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Abstract

For a graph G with vertex set V, the total redundance, TR(G),
and efficiency, F(G), are defined by the two expressions:
TR(G) =min{ )"  .(14+degv): S CV and |[N[z]NS] > 1Vz € V},
F(G)= max{zues(l+deg v): SCVand [N[z]nS|<1Vz eV}
That is, TR measures the minimum possible amount of domina-
tion if every vertex is dominated at least once, and F measures the
maximum number of vertices that can be dominated if no vertex is
dominated more than once.

We establish sharp upper and lower bounds on TR(G) and F(G)
for general graphs G and, in particular, for trees, and briefly consider
related Nordhaus-Gaddum-type results.

1 Introduction

Let G be a graph with vertex set V and edge set E;let p = |V| and ¢ = | E|.
The minimum and maximum degrees of vertices in G are denoted by §(G)
(or 8) and A(G) (or A), respectively.

A dominating set D of G is a subset of V such that every vertex in
V — D is adjacent to at least one vertex in D. A dominating set of G of
minimum cardinality is a minimum dominating set of G, and its cardinality
is the domination number of G, denoted by ¥(G). A vertex v of G is said
to dominale a vertex w if w = v or wv € E, i.e., if w is contained in the
closed neighbourhood N{v] of v.

If D is any dominating set of G, the total redundance of D, TR(D), is
defined by TR(D) =}, p(1+degv). The iotal redundance of G, TR(G),
is defined to be the minimum value of TR(D), where the minimum is
taken over all dominating sets D of G. These concepts were introduced by
Grinstead and Slater in (5] and [6], where TR(G) was called the redundance
number of G, and the present terminology was introduced in [7] where
further associated concepts were also considered. A dominatingset D of G
for which TR(D) = p is known as an efficient dominating set of G (see [1],
(2] and [3]). Related concepts are discussed in [4].
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A packing of G is a subset P of V such that, for every vertex v €
V, IN[v)N P| < 1; ie., for every pair u,v of distinct vertices in P, the
distance between u and v is at least 3. (Also see [8] in which k-packings
are introduced for k € Z*: 1-packings corresponding to independent sets
of vertices and 2-packings to our packings, and, in general, a k-packing
being a set S of vertices such that d(u,v) > k for all distinct u,v € S.)
A packing of G of maximum cardinality is called a mazimum packing of
G, and its cardinality is called the packing number of G, denoted by p(G).
For a packing P of G the efficiency of P, denoted by F(P), is defined
by F(P) = Y ,ep(l + degv); ie., F(P) = |U,ep N[v]l. The efficient
domination number of G, denoted by F(G), is the maximum value of F(P),
taken over all packings P of G. Related concepts are discussed in [6].

Thus, briefly,

TR(G) = min{ S (1+degv): S CVand |N[zJnS| > 1forallzeV }
vES

and

F(G):max{Z(l+deg~v) :SCVand|NzlnS|<lforallz e V}.
vES

A few observations can be made immediately:

1. For a graph G of order p, F(G) < p < TR(G); furthermore F(G) = p
or TR(G) = p if and only if G possesses a dominating set which
is also a packing (i.e., an efficient dominating set). Hence either
TR(G) = F(G) or TR(G) - F(G) > 2.

2. For every integer m > 3 there exists a graph G such that TR(G) —
F(G) = m; for instance if G = Kp_1,m-1, then TR(G) = 2m and
F(G)=m.

3. For any positive integer m there exists a graph G for which TR(G) =
mF(G); for instance, G = Km X Ky, is such that TR(G) = m(2m—1)
and F(G)=2m - 1.

4. For every pair of integers p, m with 1 < m < p there exists a graph G
of order p which possesses an efficient dominating set of cardinality
m; for instance G = K1 p_2m41 U (m — 1)K2 if m < p/2.

5. It has been established (cf. [3]) that the infinite grid graph Po x
P has an efficient dominating set. However, for G = P3 x Ps, for
instance, F(G) =7, p(G) =9 and TR(G) = 10.
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2 Bounds on F(G) and TR(G)

If G is an r-regular graph, then TR(G) = ¥(G)(r+1) and F(G) = p(G)(r+
1). But for nonregular graphs the situation is far more complex. The
problems of deciding whether, for some input integer k, TR(G) < k or
F(G) 2 k are NP-complete. In fact, deciding if F(G) = p = TR(G) is
NP-complete. (See [2].)

We shall therefore find bounds on TR(G) and F(G). In particular, since
F(G) < p £ TR(G), we shall seek a lower bound for F(G) and an upper
bound for TR(G), both for general graphs G and for trees.

