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Abstract

The Hermitean forms graphs Her(n,s) are a series of linear distance-
regular graphs. The graph Her(2,3) has the coset graph of the short-
ened ternary Golay code as an antipodal distance-regular cover. We
give a new construction for this linear 3-cover of Her(2,3) and show
that it is unique.

1 Distance-regular graphs

A connected graph T is called distance-regular if, for any two vertices =
and y and any integers i and j, the number of vertices at distance ¢ from
z and at distance j from y is a constant p;;(l) depending only on i,j and
! := d(z,y), but not on the particular choice of z and y. The numbers
pi;(1) are called the intersection numbers of I'. Distance-regular graphs
are a very interesting type of graphs because of their nice structure and
their connections to other fields of combinatorics. An extensive treatment
of the area can be found in the book by Brouwer, Cohen and Neumaier [2].

Let T be a distance-regular graph of diameter d, and suppose z and
y are two vertices of I at distance I. Then all the intersection numbers
pi;(1) of T are determined by the numbers b; and ¢; of neighbours of z at
distance [ +1 and [ — 1 from y, respectively. Together, these numbers form
the intersection array (bg,...,b4—1;¢€1,...,¢q4) of I'. By a; we denote
the number of neighbours of z at distance { from y, and we use k for the
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valency of I' (note that k = by). We summarize the properties of the
intersection numbers important for us (for proofs see e.g. [2], Chapter 4).

Result 1.1 Let T be a distance-regular graph of diameter d with intersec-
tion array (bo,...,bg—1;¢1,...,¢cq). Then

(i) k=a;+b;+¢c; for i=0,...,d, where cg = by := 0.
(i) 1= <c2<...<ca<k.
(iii)) k=byp > by > ... > by.
(iv) the pi;(l) can be computed recursively from the intersection array us-
ing

pit1,;() = —(@ijo1(Dbj-1 +  pij(1)(aj - ai)

Cit1
+ pijr1)cie1 — pi-1,;(Dbiz1).

O

Distance-regular graphs are either primitive or imprimitive, and the im-
primitive graphs are antipodal or bipartite (or maybe both). We are inter-
ested in antipodal distance-regular graphs because they give rise to smaller
primitive graphs by a simple process called folding.

A graph T of diameter d is called antipodal if d(z,y) = d(z,2) = d
always implies d(y, z) = d for any three vertices z,y,z of I, that is, the
relation of being at distance d (or 0) is an equivalence relation on the
vertices of I'. The equivalence classes of this relation are called fibres or
antipodal classes of I'. The folded graph I of I is the graph having the
fibres of I' as vertices, two of them being adjacent in I if and only if they
contain adjacent vertices in I'. An antipodal graph is also called a cover
of its folded graph. The following properties of antipodal distance-regular
graphs and their folded graphs are well-known (see e.g. [2]).

Result 1.2 Let T’ be an antipodal distance-regular graph with diameter D
and intersection array (By,...,Bp-1;C1,...,Cb).

(i) Any two fibres Fy and F> of ' contain the same number of vertices
r, called the index of I.

(ii) The parameters of ' satisfy B; = C4—; for i # | %] and
Bi=(r—1)Cy; fori=|%].
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(iii) The folded graph T has diameter d := I_D—z‘l-j and intersection array

if D = 2d,
(BO’-'-de—l;Cla~"aCd—l77Cd)7 where*y:{ I :;D=2d+1

Conversely, if A is a distance-regular graph of diameter d and inter-
section array (bo, . ..,ba—1;¢1,...,Ca), and ' is an antipodal distance-
regular cover of A, then one of the following holds

(a) D = 2d and T has intersection array
r—1 1
(b07 R :bd—l’ "_T_cd7cd—-la ceeyC15C1y .-, Cd—1, ;cdybd—la oo 7b0)a

(b) D=2d+1 and T has intersection array
(bO,- . .,bd_l,t('l' - 1)7Cd," +3yC1;C15 - ..,Cd,t,bd_l,. e )bO)

for some integer t satisfying bg—y < t(r — 1) < ¢q and
cg <t < by

2 Linear graphs

In this paper we study a special type of distance-regular graphs. The
vertices of a linear graph I' are the elements of a vector space V over a
finite field F = GF(q), i.e. V(I') =V = GF(q)" for a prime power ¢ and
an integer n > 1. The adjacency relation in I satisfies

z~y in T = ax+b~ay+b forany ac F\{0},beV.

