least three, the conditions of Lemma 2.5 imply
that tx,_,> tVZ.By Corollary 2.2, noting ty, < ty, < tx,_ > We have that x|
is in at least 2t,("_l - 2ty, + 1 sets. Similarly, xp is in at least 2 tx, -2 ty, +1
sets. Also, xp and xp1 are not adjacent so they can be together in at most

tx, - tx,_, - I sets. It follows that the number of sets which contain at least one
of Xp or xp.1 is greater than or equal to:

Qty, -2ty, + D+ (2 txy_y~ 2ty, +1)-(tx - tx,. - D=

(tx, - ty,) + 3(tx,_ - ty,) +3.

By assumption, txaoy ™ by, 2 [%] + l-%-, - 3 which implies

g~ tvy 2 [g.‘ + I‘%-’ - 2. Therefore, the number of sets which contain at
least one of xp, or xp.1 is at least 4 UV%-|+ [%D - 8. Since m + n is the number

of vertices, we must have )

e 2451 [5]) sz (5] [3])-mon

Case 1. m and n are both even. Then, 8> m +n and, since m and n are both at
least 3, we obtain that m =n =4.



Case 2. m is odd and n is even (the m even and n odd case is similar). Here

82 4(mT+l + %) - (m + n) = m + n + 2. This is not possible if n is even and m

and n are both at least 3.

Case 3. m and n are both odd. Here, 8 2 4(m7+1_+n_+1) -(m+n)=m+n+4

2
which is not possible when m and n are at least 3. O

The next lemma determines the consequences of the second inequality in
Lemma 2.5.

Lemma27.1f3Sm<n, ty -ty 2 BJ + l%J -2, and K  is an abdiff-
tolerance competition graph, then eitherm=n=3orm=3andn=3.

Proof: By an argument similar to that in Lemma 2.6 we can show that the
number of sets which contain at least one of vy, or viy.1 is greater than or equal
o (ty - tx,)+3(ty - tx)+ 3. By assumption,

typy ™ txy 2 BJ + Ej - 2 which implies that t, - ty > B.J + EJ L

It follows as in the proof to Lemma 2.6 that m +n 2 4(lr—;-J+ ng) -4, or

(|3)+[3])-mem

Case 1. m and n are both even. Then, 4 > m + n which is impossible since m
and n are both at least 3.

Case 2. m is odd and n is even (the case of m even and n odd is similar). In this
case, 42> 4(97_1+ -rzl) -(m +n) =m + n - 2. This is not possible if n is even
and both m and n are at least 3.

l“_l+——n;])~(m-l-n)=m+n-4

Case 3. m and n are both odd. Here, 4 > 4(

which can occuronly ifm=n=3orm=3andn=5. Q0

Lemma 2.8. K4 4 is not an abdiff-tolerance competition graph.
Proof: We may assume without loss of generality that ty, > ty, . Using

Corollary 2.2 with x|, x2 and each of the vertices v2, v3, and v4 in turn, we find
that the number of sets containing at least one of v, v3, and v4 is greater than or
equal to: (2ty,- 2tg,+ 1+ (2tv3- 2tx2+ 1 +Q@2ty,- 2tX2+ 1) -
(tyy - ty,- D) -(ty, - ty, - D-(ty,- tyy - D=4ty +2ty, -6tx2+6.
Using the inequality ty, 2 ty, +1, we obtain:

dty,+2ty,-6ty,+62 6ty,-61y,+8. *)



Since ty, 2ty ) and there are at most eight sets available if K4 4 is an
abdiff-tolerance competition graph, it follows that 8 26 ty,- 6tx, + 8, which
implies 6ty, - 6tx,+8 =8 and that ty, = ty,. Further, ty, must equal
ty, +lor else we would have a strict inequality in (*). Also, since tx, = ty,,

we may reverse the roles of the x's and v's in the argument to obtain that
tx, = tx,+ 1. Using Corollary 2.2, we have that the number of sets containing

at least one of x3 and x4 is greater than or equal to

(2tx, -2ty, + D+ (21x, -2ty, +1)-(tx, - tx, - 1) which, by the above
equalities, is equal to ty , +6 - ty,. Hence,2=8-62 tyx, - ty, = tx, - tk,
and, since ty, - tx, 22, wehave ty, =ty +2.Similarly, ty, = ty,+2.
Replacing each tolerance by its negative and employing similarity, we conclude
tx, = ty, = ty,- 1. It follows without loss of generality that t, =i-1= ty,
fori=1,2,3,4. To generate the edges between v, v2, X3, and x4, each of the

pairs {vi, x4}, {v1, x4}, {v1, x4}, {v1. x3 |3 {V], X3 b {va, x4}, {va2, x4}, {VZ:
x3 } must be subsets of distinct sets. Just as v] must be in five of these sets, so
must v4 to generate its adjacencies with x| and x3. But then v4 shares at least
three sets with one of v| or vy, a contradiction. Q

Lemma 2.9. K3 5 is not an abdiff-tolerance competition graph.
Proof: Without loss of generality we take ty, = 0. Either ty 4 "ty 2lor

ty, - tx, 22. We treat the former case. The latter is similar and simpler. Thus
txs - tv, 2 2. Using Corollary 2.2 twice, for x5 and then x4 with v; and v2, and
recognizing x4 and x5 can share at most ty s~ txg - 1 sets, we see that the
number of sets containing at least one of x4 and x5 is greater than or equal to
[2(lx5 - tv2)+ 1]+ [z(tx4 - tvz)"' 1] ‘([xs sy, - =
txg +3tx, -4ty, +3=(tx, -ty ) +3(ty, - t,,)+322+3 +3=8. Since
only eight sets are available, txs - tv, = 2and ty, - ty, =1, that is, ty, =1
and ty, =2since ty, =0.

