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Abstract. We derive the exact joint distribution and prove
the asymptotic joint normality of the numbers of peaks, dou-
ble rises, troughs and double falls in a random permutation.
A Chi-square randomness test, as a by-product, is also pro-
posed.

1.Introduction

Suppose that II, = (m,...,m,) is a random permutation of I, =
{1,...,n} that is uniformly distributed on the set S, of all permutations of
I,. The element =; of a permutation Il, is called a peakif m;—y < 7; > 7iy1,
a double rise if m;—y) < m; < Wiy, a troughif m;_; > m; < w4 and a double
fallif m;_y > m; > w4y, respectively. Thus, with the convention 7,41 = m
and my = m,, each element of a permutation can be classified in one of the
above four categories. Denote the numbers of peaks, double rises, troughs
and double falls, respectively, in a permutation IT,, by

An = Z?=1 I{mi—y <m > mia},
B, = Z?___l I{'ll'i_l <m < 7r,'+1},
Cn = Z?:l I{ﬂ'i_l >m; < 1!','4.1} and
Dn =i I{mioy > mi > mipa },

where I{-} is the indicator function. Also, with the two ends m, and m,
not being counted, i.e. replacing Y i, by Z?z'zl, denote the corresponding
four numbers in a permutation Il, by Ay, B;,, C, and Dj,, respectively.
In this note we are interested in the joint distributions of the above two
sets of random variables. In the circular case (A,,, B,, Cn, Dy), since peaks
and troughs always appear alternately in each permutation, it is clear that
A, = Cy. Also, since A, + B, + Cp, + D, =n, n > 2, we need only take
into account A, and B, instead of all four variables. In the linear case
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(A, By, Cy, D}, since Ay, + B, + C;, + D;, =n—2,n > 3, we can delete
D;, and only deal with the remaining three variables.

In the literature the study of furning points, i.e. peaks and troughs, in
a random permutation can be traced back to Bienaymé [1,2] in 1874-1875.
He proposed a randomness test based on the number of turning points ,
which, as pointed out by Heyde and Seneta [8,p.124], is one of the earliest
nontrivial nonparametric tests. Similar nonparametric tests have been em-
ployed on other problems, e.g. the number of peaks is used by Stigler [10]
to test and to estimate the serial correlation of the AR(1) model in time
series. For other statistical applications, the reader is referred to Stigler
[10], Warren and Seneta [11] and references therein. In the past, studies on
the distributional aspect of the above random variables are concentrated on
peaks(troughs). The generating function of A, or A}, (or a modified version
of it) is derived by Carlitz and Scoville [3], David and Barton [5,pp.162-164]
and Warren and Seneta [11]. The asymptotic normality of Ay, is proved by
Chao (4], David and Barton [5,pp.158-162] and Wolfowitz [12]. The most
important results about peaks are due to Entringer [6]. He derived the
generating function and hence the exact distribution of A,. Relying on
Entringer’s results, we derive the generating function and the exact joint
distribution of (A, By) in Section 2. In Section 3 recursive formulae for
calculating the joint distribution of (A4}, B, C») are derived. In Section 4
we prove the asymptotic joint normality for (A}, B}) and (An, By) using
a central limit theorem for m-dependent stationary random variables. As
a by-product, a new Chi-square randomness test based on the numbers of
peaks and double rises is also proposed.

2.Joint distribution and generating function of (A,, B,)

Forn>1,a>0and b>0,let ¥(n;a,b) denote the number of permu-
tations in S, with A, = a and By, = b, and let 9¥(n; a, -) denote the number
of those in S, with A,, = a. We note the following boundary conditions and
properties of ¥(n;a,b) and ¥(n;a,-), all of which are obvious :

(i) ¥(1;0,-) =(1;0,0) = 1.
(i) ¥(n;a,) #O0onlyif1 <a< § or(n,a)=(1,0).
(iii) ¥(nia,-) = Lro®¥(n;a,b), n>2.

Clearly, due to the uniform distribution on Sy,

Pr{An, =a,B, = b} = ¥228) and Pr{4, =} = Yo

Entringer [6] first derives a recursive formula for ¥(n;a,-). This then
leads to a partial differential equation whose solution provides a generating
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function for A,,. Furthermore, by expanding that generating function, he
obtains an explicit formula for 1(n;a, -) in terms of Stirling numbers of the
second kind. His results are stated in the following theorem.

Theorem 2.1(Entringer)

@) $n+1a)= 2"

Rag(nia, ) + (0 — 20 + 2p(mia—1,9),

forn>1la2>1.

@ 30> vlma,) eyt = st LD
n=1a=0 T—y

(iii) ¥(n;a,-)
1311 n—-1

= (_1)n+an2n-l Z Z g__;gl(a:l) (n 2r— 2)S(n— 1 t)

r=a-1 t=n-2r-1

forn >2,a >0, where

S(n—1,t) = l)tz( 1)‘()

s=1
is a Stirling number of the second kind.

We now take B,, into account in addition to A, and derive an explicit
formula for ¥(n;a,b) based on Entringer’s result. We state our result in
Theorem 2.2 and prove it by a simple geometric approach.