2.1 Upper bounds on TR(G)

If G is a graph of order p, then TR(G) > p and this bound is attained if
G has an efficient dominating set, for instance, if G is a star. The first
theorem gives an upper bound on the total redundance of a tree.

Theorem 1 IfT is a nonirivial tree of order p, then
TR(T) < 3p/2—1.

Proof: Let T be a nontrivial tree with partite sets V; and Va, where
[Vi] < |Va|. Then V; is a dominating set of T and

TR(T) < TR(V1) = ¥ (1+degv) = Vil +¢(T) < p/2+p—1=3p/2—1,
UEV[

as required. O
For any integer & > 1 the above bound is attained by the tree of order
4k + 2 obtained from kPs U (k + 1)K by the introduction of a new vertex
which is adjacent to the central vertex of each component of kP3U(k+1)K).
We now turn out attention to general graphs.

Theorem 2 Let G be a graph of order p. Then the tolal redundance of G
is at most cp®? + o(p®/?) where ¢ = 4/\/27e.

Proof: The proof is by probabilistic methods. Let u be a vertex of the
maximum degree A. Let X denote the set of vertices not in N[u] that have
degree at most p*/4, and let | X| = z.

Assume first that 0.0001p < z < 0.99p. Set # = \/z/e/(p — z). (Note
that in particular 1/(100,/ép) < = < 100/,/ep.) Form the set A by taking
cach vertex of G independently with probability w. Let B denote the set of
those vertices that are dominated by neither A nor . Then D = AUBU{u}
is a dominating set.
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For a vertex v, let y, = 1 + degv denote the cardinality of v’s closed
neighbourhood N{v]. Then the expected total redundance of A is given by

E(TR(A)) = Z Yy = 27q + TP.
veV

Since 2 < p— A, and 2¢ < 2p%/% 4+ (p — z)A, it follows that
E(TR(4)) < (p—2)*7 + O(p°*).

Furthermore, since a vertex v of V — N[u] is contained in B if and only
if no vertex of N[v] is contained in A, the probability that v is contained
in B is (1 —7)¥v. Since 1 — 7 < ™" (this holds whenever = > 0), it follows
that the expected total redundance of B is bounded by

E(TR(B) < ) we ™
vgN[u]

A vertex v ¢ X has degree more than p4 and for it y,e~"¥* is o(1/p) (since
7 > 1/(100,/ep)). Also, the maximum of the real function f(y) = ye™™ is
1/(we) (attained at y = 1/7). So

E(TR(B)) < z/(we) + o(1).
Hence the expected total redundance of D is bounded by
E(TR(D)) < (p— 2)*7 +z/(7e) + O(p*'").

Now, substitute the value of 7 into this expression. Then by calculus it
follows that the maximum of the resultant expression 2(p — z)y/z/e is
attained at = p/3. There its value is cp®/? for the above value of c.

If 2 < 0.0001p, then set = = 0.01/,/p and construct D as before. The
expected total redundance of D is at most p?w + z/(7e) + O(p®/4), which
is less than 0.02p%2 4+ O(p®/%). If x > 0.99p, then set = = 100/,/p and
construct D as before. The expected total redundance of D is at most
(0.01p)*7 + p/(me) + O(p®/*), which is less than 0.02p>/2 + O(p®/1).

Since the expected total redundance of D is at most cp®? + o(p*/?),
there must exist a dominating set D with total redundance at most this
value. Consequently,

TR(G) < ™ + o(p'?),

as required. O
In general we have:
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Theorem 3 If a graph G has p vertices and q > p edges, then the toial
redundance of G is at most O((pg)'/?).

Proof: The proof is similar to the above proof but simpler. Set # = \/p/q.
Then construct A by taking each vertex independently with probability ,
and set D = AU(V — N[A]). Then by a discussion similar to the above it
follows that

E(TR(D)) < 2qm + p/(we) + O(p),

whence the bound. O

We can also use probabilistic methods to show that the bound in The-
orem 2 is sharp. Define the graph G(j, k, d) as follows: Take disjoint sets
J and K where J is an independent set of j vertices and K is a clique of
& vertices, and join each vertex of J to d vertices in K independently at
random.

Lemma 1 For j = p/3, k = 2p/3, and d = |\/4ep/3|, with probability
1 —o(1) the total redundance of G = G(j, k,d) is at least cp>* — o(p®/?)
where ¢ = 4/+/27e.

Proof: We need to show that with probability 1 —o(1) there does not exist
a dominating set of G with total redundance less than cp®/? — o(p®/?).

Any minimal dominating set D of G is of the form D = AU X4 where
ACK and X4 = J — N(A). If |A] > p!/2, then TR(D) > k|A| > cp¥/2.
So we may restrict our attention to those D such that |A| < p'/2.