The tolerances determined thus far show v3 is in two sets with x5 and a

different set with x4. Thus, there are at most five sets which contain v but do
not contain v2. On the other hand, v| must be in at least ty 5 - tv, sets with x5

and ty, - ty different sets with x4. Of these, ty, - ty, - 1 may also contain
v2, meaning there are at least (tx, - ty ) +(ty, -ty )-(ty, - ty, -1)sets
required which contain v but not vo. Hence, 4 - ty, £35,implying t, =-1.

Now v| must be in at least three sets with x5 and two different ones with x4.
Furthermore, v3, again by Corollary 2.2, is in at least 2(t\,3 - tx2) + 1235 sets,

since tx, < -1 and ty; 2 1. Thus it must be in at least two sets with vy. This
means ty, 2 2, so in reality v3 is in at least seven sets. Here, the overlap with



sets containing v1 is at least four, forcing ty, 24 which imnplies v3 is in at least
11 sets, a contradiction. Q

Lemma 2.10. K3 3 is an abdiff-tolerance competition graph.
Proof: Let ty, =i=ty, fori=1, 2, 3; and let the sets be{xy, v{, v3},

{v2, x1, x3}, {x1, v3}, {x1, v3}, {vi. x3}, and {v, x3}. O

The results for Ky n with 2 £ m < n are summarized in the following
theorem.

Theorem 2.11. For 2 < m < n, Ky 5 is an abdiff-tolerance competition graph if
andonlyifm=2andn<4orm=n=3.
Proof: The result follows from Theorem 2.3 and Lemmas 2.6 through 2.10. O

3. Kj,n Which are Abdiff-Tolerance Competition Graphs

In this section we will determine those K  which are abdiff-tolerance
competition graphs. Surprisingly, this case is more complex than when2 <m <
n.

Suppose K1 p is an abdiff-tolerance competition graph and let S be the
collection of sets of an abdiff-T-ECC. Let x be the vertex of degree n with
neighbors labeled vy, v, ..., vq. We standardize the tolerance assignment by
subtracting the tolerance of x from all tolerances to obtain an abdiff
representation still using S but with the tolerance of x equal to 0. If fewer than
‘.—;—} vertices have positive tolerances, at least l%J vertices have negative
tolerances. In this case we negate all tolerances to obtain an abdiff representation
in which at least l%J vertices have positive tolerances. We label the vertices

with positive tolerances v1, v2, ..., V. None of the independent vertices can
have the same tolerance so we assign the labels in such a way that 0 <t} <tz <

... <ty where, in a slight abuse of notation, t; is the tolerance of vertex vj. Also,
all the edges of the graph are incident with x, so there is no need to have any sets
in S which do not contain x. Thus we will assume x is in every set of S. Finally,
there is no need for a vertex v; to be in more than t; sets although each v; must be
in at least t; sets; hence we will assume each vertex vj is in exactly tj sets of S.

The following lemma applies to any sequence of consecutive independent
vertices.

Lemma 3.1. The number of sets of S which contain vj.r but do not contain any
vertex in {Vi_r+1» Vi-r+2s .- Vj} is greater than or equal to

i
ti—r — z(tk —ti-r — D).

k=i-r+l

10



Proof: The vertex vi.ris in exactly t;r sets. If k > i-r, then vj.c and v}, which are
not adjacent, can be in at most ty —t;_ —1 sets together and the lemma follows
immediately. Q

The preceding result can be used to obtain a lower bound for the total
number of sets required for a sequence of consecutive independent vertices.

Lemma 3.2. For r 2 0, the number of sets of S which contain at least one vertex
-1
in {Vi.r, Vi-r41,..., Vi} is greater than or equal to t; + Z[t.l Z(tk -t;j—-D].
j=i-r k=j+1
Proof: Exactly t; sets contain v;. Using Lemma 3.1 and moving through the list

from highest to lowest index (i - 1 to i - r), we add in sets that could not have yet
been counted to obtain the result. O

For any given i and r, with i > r 2 0, we define T(j, r) to be the expression

from Lemma 3.2, that is,
i-1 i
TAO= i+ Y [tj— Y. (tg—tj=D].
jeimt k=j+l

Here and elsewhere we assume a sum equals zero if the upper index is smaller
than the lower index. We need one more easy technical result before proceeding
to the central lemma of this section.

Lemma 3.3. If K j, is an abdiff-tolerance competition graph with n > 5, then

n
2l =1]-2<2tpm.1 <n.
I.ZJ m-1

Proof: The condition on n ensures that there are at least two vertices of positive
tolerance. By Lemma 3.2, S must contain at least T(m, 1) = 2t,.] +1 sets. On
the other hand, S contains at most n +1 sets, so T(m, 1) < n+1, which yields the

. . T . n
upper inequality. Also, as the tolerances are strictly increasing and at least [EJ

. - n Ce
vertices have positive tolerances, tpy.] 2 [EJ -1 which implies the lower
inequality. O

The value of T(i, r) is a lower bound on the number of sets in S. We use this
bound in the following lemma to obtain an upper bound on n when K| p is an
abdiff-tolerance competition graph.

Lemma 3.4. If K| ; is an abdiff-tolerance competition graph, then either n < 17
orn=19.

Proof: Suppose K|  is an abdiff-tolerance competition graph and that n > 10, so
there are at least five vertices of positive tolerance. We divide the proof into two
cases depending on whether n is even or odd.