Theorem 2.2 Forn > 2,
- 1
1/’("? a, b) = (n bza) (E)n_zad)(n;al ')a
a=1,---[3,06=0,---,n—2a.

Proof. Since
¥(n;a,b) = Pr{B, = bj4n = a}¥(n;a,"),

it suffices to show that the conditional distribution of B, given A, = a is
a binomial distribution with parameters n — 2a and -,i;

141



Consider a permutation in S,, with e peaks, and hence with a troughs.
Due to the circular property and the alternate appearances of peaks and
troughs, these turning points can be uniquely represented by an ordered
trough-peak chain of length 2a, (t),p1,t2,p2, - -, ta, Pa) With ¢ = 1. Ge-
ometrically, we can draw consecutive line segments, according to this or-
dered trough-peak chain, with alternating vertical heights ¢; for the troughs
p; for the peaks. Then we have an uphill slope between each pair of
(ti,p;) and a downhill slope between (p;,ti41), where t,41 = ;. Let
E = {e1," * yen—2a} = In\ {t1,p1, - ,ta,Pa}. Then, each e; € E is
either a double rise if located on an uphill slope, or a double fall if located
on a downhill slope. Next, for each e;, draw a horizontal line with height
e;. It is clear that each horizontal line intersects an equal number of uphill
and downhill slopes, and those intersecting points are possible positions for
the e;. (See Fig. 2.1 for an example). Therefore, each e; has the same
chance of being a double rise or a double fall. Furthermore, the location of
each e; is independent of the location of other elements in . Hence, for
any given ordered trough-peak chain of length 2a, the proportion of per-

mutations with b double rises is (*77*)(3)"~2¢. Summing over all ordered
trough-peak chains of length 2a completes the proof. O
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Figure 2.1. An example of ITj, with trough-peak
chain (1,5,2,10,7,12,4,9) and E = {3,6,8,11}.

It is clear from Theorem 2.2 that 3(n;a,-) is pivotal for all ¥(n;a,b)
and hence the latter can easily be calculated via the recursive formula in
Theorem 2.1.

Next, we derive the generating function of (A,, B,) based on Entringer’s
result and Theorem 2.2.

Theorem 2.3

o0 [s o3 o0
Y Y Y wniablgnge

n=1a=0 =0
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It is easy to see that the range conditions for z, y and z stated in the

theorem satisfy those for s and ¢.

3.Recursive formulae for joint distribution of (4}, B}, C;)

In this section we study the joint distribution of (A}, B}, C), n > 3.
Owing to its complexity, we can only derive recursive formulae for it. Since
the two ends m; and w, of a permutation II, are not classified and not
counted, this causes difficulties in the derivations. Those difficulties can be
resolved by partitioning the set S, into the following four subsets according

to pairs (m;, m2) and (7p—1, ™). Let

M, = {Il, : m < w2 and Tq.1 > Wy},
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W, = {Hn tm > weand Ty < 7rn},
N, = {II,, :m < mg and mp—) < ﬂn},
Up = {lI; : m > 72 and mp—y > mp}.

Here, the technique we use is similar to that of adding an auxillary variable
in deriving the distributions of various runs used by Fu and Koutras [ 7).
Note that C}; = A}, — 1 for permutations in M,, C}; = A% + 1 for those
in W, and C;; = A}, for those in N, |J U,. Now let ¥(Mpn;a,b) denote
the number of permutations in M, with A} = a and B, = b, and denote
P(Wa;a,b), ¥(Np;a,b) and ¥(U,;a,b) similarly. Then, for n > 3, we have

Y(Mp;a,b), fc=a-1,
. . . Y(Wa;a,b), fc=a+1,
1 — — — —
nPr{idn=0,Ba=bCo=ct =1 y(N,:a,b)+¥(Un;a,b), ifc=a,
0, otherwise.

The counting problem of the above four numbers can be simplified by
the symmetry property between M, and W, and that between N, and U,
resulting from the following two bijections. Define the bijection on S,

$r:Mn=(m ) = I = (my - my), T = (04 1) = Tngaoi ;

see Figure 3.1 for an example. It is easy to show that
Y(Wa;a,b) = Y(Ma;a+1,b). (3.1)
Also, define the bijection on S,
$2:lp=(m - -mp) DM =(m - om,), m=(n+1)—m;
see Figure 3.2 for an example. Then
Y(Un; a,b) = Y(Ny;a,n—2a—b-2). (3.2)

Therefore, we need only derive recursive formulae for ¥(M,;a,b) and
w(Nn; Q, b) .

Figure 3.1. An example of ¢;.
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Figure 3.2. An example of¢,.

Theorem 3.1 Forn > 3,

¢(Mﬂ+1;a) b)
(b+ 1)Y(Mp;a— 1,0+ 1) + ayp(My; a,b)
+aypy(Mp;a,b— 1)+ (n — 2a — b+ 1)Y(Mp;a - 1,b)

=< +YP(Npja—1,b) + ¥(Np;a - 1,n — 2a - b), (8.3)
fora=1,---[3],b=0,--+,n~2a,
0, otherwise;
Y(Nn+150,b)

(b + 1)¢(Nn; a—-1,b+ 1) + a"/’(Nn; ayb)
+(a + 1)¥(Np;a,b— 1) + (n — 2a — b)3p(Ny;a — 1,b)
+2¢(Mpn;a,b), (3.4)

0, otherwise,

with initial conditions

ap o[ for @b =00),
Y(Ms;a,b) = {0, otherwise;

o {1 for (@) =(01),
¥(N3;a,b) = {0, otherwise.