A linear graph has the elementary abelian group GF{(q)" as a sharply
transitive automorphism group, so that linear graphs are a special case
of Cayley graphs. If we take D to be the subset of elements of V' adjacent
to the zero vector 0 € V, D can be used to define adjacency in I" by

T~y = z—-y€D.

D obviously satisfies 0 ¢ D and D = aD for all @ € F\ {0}, so that D is the
union of a number of 1-dimensional subspaces of GF(g)" with 0 excluded.
Conversely, any subset D of GF(q)" satisfying 0 ¢ D and D = aD for all
a € GF(q) \ {0} defines a linear graph I'(D) on GF(q)".

Linear graphs can be represented in a particularly nice way using affine
and projective geometries. If I’ is a linear graph with vertex set V =
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GF(q)", we can identify the vertices of I' with the points of an affine
geometry A = AG(n,q). Then the subset D of V defining I' consists of a
set of lines through the point 0 in A (because D = aD), and D does not
contain 0.

Now let P be the hyperplane at infinity for A, i.e. the points of P
correspond to the parallel classes of lines of A = AG(n,q). We have P =
PG(n — 1,9), and in the projective geometry PG(n,q) formed by A and P
together, each line L of A meets P in exactly one point. Thus the set Q of
points of P corresponding to the lines contained in D can be used to define
adjacency in I by

T~y = the line 7 in A meets P in a point of Q.

Any set Q of points of PG(n — 1,g) thus defines a linear graph with the
points of AG(n,q) as vertices.

We now look at the distance graphs I';, 'z, ..., of a linear graph I of
diameter d. The distance graph I'; has the same vertex set as I, and two
vertices z and y of I are adjacent in I'; if and only if they have distance i
in I". Defining

J
DU) ;= {Zd, td) GD} \{0} forj=1,...,d

=1

we see that z ~ y in [; is equivalent to z —y € C) := D)\ U;;}, D),
where D9 := {0}. Thus, each of the distance graphs [; of T is again a
linear graph defined by C) (note that C'9) = aC® and 0 ¢ C for any
a €GF(@)\{0},i=1,...,d).

Moreover, if I is connected, any two vertices  and y of I are at some
distance i, and as C) N CU) = @ for i # j, the sets C10 := {0},C)) =
D,...,C'9) partition the points of AG(n,q). As all C) are sets of 1-
dimensional subspaces of AG(n,q), we can define Q; to be the set of points
of PG(n — 1,q) corresponding to the lines contained in C), fori =1,...,d.
Then the Q; partition the points of P = PG(n — 1,g).

The following observation will help us to give a criterion for which
partitions (£, ...,Q4) of P belong to a linear graph. Let z and y be two
vertices at distance ¢ in the linear graph I', o the point where the line Ty
meets P (that is, @ € ;) and suppose z is a third vertex of I'.

Observation 2.1 If z is on the line Ty, then d(z,2) = d(y,z) = i. Oth-
erwise =, y and z determine a plane E in PG(n, q) which meets P =
PGMm ~1,q) in a line L. Then L also contains the points §:=TzNP and
v:=9ZNP and, if B € Qj, vy € Qy, thend(z,2) =j and d(y,z) = L.
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Fig. 1 Observation 2.1

Thus, if we want to find out for which j,{ there exist vertices z with
d(z,z) = j and d(y,z) = !, we have to look at the intersections of lines L
through o with the sets £, ..., Q4. To make statements easier to read, we
introduce the following notation. A line L in PG(n — 1,g) has structure
[my,ma,...,mqg] (with respect to a partition (Qy,...,Qq) of P) if L meets
Q; in m; points for j = 1,...,d. Note that 2;!:1 mj=|Ll=qg+1.

Lemma 2.2 A partition II = (Q,...,Q) of PG(n — 1,q) belongs to a
linear graph T if and only if the following hold fori=2,...,d

(i) for any a € Q; there is a line L through a which meets ) and iy .
For i =2, there is a line L through a which meets Q; in at least two
(distinct) points.

(ii) if L is any line through a € Q;, and L has structure [my,...,mq),
then
a) ifj+1<i, j#I, then mj # 0 implies my = 0.
b) ifj < %, then m; < 1.