11



Case 1. n is even. In this case Lemma 3.3 implies that n - 2 < 2t;_1 < n. Since
2tm-1 is even, one of the inequalities must actually be equality, that is,

tm-1= nT-Z orty.1 = % Suppose that tp-1 = nT-Z There are at least

l-;—J -1= 95—2 distinct positive tolerances less than or equal to tny.;. Hence, the

positive tolerances from t| to tp,.1 must be the consecutive positive integers
h-s é 2 We have assumed that n 2 10, so that the vertices viy-1, Vm-2,
Vm-3, and vpy.4 must exist and we compute T(m-1, 3) = 2n - 14. Suppose on the
n
>
are taken from the integers from 1 to %, so that these tolerances are consecutive
except for possibly one j for which tj4| =t;j + 2. It is easy to check that in this
case the value of T(m-1, 3) is minimized if we take tp_3 =ty -2, and then
T(m-1, 3) = 2n - 16. This latter expression is smaller than the previous one, and
as the total number of sets is at least T(m-1, 3) and at most n + 1, we have that n
+122n- 16 or 17 2 n. This implies n < 16 since n is an even number.

Case 2. n is odd. In this case Lemma 3.3 implies n-3 < 2t.1 < n and therefore,

from 1 to

other hand that ty,.; = This implies that the positive tolerances from tj to ty.|

since nis odd, t—1 = —1-1-2_—1 or tpp—1 = nT_?‘ Applying the same reasoning as
in Case 1, we find that T(m-1, 3) is minimized when

n—1 =tm—2 +2and, in this event, we compute T(m-1, 3) =2n- 18.

tm-1=
Therefore, n+122n—180rn<19. Q

The above lemma yields 18 possible values of n for which K p could be an
abdiff-tolerance competition graph. Each of these graphs must be considered in
turn, which we have done to obtain the following theorem which completely
settles the question.

Theorem 3.5. The graph K| j, is an abdiff-tolerance competition graph if and
onlyifn<17o0rn=19.

Proof: The forward implication is Lemma 3.4. The converse follows from the
assignments and sets given in the appendix for the graphs in question. Q

Observe that Theorem 3.5 shows that K 19 is a counterexample to the

possible conjecture that, if G is an abdiff-tolerance competition graph, sois G - v
for any vertex v.

4. An Asymptotic Lower Bound for the Abdiff-Tolerance Competition
Number of Ky 5

In this section we find an asymptotic lower bound on the abdiff-tolerance
competition number for K| . Let k be the minimum number of isolated vertices

12



which must be added to K p, to obtain an abdiff-tolerance competition graph,
and let G = Ky 5 U kK. We will restrict our attention to values of n for which
K| n is not an abdiff-tolerance competition graph, in which case k > 1. Let S be
the collection of sets of an abdiff-T-ECC for G and let N be the size of S, so that
N=n+k+1.

We will maintain the notation from the previous section and note that many
of the observations made at the beginning of that section are still valid. Thus, x
will be the vertex of degree n, and once again we may assume that x is in every
element of S and the tolerance of x is 0. Also, vy, v7, ..., vy, will be the degree
one vertices of positive tolerance, and we assign those tolerances so that 0 < tj <

t2 < t3 <...< ty. As before, we may assume m 2 l%J

It is easy to see that Lemmas 3.1 and 3.2 still hold for the vertices in {v,
v2, ... vm}. We begin this section with a rather technical lemma involving
T, r).

Lemma4.1. For0<q <r-1<i, T(, r)

9 i-q-1 i-q-2 i-q-1
Z(2p+l— tiop +(@+2) ) t; +2(r—p)— z Y (-t -1
j=i-r j=i-r k=j+l

Proof° We employ mductlon on q. Usmg the deﬁmnon of T(1 r) we have

T(,r)=t; + Z[tJ Z(tk—t_'—l)]—t + th 2 Z(tk—tj—l)

j=i-r k=j+1 jEi-r  j=i-rk=j+l
By taking out all terms which correspond to k =i of the inner sum in the double
i-1 i-1

i-2 -l
sum, we obtain T(iL,r)=t; + Y tj= > (t—tj=D= Y ¥ (tg—tj=1).

jEi-r j=i-r j=i-rk=j+1
Taking out the terms not dependent on j m the second sum yields
i -2 i-l
TG,r)=t; + th-—rt,+r+ Etj z Y (tk —tj—1). Hence
j=i-r jmi-r  j=i-rk=j+l
i—-1 i-2  i-l
T, =(-)tj+2 D tj+r— Y D (tg —tj—1), which is the stated
j=i-r j=i=-rk=j+l1

result when q = 0.
Assume the lemma is true for some fixed q with 0<q<r-2,sothat T(i,r)=

i-q-1 -q-2 i-q-1
i(2p+l ti- p+(q+2)it +Z(r—p)— 2 i(tk—t ~1). We
p=0 j=i-r j=i-r k=j+l

proceed as above by taking the j = 1-q-1 term out of the second sum and taking

13



thek = i-q-l terms out of the inner sum of the double sum to obtain

i-q~2
TG, r)—2(2p+l-r)t, p+@+2tig_1+(q+2) Y, tJ+2(r p)
p=0 j=i-r =0

i-q-2 i~q-3 i-q-2
Z(t i—q-1 i —=1)— 2 Z(tk—t —1). The sum in the fifth term has
j=i-r j=i=r  k=j+l
(i-g-2)-(i-r)+1=r-q-1 terms. Thus moving t;. -g-1 - 1 (which is not
dependent on j) out of the sum yields