Now let A be any subset of K of cardinality a < p!/2. Any particular
vertex x of J is in X4 if and only if N(z) C K — A. So the probability &,
that # € X4 is given by

k—a d
€= ( d ) ~ k—a ~ e adlk
(@) k ’
d
and |X 4| has the binomial distribution B(j,&,). In particular, E(|X 4]) =
a-
We can use large-deviation bounds to show that it is extremely unlikely

that [ X 4| is much smaller than its expectation. From Lecture 4 in [9] it
follows that

3/4

Pr (lXAI < ja - pv/s) < e P2k £ omp

There are at most p’"‘m possibilities for A. Since p”me"’a/4 is o(1), with
probability 1 — o(1) it holds that: For every a up to p'/2, and for every
A C K of cardinality a, the set X4 = J — N(A) has cardinality at least
J€a — p7/8-
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The total redundance of AU X, is at least ak + |Xa|d. Hence, with
probability 1 — o(1), the total redundance of the graph G is at least

TR(G) > min ak + jde*4/*
a

less some small-order terms. This expression is minimized at a equal to
kln(jd®/h*)/d. Hence, for the above values of j, k and d, with probability
1 — o(1) the graph G(j, k, d) has total redundance at least cp®/? — o(p3/?).
(m}

2.2 Lower bounds on F(G)

If G is a graph of order p, then F(G) < p and this bound is attained, for
instance, if G is a star.

Lemma 2 For any graph G of order p and maximum degree A,

(¢) F(G)>A+1,

p(A+1)
(b) F(G) > ATE1

Proof:

(a) If v is a vertex of degree A, then F(G) > |N[v]| =1+ A.

(b) Let S be a packing of G such that F(S) = F(G), and let T = N[S].
Then S is a maximal packing and so N[T] = V(G). Every vertex in N[T]—
N[S] is adjacent to a vertex in N[S] — S, and every vertex in N[S]— S has
at least one neighbour in S. Hence |N[T]| < |N[S]| + (|N[S]| - |S|){(A - 1).
Since F(G) = |N[S]], it follows that

p<AF(G)-|SI(A-1).

Furthermore, F(G) = |N[S]| < |S|(A+1). Hence p < A F(G)— F(G)(A -
1)/{A + 1) (provided A > 1). Rearranged this gives the desired bound.

a

That the bound in (a) is best possible follows from the observation that,
formeNand G = K,,, x Kp,, p(G) = m?*, A(G) = 2m -2, diam G < 2
and so F(G) = 1 + A(G) = 2m — 1. The bound in (b) is attained by
G = (5, for example, but we believe that, in general, this bound is very
poor.

As a corollary of the above two bounds we obtain:

Theorem 4 If G is a graph of order p, then F(G) = p if p < 3 and
F(G)>1+p—1ifp>4.
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An infinite class of graphs of diameter 2 for which F(G) closely approxi-
mates 14++/p — 1 may be constructed as follows: Let n be an integral power
of a prime, F a field of order n and 7 the projective plane coordinatised
by F. Then the points and lines of 7 correspond to the one- and two-
dimensional subspaces of the three-dimensional vector space Va(F) over
F. A point u and line € of 7 are said to have homogeneous coordinates
(w1, u2,uz) and [y, €a, €3], respectively, if the corresponding one- and two-
dimensional subspaces of V3(F), are, respectively, the space spanned by
(w1, u2, uz) and the solution space of {2y + fozq + fazz = 0. Let G be
the graph which has the points of 7 as its vertices and in which distinct
vertices u and v, with homogeneous coordinates (uy, ua, u3) and (vy, va, v3),
are adjacent if and only if u;v; + uavs + ugvz = 0. Hence v is adjacent in G
to the n + 1 vertices corresponding to points on the line [vy, va, v3) of 7 if
vi+v3 +v3 # 0 or to n such vertices if v} +v3+v3 = 0;50 p(G) = n*+n+1
and so A(G) = n + 1. Since, furthermore, both u and v are adjacent to
the point of 7 in which the lines with homogeneous coordinates [u,, uz, ug
and [v1, va, v3) intersect, it follows that dg(u,v) < 2 and so diam G = 2.
Hence F(G) =14 A(G) = n+ 2, whereas 14+ /p—1 =1+ vn? +n; so
F(G)=[1+p-T1].

For trees we can improve the lower bound slightly. For a forest T, a
leaf is a vertex of degree 1, and a vertex v of T is called a penult if v is
adjacent to at least one leaf and to al most one non-leaf. For instance, the
penultimate vertices of a longest path in T are penults of 7.