Proof:

= If (Q,...,Q) belongs to a linear graph I, then (i) and (ii) hold
because

(i) means that for two vertices  and y at distance 7, there is a
vertex z such that d(z,z) =i —1, d(y,z) = 1 (for ¢ = 2, there is
a vertex z such that d(z,z) = d(y,2) = 1).

(i) means that, for two vertices z and y at distance ¢, there is no
vertex z such that d(z,z) = J, d(y,z) =land j +1 < i.
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<= Suppose (Q,...,q) is a partition of P = PG(n — 1,9) satisfying (i)
and (ii). Let I' be the linear graph defined by the set ;, that is,
z ~ y in T" if and only if the line 7 meets P in ;. We have to show
that Qa,...,Q4 are the subsets of P corresponding to the distance
graphs I's, ..., 'y of I'. We have to prove

d(z,y)=¢ inT = the line Ty meets P in Q;. (*)

Fig. 2 Lemma 2.2

We use induction over ¢. For i = 1, the statement is clear. As
induction hypothesis, suppose that statement (*) is true for all j < 1.

< Suppose z and y are vertices of I such that Ty meets P in o € ;.
By induction hypothesis we know that d{xz,y) > 7. By (i), there
is a line through a containing distinct points 8 € Q;_; and vy €
)1 (note that 8 and v can be chosen as distinct points also for
i = 2). Then, in the plane E generated by z, y and 3, the lines
zf and 77 meet in some point z. Thus, we have d(z,z) =i-1
and d(y, z) = 1, so that d(z,y) < d(z,z) + d(y, z) = i.

= Suppose z and y are vertices of I' at distance i. Then there
is a vertex z with d(z,z) = i — 1, d(y,2) = 1. By induction
hypothesis we know that the line TZ meets P in some point
B € Q;_;, and §Z meets P in some point ¥ € ;. The points z,
y and z generate a plane E which meets P in a line L. Obviously,
L contains the points 8, v and a := T N P. We have to show
that a is in ;.
By induction hypothesis, a cannot be in Q;,...,Q;_;. More-
over, as L contains 8 € Q;_; and v € Q;, L cannot contain
points from Q;41,...,84 by (ii). Thus a must be in ;.
]
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Our next step is to show how the intersection numbers p;;(l) for i,7,! €
{0,...,d} of a linear distance-regular graph I" can be determined from the
partition IT = (€y,...,84) belonging to I'. This correspondence was given
by Godsil (personal communication); it will give us a criterion for which
partitions of PG(n — 1,q) correspond to a (linear) distance-regular graph.

Theorem 2.3 Suppose I' is a linear distance-regular graph and
II=(Q,...,24) the corresponding partition of PG(n — 1,q). Then obvi-
ously

pij(0) = 6ii(g - 1)IU|  for i,j=1,....d
For | # 0 choose a point a € Qy, and let L be the set of lines through o in
PG(n—1,q9). Then

Srec(UNL - 1)(UNL|-2)+q-2 fori=j=1,

(l) —_ ZLGC (ngﬂL')(lanLl— 1) fOTi #lh? =l>
PA= Siec(@nL(|inL|-1) fori=j#l,
2 rec (N L)(|Q; N L) fori#j, i,j#L

Proof: Use Observation 2.1: If z and y are vertices of T at distance I, so
that the line T7 meets P in the point a € €, then any pair of points (3, )
with 8 € Q;, v € Q; and a, 8,7 pairwise distinct on some line L through
o gives a vertex z of I with d(z,2) = ¢ and d(y,2) = j. For i = j =, the
g — 2 points z # z,y on the line Ty have distance [ from both z and y.
]
Now suppose II = (y,...,Qq4) is any partition of PG(n — 1,9). For
a € Qy, let £ denote the set of lines through « in PG(n — 1,g). Then we
define

YreclUnLi=1)(uNL[-2)+qg-2 fori=j=]I,

(@)= d Zrec(%NLN(IXUNLI-1) fori#lj=1,
Pile) = S e (N L(:n Ll - 1) forici#l,
> ec (2 N L(1Q; N L)) fori#j, irj #1.