q a7z q
TG,r)= ), (2p+1-0tip +(q+2ting1 +(@+2) Y, tj+ .(r—p)
p=0 j=i-r p=0

i-g-2  i-q-3 i-q-2
—(r=q-Dt;_g_+(r—q-D+ th - Z Z(tk —t;—1). Combining the

j=i-r jei-r  k=j+l
second and fifth terms gives us [2(q+1)+1-1]t;. -g-1 which can be incorporated into
the first sum by increasing the upper index from q to q+1. Slml]arly the sixth
term can be included in the sum of the fourth term by increasing the upper index
by one. Furthermore, the third and seventh terms, which contain the same sum,
can also be combined into one term. All of which leads to T(i, r=

q+l i-q-2 q+1 i-q-3 i-q-
2(2p+1-r)t, o +(q+3) Et +2(r—p)— Z Z(tk—-t —1), which
j=i-r j=i-r k=j+l

is the result of the lemma forq + 1. CI

The result of Lemma 4.1 can be simplified, as shown by the following.

r(r+1)
S

r
Lemma 4.2. For0<r<i, T(i,r)= Y (2p+1-0)ti_p +
p=0
Proof: It is easy to check the equality forr=0and r= 1. If r > I, we set q equal

tor-2in Lemma 4.1 and obtain
i-r+l i—¢ -1+l

T(i,r) = 2(2p+l tiop+T 2, 4 +Z(r—p)— Z Y (t —t;=1). The
=0 j=i-r j=i-r ksj+l

second term reduces to r(tj.r + ti-r41) and thc double sum becomes t_r4q -tj.r - 1,

so we have T(i, r) =

-2 -2
N @p+1=n)tiop + (i +timpay) + Y (r=p) = (timps1 —tig = 1). We
p=0 p=0

increase the upper index on the sum in the first term on the right hand side of the
previous equation from r-2 to r and subtract the two additional terms from the
second term to obtain

14



r -2
T(i,r) = 2(2P+l_r)ti—p —ti—r +li—r41 + Z(r-p)-(ti—m =ti—r—1).

p=0 p=0
Combining the terms outside the sums, we arrive at the equation
r—2
T(,r)= E(Zp +1- r)t,_p + Z(r —p)+1. Since the last two terms equal the
p=0 p=0

sum of the first r positive integers, the result follows. O

Our next task will be to find a lower bound on k for a given n, or,
equivalently, a lower bound on N. This can be accomplished by obtaining an
upper bound on n for a given N. As always, the number of vertices of positive

. n .
tolerance is greater than or equal to [EJ hence we can attain our upper bound

on n by finding an upper bound on m, the number of vertices of positive
tolerance. The largest such tolerance must not exceed N, the number of available
sets. Our strategy is to bound the number of such tolerances, and hence the
number of vertices. With this in mind we establish the following notation. For a
fixed i, let x; = t; - t;_; for 0 <r < i. The next lemma provides a lower bound on

X,-.

Lemma 4.3. For a fixed i and any r such that 0 <r <1,
r 1 !
Xp 2 W= 2p+1-r)x, +N
p=l
Proof: By definition, xg = 0 and t; > tj.j for all j. Thus x; 2 for 0 <r <i which

gives the first lower bound. Using Lemma 4.2 and the fact that tj.p = t; - xp, we
have

3
Tn= Y @p+1-nti_p + ’(” D 2(2p+l—r)(t, —xp)+ HED '(”')
p=0 p=0
Splitting the sum yields
(r+1)
T 2p+1-n)t 2p+1- LA litting th
@i,n= pz‘(,)( p Dt — pz:')( p Nxp + 5 gain splitting the

first sum and factoring out the tj, which does not depend on p, we find

T(,r) =t 2(2p+ 1 —t; Zr— 2(2p+ 1- r)xp
p=0 p=0 p=0
the sum of the first r+1 positive odd integers and the second sum is simply

r(r +1) . The first sum is

15



r
(r+1)r; hence T(,r) = ti(r+ )2 —;(r+Dr— Y (2p+1-1)xp + r(r2+l) .
p=0
Separating the term involving x, from the remaining sum, we obtain
r-1
T D) = ti(r+D? =+ Dr—Q@r+1-r)x, = Y (2p+1-n)xp + rr+l)
p=0
Combining the first two terms and simplifying the coefficient of x,; yields
r—1
T(i0) =t (r+ D)= (r+1Dxe = Y, (2p+1-1)xp + fC+D Using the fact that
p=0
< r(r+1)
N 2= T(, r), we obtain N2 t;(r+1)=(r+1)x, - Z(2p+ 1 —r)xp + >
p=0

Solving for x; and recalling xg = O yields the second lower bound of the lemma.

-1
We define L(i, 1) = t; +é— r_+l-_l Zl(Zp +1- r)xp + N [, the second
p=
lower bound of Lemma 4.3. The question we are dealing with here is "For a
fixed i, how small can x, be?" Thus, we are interested in finding a lower bound
for L(i, r), a result which is supplied by the following lemma.