Proof. A permutation II,+1 € Mp41 can be generated by inserting n + 1
into any position (I) between m; and =, of a permutation II,, € My, (II)
between 7,_; and 7, of a permutation II, € Ny, or (III) between m and
mwo of a permutation II,, € U,.

We first consider how the numbers of peaks and double rises change
in case (I). Those changes depend solely on the classification of the two
consecutive elements of I, € M, where n+ 1 is to be inserted in-between.
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Note that eight among all sixteen pairs of such classifications are impossible.
For example, a peak cannot be followed by a peak or a double rise. The
remaining eight possible pairs are (1)double rise — double rise, (2)double
rise - peak, (3)peak — trough, (4)peak - double fall, (5)double fall - double
fall, (6)double fall - trough, (7)trough — double rise and (8)trough — peak.
If n + 1 is inserted into the pair (1)double rise — double rise, then a new
peak, n + 1, is generated while the first double rise stays the same and
the second becomes a trough. Hence, AA},, = A;,, — A, = 1 and
AB},,, = B}, — B;, = —1. Inserting n + 1 into (7)trough — double rise
yields the same changes Thus, inserting n + 1 (i) in front of a double rise
leads to the first term (b+ 1)¢(Mpn;a—1,b+1) of (3.3). Similar arguments
lead to the following results : Inserting n+1 (ii) in front of a peak ((2) and
(8)) yields A4}, = ABj,; = 0 and leads to the second term of (3.3),
(iii) behind a peak ((3) and (4)) yields AA;,, =0 and AB;,, =1 and
leads to the third term, and (iv) behind a double fall ((5) and (6)) yields
AA;,,, =1and AB;,,, =0 and leads to the fourth term.

The fifth term of (3.3) is derived from case (II) and the last term from
case (III) by applying (3.2). Thus, the proof of (3.3) is complete.

In order to prove (3.4), we begin with the fact that a permutation
I,41 € Ny can be generated by inserting n + 1 (I') into any position
between 7; and m,_; or behind 7, of a permutation II, € Ny, (II') behind
7 of a permutation II, € M, or (III') between 7, and m; of a permutation
I, € W,. We omit similar derivations and only mention that (3.1) is
applied for combining the two terms corresponding to cases (II') and (III')
into the last term of (3.4). O

4.Asymptotic joint normality of (A, B,) and (4}, B;) and
a randomness test

We begin by stating the means, variances and covariances of (A,, By)
and (A}, B;). By using the following simple combinatorial results :

I
°‘|«: 0‘|:- allm

Pr{m < m > m3 < 74 > 75}
Pr{'/rl <y < M3 < Wy > 7f5}
Pr{m < m > w3 < mq < 75}

Pr{7r1 <M < w3 > 71'4} = ﬁ,

we can obtain by straightforward calculations,
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E(BY) = % + B2, Var(B,)= %z,
E(Aan) = ,11_8 —_ 3—? and CO’U(A,,, Bn) = —-24—';-.
For (A}, B}), we have

E(4;) = 232, E(B;) =12,

Var(4;) = 22, Var(B;) = 2831,

Cov(A};, By) = -2 + 22

A simple way to prove the asymptotic joint normality for (A%, B;)
is to use the well-known central limit theorem for a sum of m-dependent
stationary random variables. Let {X;}32; be a sequence of i.i.d random
variables with continuous distribution. Let 7; denote the rank of X; among
X1,+++, Xn. Then, II, = (my,- - -,my,) is a uniformly distributed random
permutation on S,. It follows that

(A, l‘i,'i)

2 (285 YXiot < Xi > Xipt ), T HXio1 < Xi < Xin}),
where £ indicates that two random vectors are identical in distribution.
The indicator random vectors (1{X;—1 < X; > Xip1}, 1{Xi-1 < Xi <
Xit1}) are 2-dependent and stationary. Therefore, by Theorem 3 of Ho-
effding and Robbins [9], we obtain

Theorem 4.1 As n = oo, ((4}, — E(A4}))/v/n, (B;, — E(B}))/v/n) con-
verges in distribution to a bivariate normal vector with zero-mean and
covariance matrix

2 =2

45 45
y =

=2 23

45 180

The above theorem is also valid if we replace A}, by A, and B}, by B,.
It then implies that

Tn = Y,I"1Y., where Y, = (%22 , Bty

B

has the Chi-square distribution with 2 degrees of freedom as n = o0. As
mentioned in Section 1, Bienaymé [1,2] proposed a nonparametric test for
the randomness of observations X3, - -+, Xn based on the number of turning
points. We now propose the statistic T,, for testing randomness, since
intuitively T, contains more information than Bienaymé’s 24,,.
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