Corollary 2.4 A partition Il = (Qy,...,84) of PG(n — 1,q) corresponds
to a linear distance-regular graph I of diameter d if and only if

(i) for alli,j,l = 1,...,d, the numbers p;;(a) are equal for all & € S
(so that the intersection numbers p;i;(l) are well-defined).

(n) pl.i—l(i) #0fori=1,...,d
(i) i+ j < implies p;; (1) = 0.
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As one would expect, there is a close relationship between a linear graph and
the corresponding partition of PG(n — 1,g). For example, the eigenvalues
of a linear distance-regular graph I' defined by partition (€,...,{q) are

glH N | = [,

where H runs over the hyperplanes of PG(n — 1,q) (see Godsil [4], 12.9.3
p. 246). This is in fact true for the more general structure of linear asso-
ciation schemes. Also, a linear distance-regular graph is antipodal if and
only if the cell Qg is a subspace (see Godsil {5], where Godsil investigated
linear antipodal distance-regular graphs of diameter 3 and obtained very
strong results). Calderbank and Kantor [3] studied linear strongly regular
graphs and their relationship to coding theory, and gave a list of all known
examples.

3 Hermitean forms graphs

We investigate a special series of linear distance-regular graphs. The vertex
set of the Hermitean forms graph Her(n,s) is the set of Hermitean forms
on the vector space (GF(s?))" (where s is a prime power and n > 1), that
is, the set of all mappings f : (GF(s%))* — (GF(s%))" such that f is linear
iny and f(y,z) = f(z,y) for all z,y € (GF(s%))". Two vertices z and y are
adjacent if their difference has rank 1. It can be shown that the Hermitean
forms graph Her(n,s) is distance-regular of diameter n, in fact we have (see
[2], 9.5 C) d(z,y) = rank (z — y). The parameters of Her(n,s) are

11,2

v = s§",

b = 311(32"-32") for i=0,...,n—1,
1 '_] i ’ .

R i —(-1) f =1,...,n.

ci 3“(8 (s* = (-1)%) or i=1,...,n

The vertex set of the Hermitean forms graph Her(n,s) is an n?~ dimensional
vector space over GF(s), and from

rank (z — y) = rank ((az +b) — (ay +b)) for a#0

we see that Her(n,s) is a linear graph.

As van Bon and Brouwer [1] determined all distance-regular antipodal
covers of the Hermitean forms graphs Her(n,s) for n > 3 and the covers
of diameter 5 for n = 2, it remains to find the covers of diameter 4 of the
graphs Her(2,s). We know that the only cover of Her(2,2) is a unique 2-
cover called the Wells graph (see [2], 9.2 E), and for Her(2,3) there exists a
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3-cover coming from the shortened ternary Golay code (see [2], 11.3 H). No
other antipodal distance-regular covers for the graphs Her(2,s) are known.
The aim of this paper is to give a new construction of the 3-cover of Her(2,3)
using the representation of Her(2,3) and its cover as linear graphs. First,
we have a closer look at the graphs Her(2,s) in general.

A Hermitean forms graph Her(2,s) is distance-regular of diameter 2
(such graphs are called strongly regular), it has s* vertices and intersec-
tion array ((s — 1)(s2 + 1), (s — 1)s% ; 1, s(s — 1)). An antipodal distance-
regular r—-cover I' of Her(2,s) of diameter 4 has intersection array

(s =1)(s? +1),(s - 1)s?, =Ls(s—1),1;
1, gsr;ll’ (S - 1)32: (S - 1)(32 + 1))

Some existence conditions on the parameters of such a cover are given in
[8]. For example, if s = pt for p = 2 or 3, then ¢ must be 1. Now look at
Her(2,s) as a linear graph. We restrict ourselves to the case of s odd from
now on. Note that, for s = 2¢, the only cover is the Wells graph, in which
caset = 1.