Lemma 4.4. For a fixed i, and any r such that 0 <r <, and any choice of
tolerances,

NN S =D+l Jo el r
L(l,r)Zt,+2 —y N+ 6 +(xg r){r lZJ rlZJH

Proof: In the expression for L(j, r), the values of tj, r, and N are fixed, so the
only items that may vary are the xp. It is apparent that the value of L(i,r) is
minimized if xp is as small as possible for those p for which 2p+1-r <0 and if xp
is as large as possible for those p for which 2p+1-r > 0. By definition, Xp+1 - Xp
= tip - ti-(p+1) > 0, 50 Xp4+] > Xp, Also, by Lemma 4.3, xp2p. It follows that a
lower bound for L(i, r) is obtained if we take values for Xp as follows:

r-1
iflsps—
p p )

X —(r—p) if%l<p5r—l

Xp = . With these values for the Xp's, we

obtain the following lower bound for L(j, r):

16



7]
r 1 2 r-1
LD 2t + o~ — N+ Y, @p+1-np + Y @p+1-1)x; —r+p)|.

p=1 - f_“J
|
Splitting the second sum and factoring out the x, - r, which does not depend on

p. yields L(i,r) >t +%_

-1
1 [rTJ r-1 r—1
—|N+ Y, @p+1-Dp+ (x;-1) Y, @p+1-n+ Y @p+1-np|
QT
2 2

Combining the first and last sums, we obtain

r—1 r-1
LG,r) >t +%_% N+ @2p+1-r)p+ (x;-r) Y @p+1-1)|.

B = =[r_+l J
p 2

Splitting both sums leads to L(i,r)2t; + % -

r-1 r=1 r-1 r—1
1 2
-rTlN+2Zp ~(=DY p+(xc =0 P @p+D-(x-r D1 |,
P '[TJ p_lTJ

where terms independent of p have been factored out of the summations. The

number of terms in the last two sums is r—1— l-%l_l +1l=r- lr—HJ = ‘-LJ

2 2
2
r—1 r-1 2
Noting that ) (2p+1)= Y @p+1)- > (2p-+1)and using the formulas
2 H T
2

for the sum of the first t positive integers, the sum of the first t positive odd
integers, and the sum of the squares of the first t positive integers, we are able to

. . . . r
rewrite our inequality as L(i,r)>t; + 3

1 (r=Dr2r-1) (r=Dr 2 |r+1 |r
r+l[N+2 G —(r=1) > +(xr—r){r —lTJ —rlEJ}:,
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It is easy to see that 2 (r-l)(r —21)r = (r—l);(r-i-l)

which

(r=Dr2r-1)
6
implies our result. Q

The lower bound for L(i, r) given in the preceding lemma is unwieldy, but
we can make it a bit simpler and use it to prove the following important lemma
which gives the hoped for lower bound on x;.

Lemma 4.5. For a fixediand any rsuch that 1 Sr<i- 1, xp > Ml;—m
(r+2)

2 2
Proof: Let f(r)= r2 —F%EJ - rl%J Thus, if r is even, f(r)= %— and, ifris

r2 -
odd, f(r)=

! . Rewriting the bound for L(j, r) found in Lemma 4.4 using

f(r) and employing Lemma 4.3 gives

xe2 L) 2 t; LE 1 [N+(r—l)r(r+l)
2 r+l

+ xf(r)- rf(r)]. Solving this

2
e+t + EEDE_ =D iy N
inequality for x,, we obtain x; 2 6 . We
r+1+f(r)
r2 -1 r? r2-1
know that <f(r) < T By replacing f(r) by in the numerator and

2
reo. . .
by vy in the denominator, we obtain

2 _ 2 _
(r+l)ti+(r+1)r_r(r 1)+rr I—N
Xp 2 62 4 . Multiplying the top and
r+1+

4

bottom of the right hand side of this expression by 12 and expanding terms we
. 12(r + Dt; + 612 +6r—2r> + 2r +3r° —3r— 12N
obtain x; 2 > =
12r+12+3r
12+t -NJ+ 2 +6r2 450 12+ D -NJ+r(r+D(r+5) o
= . [

121 +12 + 3r2 3(r +2)2

discard the r(r+1)(r+5) term from the numerator to obtain the result of the
lemma. Q

A major difficulty in any analysis of abdiff-tolerance is that there are many
possible choices for the positive tolerances ty, t2, ..., tm. To overcome this
obstacle we use a sequence g, Sj. ... of numbers which will dominate any of the
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choices. We define our sequence inductively as follows: sg =N and

Si+1 =S —Mi—zlm fori 2 0. For convenience, we let 6(k) be the sum

(i+3)
of the first k + 1 nonnegative integers. We prove a lemma which relates the s;'s
to any collection of positive tolerances ty, tg, ..., ty.

Lemma 4.6. For any fixed i and for any valid set of tolerances, if m - (i) > 0,

then sj 2 tm_g(i)-

Proof: We proceed by induction on i. Fori=0, 6(0) =0 and sg = N 2 tp.¢.

Assume sj.| 2 tm-g(j-1)- We know

tm-o(i-1) - tm-6() = tm-0(i-1) - tm-o(i-1)-i = Xi. Note that m - 6(i) > 0 implies

m - o(i-1) - 1 2i; hence, by Lemma 4.5,

4[(i+Dty—g(i-1) = N]
(i+2)%

tm-a(i-1) > tm-o(i) + -Letd =sj.] - tm.g(j-1), S0

d 2 0 and we have
4[(i +1)sj_ ,—N] 4G+ DId+ty_ o(l—l)] NI_

(i+2)% (i+2)?
4(l+l)2d+4[(l+l)tm_0(;_l) ]. Therefore,
(i+2) (i+2)
4[(i+1)s;_; = N]
§i =Sj—|—————————
o (i+2)2
4+ Dt

=tm-g(i-1) +d - [4(l+l)d G+ Dtm Gg h= ]].Itfollows that

(i +2)% (i+2)

4(i+1)d 4(i+1)
Si >tm—0(i)+d'm‘[m—0(i) +d[“(i+2)2]2‘m-0(i)' a

Although the s;'s may not be among the possible choices of tolerances for
any of the vertices v[, v, ..., Vm, by using Lemma 4.6 we can achieve our
desired bound on the number of t;'s by obtaining a bound on the number of s;'s.
We will do this, but first we establish the following lemma which provides a
recursive formula for the si's.