Theorem 5 For a tree T of order p, F(T) > \/8(p +2) — 4.

Proof: We prove that F(T') > /8(p + 2) —4 for any forest T on p vertices.
The proof is by induction on p. The statement is certainly true for p = 0

and for an empty forest.
Let w be a penult of T with degree d. Let 7" = T — N[w]. Then

by the induction hypothesis F(T*) > /8(p—d+1) —4. Let P be a
packing of T™ with F(P) = F(T*), and z a leaf-neighbour of w in 7.
Since P contains no vertex from N[w], P U {z} is a packing of T’; hence

F(T)> F(P)+2 > \/8(p—d+1)— 2. We are done if \/8(p—~d+1) >
vV8(p + 2) — 2. Consequently, we may assume that

d>2(p+2)-3/2

for all penults of T.
Suppose there exist penults w and w’ of T at distance 3 or more. Then

Q = {w,w'} is a packing of T. So F(T) > F(Q) > 2(/2(p +2) — 3/2),
whence we are done. So we may assume that any two penults of 7" are at
distance at most 2, and thus 7' is a tree of diameter at most 4.
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Let v be a central vertex of 7. Let it have a penults and b leaves as
neighbours, and let d denote the maximum degree of a neighbour w of v.
Then

F(T)>1+4+degv=a+b+1.

Further, consider a packing R consisting of w and, for every other penult
z adjacent to v, one leaf-neighbour of z. Then

F(T)> F(R)=d+1+2a—1).

Note that p < ad+b+1. We need to determine where the maximum of
the above two bounds is minimized. It can easily be shown that where this
occurs the two bounds are equal and p = ad + b + 1. It then follows that

the minimum occurs when a = \/(p+2)/2—-1,d = \/2(p+2) — 1, and
b= \/9(p + 2)/2—4. For these values both lower bounds are /8(p + 2)—4.
a

The bound in the above theorem is attained, for each value of @ > 2, by
the tree T}, obtained from the star K 4 by attaching 3a — 1 leaves to the
centre of K, and 2a leaves to each leaf of Ky,4. Then p(T,) = 2a? + 4a
and F(T,) = 4a = /8(p(Te) +2) — 4.

On the other hand, caterpillars have a much higher efficiency. Recall
that a caterpillar T is a tree such that the removal of all leaves from T
yields a path, called the spine of T.

Theorem 6 For a nontrivial caterpillar T of order p with n verlices on
the spine, F(T) > (p+ 2n + 2)/3.

Proof: Let the spine of T' be given by vjve...v,, and let vo and vpq4y
be leaves adjacent to v; and v, respectively. Let Py, P; and P, be the
packings of T' defined, for i € {0,1,2}, by Pi = {v; : j =4 (mod 3),0 <
j < n+1}. Then every leaf in T is dominated in exactly one of the three
packings, except for vp and vp4+; which are dominated in two of them,
and every vertex on the spine of T' is dominated in all three packings. So
2, F(P) > (p+ 2n +2). Tt follows that max{F(P,), F(Py), F(Ps)} >
(p+2rn+2)/3. O

This bound is tight for a caterpillar in which the spine has order n a
multiple of 3, and every interior vertex on the spine is adjacent to a leaves
while the two ends of the spine are adjacent to a—1 leaves each (for a > 2).

3 Nordhaus—Gaddum-Type Bounds

It is possible to establish Nordhaus-Gaddum-type bounds for the packing
numbers or total redundances of a graph G and its complement G.
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Theorem 7 For a graph G of order p,
(a) p+1< F(G)+F(G) < 2p,
(6) (p =132 +1< F(G)F(G) < p*.

Proof: The upper bounds follow immediately from F(G), F(G) < p. To
establish the lower bounds, let F = F(G) and F = F(G). Then F + F >
A(G)+A(G)+2 > p+1. Furthermore, by Theorem 4, F, F > \/p— 1 +1.
From calculus it follows that FF' > f(v/p — 1+1), where f(z) = z(p+1—z).
Andso FF> (p—13%*+1. O

The upper bounds in the above theorem are attained if, for instance, G is
complete. To show that the lower bounds are sharp, consider G = C5[K,),
the lexicographic product of Cs with K, for which p = 5n, F(G) = 3n,
F(G)=2n+1and so F(G)+ F(G) = 5n +1 = p+ 1. The lower bound
in (b) is attained if G = Cs.

The use of similar techniques yields the existence of constants ¢;, ¢, and
cs for which p? < R(G)R(G) < ¢1p%/?, and, indeed, ¢2p°/2 < R(G)F(G) <
¢3p°/2. The determination of “best possible” values of such constants is
beyond the scope of this paper, but may merit investigation.
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