We identify the vertices of Her(2,s), that is, the Hermitean 2 x 2-
matrices over GF(s?), with the vectors in AG(4,s) as follows. Represent
a vertex u = ( % ICJ ) of Her(2,s) by the vector (a,c,b1,bs) in (GF(s))?,
where b = b; + &b with by,b, € GF(s) and £ an element of GF(s2)\GF(s)
(so that GF(s®) = GF(s)(¢)). Then the vectors of AG(4,s) adjacent to
0 (corresponding to matrices of rank 1) are precisely the vectors p =
(1, P2, P3,ps) satisfying pips — ps? — pa® = 0, and the corresponding set €
of points in PG(3,s) forms a non-singular elliptic quadric. We know that
in PG(3,s) with s odd, all elliptic quadrics are projectively equivalent (see
e.g. Hirschfeld [6], 5.2.4), and are precisely the ovoids in PG(3,s) (see e.g.
Hirschfeld [7],16.1.7). An ovoid X in a projective geometry P is a set of
points of P such that

(i) KNZL| <2 for any line L in P,

(ii) for any point p € K the tangent lines through p (i.e. the lines which
meet K only in p) form a hyperplane H,.

Thus, the Hermitean forms graph Her(2,s) (for s odd) corresponds to a
partition (01, Q) of PG(3,s), where Q; is an ovoid in PG(3,s), and con-
versely any ovoid in PG(3,s), for s odd, determines the Hermitean forms
graph Her(2,s). In Calderbank and Kantor (3] the Hermitean forms graphs
Her(2,s) appear as series TF3.
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4 Construction

We present a new method for constructing a linear s-cover of Her(2,s).
This construction uses the representation of Her(2,s) and of a linear s-
cover of Her(2,s) as partitions of projective spaces. We need some infor-
mation about projective spaces and ovoids in PG(3,s) which can be found
in Hirschfeld [6] and [7]. The idea of the construction is to extend the
partition (¥, ¥s) of PG(3,s) corresponding to the Hermitean forms graph
Her(2,s) to a partition (Q1, 2,83,84) of PG(4,s) defining a linear s-cover
of Her(2,s). The cover then has AG(5,s) as vertex set.

We show how the construction works for s = 3. The Hermitean forms
graph Her(2,3) has 81 vertices and intersection array (20, 18; 1,6); a 3-cover
of this graph must have 243 vertices and intersection array (20,18,4,1;1,2,
18,20). As everything becomes considerably more complicated for larger
values of s, we do not know whether the construction method can be gen-
eralized. Note that the next possible value for s is 7 (see [8]).

Let P = PG(3,3) be a hyperplane of PG(4,3), and denote the affine
geometry AG(4,3) we get by removing P from PG(4,3) by A. Moreover,
choose an ovoid K in P, so that the partition (XC, P\ K) defines a Hermitean
forms graph Her(2,3) on the points of A.

If z is a point of P outside K, we know (see e.g. Hirschfeld [7]) that z is
on 3 lines meeting K in two points (the bisecants) and on 4 lines meeting
K in exactly one point (the tangents). We call the 6 points of X on the
bisecants the bisecant points of z and the 4 points on the tangents the
tangent points of z. Analogously, a plane E of P meeting K in exactly
one point will be called a tangent plane; any other plane of P meets X
in an oval and is called an oval plane. Note that any point z in P\ K is
contained in 4 tangent planes and 9 oval planes. Also, two distinct ovals
can have at most two points in common.

We can now begin to construct the desired partition IT = (Q;, Q2, 23, 4)
of PG(4,3) corresponding to a linear 3-cover of Her(2,3). Such a partition
should have |©;| = 10, |Q2] = 90, |Q3] = 20 and |Q4] = 1. Our first step is
to partition the ovoid K into two parts Ky, K3 such that

(%) K, and K3 have the same size and neither X; nor K3 contains an
oval.

To show that such a partition exists, we need some preliminaries.
Lemma 4.1 Let z be a point of P outside the ovoid K. Suppose A, B and

C are the bisecants to K through z, and t;,t2,t3 and t4 are the tangent
points of .

(i) Of the 9 oval planes containing z, three are generated by two of the
three bisecants A, B, C. The other siz oval planes each contain one of
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the bisecants and two of the tangent points of x. Naming the bisecant
points on A a1,az, on B by, by, and on C ¢;,c2, we can (by choosing
the names of ty,ts2,t3,t, appropriately) always assume these ovals to
be

ay az t; ta, ay ap t3 iy, by byt ts,
b1 ba ta t4, ¢ caty ty, c ¢ o t3.

Note that no two of these ovals have two tangent points in common.

(it) The four tangent points of z form an oval, i.e. they lie in a common

plane.

(i) No two distinct points of P\ K can have three tangent points in com-

mon.