Lemma 4.7. For a fixed i > 2 and any q where 0 < q <i-2,

_G-a)? -1 q) ht

-2— J
G+2%arn? ) (.+1)ZJ;q
Proof: We proceed by induction on q. From the definition of the s;'s we have
— .2
Sj =Ssj_1 — A1+ Dsi- ' Np__d i1+ 4N 5 - Iterating by
(i+2)? (1+2) (i+2)
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substituting for sj. in the right hand side of the above equality yields

.2
! |:(l ) + 4N :|+ 4N . Hence

T G+2)2% | 12 %i-2 (i+1)2 (i+2)*

i2(i-1)?
== 7. 2 si-27t
(i+2)°(Gi+1) (1+2) (|+1)
q =0. Suppose the equality holds for q where 0 < q <i-2. Again, by the

5 [1 +(i+ 1)2], which is the result for

definition of the si’s, sj_3_q = M 1_3_q+.4—N2-.By the inductive
(i-q) (i-q)
hypothesis
i+l
(l_q) (21_1_(‘]2) s_2_q+L2 ZJ - Substituting the
(i+2)°(i+1) (|+2) (i+1) joing
equality for sj.2_q yields sj =
. . . i+l
-@lG-l-g?fG(-2-9 4N |, 7
(+2%G+02 | G- T (-9 (+2) (1+1)2J i
Performing the multiplication and canceling the (i-q)2, we obtain s; =
. . . i+l
(i-1-q%(-2-q)° (-1-9% N 2
2,2 Sim3-qt gy Nt 7 X1
i+2)°G+1) (i+2)°G+1) (1+2) (l+1) j=i-q
. 4N .
Factoring 5 out of the last two terms gives
(i+2)°(i+1)
_Gm1-gli-2-g)? 4N T 2
Si3-qt g —| (i-1-a)’+ 3]
(1+2) (|+l) (i+2)°(+1) j=i-q
Rewriting in terms of (q+1) and combining the terms in brackets, we obtain
2 i+l
li-(q+D1li~1-(q+1)] 4N .
e i |
I j=i-(g+])

which is the result of the lemma forq+1. Q
We now proceed to the central theorem of this section.

Theorem 4.8. If k is the abdiff tolerance competition number of K| p, for n >
18,and N=n+k-+1, then n<4YN2 +7.
Proof: For i = 2, setting ¢ =i- 2 in Lemma 4.7 gives

4N i+l
J© - Using the formula for the
(i+2)2(i+1)? o (i+2)2 (1+1)2z

sj =
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squares of the first i+1 positive intcgers, we see that

i+l . . .

2 . z 2 2 [(l +1)(i+2)(2i+3) _ 1]. We increase
(i+2)*@{+1) (i+2)2@+1)* 6
the last expressxon by discarding the -1 and replacing the 2i + 3 in the numerator

i+l
with 2i + 4. After simplification we obtain —% 2 Pe—— 1t
(+2)%G1+D° 5 3(i+1)
4 4N .

follows that s; < sg + . By construction, sg = N. We

0 .
(+2)2G+1)2 7 3(i+1)
choose I to be the unique integer such that YN +1>I+12 3N . Note that I is at
least 2 since N> n + 1 2 19. Hence, by the preceding, we have

4N 4N 4§/N_2
MR

< q+Da+2)  AN+DAN+2)
- 2 2

s < JIfm-o() <0, then

< %/Nz for sufficiently large N.

Otherwise m - pa(l) > 0 and we may use Lemma 4.6. If ty, tp, ..., tr, is any actual
sequence of tolerances, by Lemma 4.6, s[> tm.g(1); hence,

2

tm-o(I) <2 + 4 - Since the tj's must be strictly increasing, fewer than

An?
3

to tm.g(1)- The remaining tolerances are selected from tm-6(I)+1> tm-6(1)+2s - tm
and so the number of such possibilities is

o 1D AN +n 2N AN N7 N2
2 3

the last inequality is a consequence of the fact that N > 19. It follows that
23N2
3

2

2+

of the vertices v, v2, ..., Vm can have tolerances less than or equal

+1, where

=3+ 2%N2 (actually, for large values of N our bound

2
ms3+%+

is more like I )- By construction, 2m + 1 2 n and the result follows. Q

Finally, we rephrase the result of Theorem 4.8 in terms of a lower bound on
k.

Corollary 4.9. If k is the abdiff-tolerance competition number of Kin forn2

3
18, then k 2 -é-(\/n - 7) (1 —¢&)where € goes to 0 as n grows large.
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Proof: By Theorem 4.8 and the definition of N we have n < 4?}(n +k+ 1)2 +7.

Y
Solving for k yields kz—l-(n—7)% -(n+l)= (n-7) 1- 8(n+l})§ and the
8 8 (n=17)
. 8(n+1)
result follows by letting € equal ———.
y g €eq (n-7)%

Corollary 4.9 shows that the abdiff-tolerance competition number k is
3
bounded below asymptotically by c; n2 for some positive constant .

5. An Asymptotic Upper Bound for the Abdiff-Tolerance Competition
Number of Ky p
In this section we show that the abdiff-tolerance competition number k of
3
K} n is bounded above asymptotically by cyn 2 for some positive constant c4.