Proof:

(1)

(iif)

It is clear that any two bisecants through z generate a plane meeting
K in an oval. Now any bisecant through z is in two more (oval)
planes, and as the four planes containing a line L in PG(3,3) partition
PG(3,3)\L, and thus in particular partition the points of K \ L, we
can assume w.l.o.g. that a,a»t;t2 and a;aststy form an oval.

If we can show that no two of the ovals corresponding to planes
through = can have two tangent points in common, the assertion
follows by choosing the names for ¢;,¢2,%3 and ¢4 appropriately. So
suppose on the contrary that the plane P, contains a;,as,¢; and t,,
and that b;,bq,%1,t2 are contained in a plane P,. Then P, and P,
both contain the point z, and they also have the tangent points ¢;
and ¢; in common. But z, ¢; and t; are not collinear, so they cannot
be contained in two distinct planes.

We may assume w.l.o.g. that the planes containing z meet K in
ovals as given in (i). Then the plane E determined by the three
tangent points ¢y, t3, 3 of  meets X in an oval O consisting of ¢, to, 3
and some fourth point of X. This fourth point cannot be one of
the bisecant points a;,as, by, by, c; or ¢z, because then O would have
exactly three points in common with one of the ovals of (i). The
only possibility is t4, so the four tangent points for z lie in a common
plane.

Let x and y be distinct points of P \ K both having tangent points
t1,t2,t3. Then by (ii),  and y also have the fourth tangent point ¢4
in common. Let P, P>, P3, P; be the tangent planes for the common
tangent points ¢;,t2,¢3,¢4 of z and y. Then the line ZT¥ is contained
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in Py, P, P3,P;. Any line L in P is contained in four planes which
partition P \ L. But if L = Zy is contained in the four tangent
planes Pi,..., Py, there is no plane on L containing the points of
K\ {t1,...,ts}. Contradiction.

O

Note that (ii) and (iii) above are quite obvious if we consider the polarity
a corresponding to the ovoid K. Then the polar plane E of z with respect
to a contains the tangent points t1,¢,¢3 and t4 of z, and z is the pole of
E with respect to a.

Before showing that a partition (X1, K3) of the ovoid K having property
(¥) exists we prove that such a partition has another interesting property.
This property will help us to construct such a partition and will also be
useful later. To make it easier to state this property, we introduce the
following notation. For a partition (K,X3) and a point z of P not in K, a
bisecant through z could have either

(i) two points in K,
(ii) two points in K3,
(ili) one point in K, and one point in Kj.

We say that a bisecant has type 1/1, type 3/3 or type 1/3 (with respect
to (K1,K3)) according to whether its two points in K are as in (i), (ii) or
(iii), respectively. Also, if in the following an oval plane in P is called P,
then the corresponding oval will be denoted by O;, and vice versa. Note
that, for a partition (K1,K3) having property (*), a point z outside K
cannot be on two bisecants of type 1/1 or on two bisecants of type 3/3.

Lemma 4.2 Let (K1,K3) be a partition of an ovoid K having property (*)
and A @ bisecant of K of type 1/1. Then A contains two points x,y of
P\K. One of them is on bisecants of types 1/1, 1/3, 1/3, and the other
one is on bisecants of types 1/1, 1/3, 3/3. Analogously, for a bisecant A’
of type 3/3, one of the two points of A' outside K is on bisecants of types
1/8, 1/8, 8/3, and the other one is on bisecants of types 1/1, 1/3, 3/3.
Moreover, the tangent points for z are the bisecant points of y (the ones
not on A) and vice versa.

Proof: Suppose z is a point of A in P\K. Denote the points where A
meets K by a; and a;. Moreover, let B and C be the other two bisecants
through z with bisecant points b1, b2 and c1, ¢z, respectively, and denote
the tangent points for = by d, e, f and g.

Now let y € P\K be the fourth point on A. Then y cannot be on
a bisecant with either by, bs,c; or ¢z (otherwise, there would be an oval
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having three points in common with one of the ovals a1a2b1 b2 or aja2¢;¢2).
Therefore, by, bs,c; and c; must be the tangent points of y.

d [

A e K
a

B [b2 by z
C1 y

C

c2
i g
Fig. 3 Lemma 4.2

As z cannot be on two bisecants of type 1/1 or on two bisecants of type
3/3, there are two possibilities.

(i) Suppose both B and C are bisecants of type 1/3. Then we may
assume w.l.o.g. that

]Cl = {al,ag,bl,cl,d} and ,C3 = {b2,02,e,f,g}.

As d,e, f and g are the bisecant points of y, this implies that y must
be on one bisecant of type 1/3 and one bisecant of type 3/3.

(ii) Suppose B is a bisecant of type 1/3 and C has type 3/3. Then we
may assume w.l.o.g. that

Ky = {a1,a2,b1,d, ¢} and K3 = {b, 1,02, f,9}.

Again, d, e, f and g are the bisecant points of y, and y cannot be on
a further bisecant of type 1/1. Thus, y must be on two bisecants of

type 1/3.
The proof for a bisecant A’ of type 3/3 works analogously. 0

Corollary 4.3 Let (K1,K3) be a partition of an ovoid K having property
(¥). Then the 30 points of P\K can be divided into three classes according
to the types of the three bisecants to K they are on:

(I) points being on bisecants of types 1/1, 1/3 and 1/3,
(II) points being on bisecants of types 1/1, 1/3 and 3/3,
(III) points being on bisecants of types 1/3, 1/3 and 3/3.

In particular, no point x of P\ K is on three bisecants of type 1/3.
Each of the three classes contains 10 points.
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Proof: There are 10 bisecants to X of type 1/1. By Lemma 4.2, each of
them contains precisely one point in class (I) and one point in class (II)
above. Similarly, the 10 bisecants of type 3/3 yield 10 points in class (II)
and 10 points in class (III). Therefore, each of the three classes of points
above contains at least 10 points. Now P \ K consists of 30 points, so that
each class must contain precisely 10 points, and there cannot be any points
being on three bisecants of type 1/3. o

Lemma 4.4 There exist 72 partitions (K1, K3) of the ovoid K having prop-
erty ().

Proof: We construct all possible partitions of K having property (). To
do so, we use the above results to construct all the ovals contained in X
(there are 30 of them).

Choose any point z of P\ K, let A, B and C be the three bisecants
through z, and a, @', b, ¥/, ¢, ¢’ the corresponding bisecant points. Moreover,
name the four tangent points of z d, e, f and g. By Lemma 4.1, we may
assume w.l.o.g. that K contains the following ovals.

(01) adde (O2) ad fg (O3) aa'bd
(04) ad cd (Os) bbb cd (Og) bW AFf
(07) bbeg (Os) cc'dyg (Og) ccef.

To find more ovals, look at the lines da and da’. Each of them is
contained in four planes (P, being one of them). Let Pjg be the plane
generated by d, a and f. The fourth point of the corresponding oval O1o
cannot be a’, e or g (because then 09 would have three points in common
with O; or O3), nor can it be b or b’ (look at Og). Thus it must be c or ¢/,
and we are free to call this point c. Then the oval Oy; determined by d, o’
and f must have fourth point ¢'.

Using the same arguments as above, we find that the fourth point of
the oval O;2 containing a, d and g has to be b or b’, and we name this
point b. This implies that the oval O3 determined by a’, d and g has b’ as
its fourth point. Now we know three out of the four planes containing the
lines da and da', so that the remaining planes (or rather the corresponding
ovals) are easy to find.

(010) ad f c (011) a'd f ¢ (012) ad g b
(013) dd g b (014) adbd ¢ (015) a' dbe.

Moreover, the lines dc and dc’ are each contained in three of the planes
corresponding to the above ovals. This gives us

(O16) dcb'e (O17) ddc be.
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Next, look at the lines @ and ac’. The plane P; contains both of them,
and @c is in Pyg, ac’ is in Py4, so that there are two more planes on each
of them. The plane Pg generated by a, ¢ and b cannot contain o', ¢, ¥,
d, f or g (look at the ovals O4, O3, O10 and Oy2), thus the fourth point of
the corresponding oval must be e. Using the same arguments, we find that
the plane Pjg determined by a, ¢’ and b must contain f. We also find the
ovals determined by the remaining planes on the lines @z and ac'.