3

Combining this with the result of Section 4 shows that n? is indeed the correct
asymptotic order for this competition number. Our goal is achieved by defining,
for a fixed value of N, a collection of n' vertices, a tolerance for each vertex, and
an assignment of the vertices to a collection of N sets such that the sets form an
abdiff-T-ECC of K 5. The value of n' will be so large that it will be possible to
derive the desired upper bound on k. Observe that if we have m vertices of
positive tolerance placed in the sets of an abdiff-T-ECC, we can also have m
vertices of negative tolerance. This can be achieved by creating, for each vertex
u of positive tolerance ty, a vertex u' of negative tolerance -ty, and placing u' in
every set which contains u. We can also add a vertex of tolerance 0. Thus we
may assume n' =2m + 1, and we will describe the proper assignment of sets and
tolerances for the m vertices of positive tolerance.

The N sets are labeled S1, S2, ..., SN. The m vertices with positive
tolerance are identified as vjj with 1 <j <i. Vertex vjj is assigned tolerance

tji = N G-Dbi - j + 1. The index i ranges from 1 to the largest value such
! 2

1

that [E] - p—-é—l)—l - i+ 1 >0 (the largest i such that tj; > 0). Finally, vertex
i

vij is placed in set Sk if and only if k = +1is, for 0 <'s <tjj - 1. The following
facts follow easily from these definitions.

Observation 5.1. The assignments described above lead to the following results:
(a) vertex vjj is in exactly tjj sets by definition and the fact that tj; < [E1
i

wheni>1,
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(b) tij > ti+1,1 s the tjj form a strictly decreasing sequence when viewed
in the lexicographical ordering implied by the subscripts, and
(c) vertices vjj and vjj, j # j', are together in no sets.

The following sequence of lemmas prepares the way for the main theorem
by establishing that vj; and vi_k j, k 2 1, are together in fewer sets than
Itjj - ti-k,jl. The first two of the lemmas are technical in nature. The greatest
common divisor of positive integers s and t will be denoted gcd(s, t).

Lemma 5.2. If p is an integer such that Sy, contains vj j and vk ;, then there
exists an integer r such that p = j + ir and j' = (j + ir) mod (i-k).

Proof: By construction, since v j is in Sp, there exists an integer r such that

p =j + ir. Similarly, there exists an integer r' such that p =j' + (i-k)r'. Hence,
j'=j+ir-(i-k)r' = (j + ir) mod (i-k). Q

Lemma 5.3. Let d = ged(i-k, k). For any two integers r and s,
(j + ir) = (j +is) mod (i-k) if and only if r = s mod (%)

Proof: Suppose (j + ir) = (j + is) mod (i-k). Then (r - s)i = 0 mod (i-k). We have
that d | (i - k) and d | k, so d | i, meaning i = td for some integer t. Therefore,

(r - s)td = 0 mod (i-k), 50 (r - s)t = 0 mod (%) Leta= gcd(t, '—&—'5) Then
ad divides i-k. Since i = td and a divides t, ad divides i and, therefore, ad divides

k. By the choice of d, a = 1. Therefore, (r - s)t = 0 mod (%) and
gcd(t, -'-—'—E) = 1. Hence, r - s =0 mod (ﬂ-), sor=s mod (ﬂ)

d d d

i-k i-k
Conversely, suppose r = s mod 5/ Thenr=s+b a9 for some

integer b. Therefore,
(G+in)= { j+ i[s + b(%)]} = [ j+is + ib(%)]. It follows, since d
divides i, that j + ir = (j + is) mod( i-k). O

The following lemma places an upper bound on the number of sets
containing both vjj and vj.k ;. This is the first step in showing they don’t share as
many as Itjj - tj_k j'l sets.

Lemma 5.4. If I is the number of sets containing both v; j and vik j, where 1 <k
t::
<i-1,thenl< I(ITUkﬂ, where d = gcd(i-k, k).
d
Proof: The result is trivial if I = 0. Otherwise let Sp be the set of smallest index
which contains both vjj and vj.k j~. By Lemma 5.2 there is an integer r such that p
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=j+irand j' = (j + ir) mod (i-k). Let Sq be an arbitrary set (perhaps Sp) which
also contains vjj and vi.k j' Again, by Lemma 5.2, there exists an integer s such

that q =j + is and j' = (j + is) mod (i-k). By Lemma 5.3, r = s mod (%) In

other words, q = j +i (r + tl—;j—k) where, by the choice of p, t 2 0. By

0<

. But Sq was chosen

arbitrarily and, since Sy, is fixed, j, i, r, i-k, and d also are fixed, that is, q

construction, 0 < s <tjj, so that, 0<r + tﬂ < tjj. Hence,
r tij
- +t< It follows that 0 St <
=) &)
d

t. .
depends only on t. Therefore, there are at most ‘(l—_"'k—)l possible values for q
d

[..
corresponding to the at most (1_—Uk—) possible choices for the value of t. O
d

The next lemma completes the proof that the assigned tolerances behave
appropriately by showing that the bound of Lemma 5.4 is smaller than
Itj - Gk ji-

Lemma 5.5. Fori> 1 and 1 £k <i - 1, the number of sets containing both vj;
and vj j is less than Itjj -tj.y jl.

Proof: Let N = i(i-k)p + s where p is a nonnegative integer and 0 < s < i(i-k). Let
I be the number of sets which contain both vjj and vj.k j. By Lemma 5.4, 1 <

_ [E‘I (1 1)i —j+l
2
(—“) S
d d
E -(1—k)p+[7],so
i i

. [_s_]_ﬂ_. P]_(i—-l)i_.
(i k)p+Ii ) j+1 i ) j+1

where d = ged(i - k, k). Here

I< (i—k) =pd+ (i—k) . Examining
d d

the last term and using s < i(i - k), we see

[31 (i-1i i+l Gi-1)i - Gi-1)i

E T
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i-1i

<|d- ,21 =[d—-;—] <d- 1sincei>2. Consequently, I <pd +d- 1. For
l.—

the difference of the tolerances, we compute

ti-kJ"tij=[i§k]‘(i-k—;)(i-k) -@-1- [ ] g-I l)' +(G-1)

= I-—NE] - [E-l +(i-1)+1-1+j-]j sincek> 1. By construction, j 2 1 and
1= 1

o N N N . s
j' Si-k, so that ti-kj' - tij 2 IVH‘, - [T-, + k. Also l_m-l =1p+ I-:.' and

IVEW =(i-k)p+ l-i.l, and, by substituting, we have
i i

tidkg - j 2 kp + [;_s—k] ; [ ﬂ +k = kp + k. However, d = ged(i - k, k), so d

divides k which implies d < k. Therefore kp + k> dp + d > dp +d - 1 which
completes the proof. O

It follows from the preceding that the defined sets S; form an abdiff-T-ECC
for the given vertices. We are now in a position to prove the main theorem of
this section.

Theorem 5.6. If k is the abdiff-tolerance competition number of K} n, then

k<cn” wherecis a positive constant independent of n.
Proof: Let m be the number of vertices vjj created as described in the beginning
of this section and let M be the largest value of i used, that is, typ, M > 0 but
tM+1,M+1 < 0. Using the definition of t;;, we have

] MM + 1)
M+ 1 2

and so M3 > ¢1N for an appropriately chosen cj. Thus, M > ¢cp N* . In our
construction there are exactly i vertices with i as the first index, so the total
number of vertices of positive tolerance is computed as

- M <0. Therefore, M3 + 4M2 + 3M = 2N

tM+1,M+1 = l-

m= z M(M+l) >c3 N%. Thus, n, which is at least n' =2m +1, obeys the
i=1

relationn22m + 1 > ¢4 N% or n% >cs5N. Since N=n +k + 1, we have

csk < n% - csn-csork<c n* for an appropriately chosenc. QO
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Appendix

The following lists the tolerances and sets which show K1 p, is an abdiff-
tolerance competition graph for n < 17 and n = 19. The single vertex in one
bipartite set is given tolerance 0. For vertices in the other bipartite set, only those
with positive tolerances are shown. In addition, there is always one vertex of
tolerance 0 and it never needs to be in a set. If n is odd, there are the same
number of vertices with negative tolerances as there are with positive tolerances,
and then those negative tolerances are the negative of the positive tolerances.
Furthermore, a vertex with a negative tolerance will be placed in the same sets
as contain the vertex with the corresponding positive tolerance. If n is even,
there is one fewer vertex with negative tolerance. In view of this, if we show sets
for n even, the same sets will work for the succeeding odd value n + 1, so we do

not list them. The tolerances for the vertices 1 to |_n/2J of positive tolerance are
given as a vector (t, t2, ..., th/2J).
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n = 1: No sets required  n=12:(1,2,3,4,6,13) n = 16: (1,2,3,4,5,6,8,17)

Set 1: 1,3,5,6 Set 1: 1,3,5,7,8
n=2:(1) Set 2: 2,4,5,6 Set 2: 2,4,6,7,8
Set1:1 Set 3: 3,5,6 Set 3: 2,5,7,8

Set4: 2,5,6 Set4:4,7,8
n=4:(1,2) Set 5: 5,6 Set 5:4,7,8
Set1:1 Set 6: 5,6 Set 6: 3,7,8
Set2:2 Set7: 4,6 Set7:3,7,8
Set 3: 2 Set 8: 4,6 Set8: 7,8

Set 9: 4,6 Set 9: 6,8
n=6:(1,3,7) Set 10: 3,6 Set 10: 6,8
Set1: 1,23 Set11: 6 Set 11: 6,8
Set 2: 2,3 Set12: 6 Set 12: 6,8
Set 3: 2,3 Set13: 6 Set 13: 6,8
Set4: 3 Set 14: 5,8
Set 5: 3 n=14: (1,2,3,4,5,7,15) Set15:5,8
Set 6: 3 Set 1: 1,3,5,6,7 Set 16: 5,8
Set7: 3 Set 2: 2,4,6,7 Set 17: 4,8

Set 3: 4,6,7
n=38:(1,2,4,9) Set 4: 3,6,7 n=19:
Set1: 1,34 Set 5: 3,6,7 (1,2,3,4,5,6,7,9,20)
Set2: 2,34 Set 6: 2,6,7 Set 1: 4,7,8,9
Set 3: 3,4 Set 7: 6,7 Set 2: 3,6,8,9
Set4: 3,4 Set 8: 5,7 Set 3: 3,6,8,9
Set 5: 2,4 Set9: 5,7 Set 4: 3,5,8,9
Set 6: 4 Set 10: 5,7 Set 5: 2,5,8,9
Set7: 4 Set 11: 5,7 Set 6: 2,5,8,9
Set 8: 4 Set 12: 4,7 Set7: 14,89
Set9: 4 Set 13: 4,7 Set 8: 4,8,9

Set 14: 7 Set 9: 4,8,9

Set 15: 7 Set 10: 5,7,9
n=10: (1,2,3,5,11) Set11: 7,9
Set1:1,34,5 Set12: 79
Set 2: 24,5 Set 13: 7,9
Set3: 24,5 Set 14: 7,9
Set4: 4,5 Set 15: 7,9
Set5: 4,5 Set 16: 6,9
Set 6: 3,5 Set 17: 6,9
Set 7: 3,5 Set 18: 6,9
Set 8: 5 Set 19: 6,9
Set9: 5 Set 20: 5,9
Set 10: 5
Set11: 5
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