(O18) acbe (Ow) acddf
(O0) aclyg (021) aceg.
Using the lines a’c and a’c’ in the same manner, we find the ovals
(O2) dcbf (O23) a'c'byg
(O4) dceg (O25) d' ¥ e
Now it is easy to find the remaining 5 ovals in X:
(O6) defyg (O27) abef (O28) a'bef
(O) bcfyg (O) Y fg

Knowing all the ovals contained in K, we can now check whether some
partition of K satisfies (x) or not. We choose three points of K and find all
possibilities for partitions where these three points are in K; . So let a, o
and b be in K;. Then &' has to be in K3 (otherwise O3 C K;).

1.) Suppose c € K;. Then ¢’ € K3 (04), € € K3 (O18), d € K3 (O15).

a.) Suppose f € K;, g € K3. This gives the partition
K1 = {a,d,b,c, f}, Kz ={V,c,d e g}
b.} Suppose g € Ky, f € K3. This gives the partition
K:l = {a,a’,b,C,g}, }CS = {b')d’d)e’f}'
2.) Suppose ¢’ € K;. Then c € K3 (04), f € K3 (O19), g € K3 (Oa3).
a.) Suppose d € K1, e € K3. This gives the partition
,Cl = {aaa,aba Cl,d}, ’C3 = {bl,c9ea fag}
b.) Suppose e € K, d € K3. This gives the partition
ICl = {a7a‘l7b’c’)e}s K:3 = {bl,C,d) fvg}
3.) Suppose ¢’ € K;. Then ¢ € K3 (04), f € K3 (O19), g € K3 (O23).

a.) Suppose d € K, e € K3. This gives the partition
’Cl ={aaal)b)cl,d}a IC3 = {b’,c,e,f,g}.

b.) Suppose e € K;, d € K3. This gives the partition
Ki= {aaa':b;c’;e}: Ks = {blsc)dyf:g}'
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Fig. 4 Partition as in 1.a)

4.) Suppose d € K;. Then e € K3 (01), g € K3 (012), ¢ € K3 (O15).

a.) Suppose ¢’ € Ky, f € K3. This gives the same partition as in
2.a).
b.) Suppose f € Ky, ¢’ € K3. This gives the partition
’Cl = {aa a,,b$ da f}a K:S = {bla c, cla 6,9}-
5.) Suppose e € K;. Then de K3 (O]), cE€K3 (013), f € K3 (Oas).
a.) Suppose ¢’ € K, g € K3. This gives the same partition as in
2.b).
b.) Suppose g € K1, ¢’ € K3. This gives the partition
K1 ={a,a',b,e,g}, Ks = {V,c,c,d, f}.
6.) Suppose f € K;. Then g € K3 (02), ¢ € K3 (O19), e € K3 (O2s).
a.) Suppose ¢ € Ky, d € K3. This gives the same partition as in
l.a).
b.) Suppose d € K;, ¢ € K3. This gives the same partition as in
3.b).
7.) Suppose g € K1. Then f € K3 (02), d € K3 (012), ¢’ € K3 (O23).
a.) Suppose ¢ € K;, e € K3. This gives the same partition as in
1.b).
b.) Suppose e € Ky, ¢ € K3. This gives the same partition as in
4.b).

Thus, for any triple ki, k2, k3 of distinct points from K there are six distinct
partitions (K, K3) with ky, ko, k3 € K; satisfying (). As we know that all
triples of (distinct) points from K are projectively equivalent (PGO_(4, q)
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is triply transitive on K, see [7]), and each partition can be derived from
10 distinct triples, we have a total of

10 1
(9) 5% n
distinct partitions satisfying (x). o

Our next step is to extend the partition (K;,K3,P \ K ) of P, where
(K1, K3) has property (x), to a partition IT = (3, Q2,03,4) of PG(4,3).
From now on we denote K = {ki,...,k10} and Ky = {ki1,...,ks}, K3 =
{ke,...,k10}-

A main criterion for how to partition the points of PG(4,3) is the fact
that a linear 3-cover I" of Her(2,3) must have intersection number p;; (2) =
¢; = 2. This means, using Theorem 2.3, that any point in cell Q5 must
be on exactly one line in PG(4,3) having two points in cell ;. The parts
K, and K3 of the ovoid K are going to be subsets of the cells ; and Qg,
respectively, and all points of P \ K will be in ;. We know from Corollary
4.3 that all points of P \ K are in one of three classes according to what
types of bisecants to K they are on, and the only points which are not on
a bisecant of type 1/1 are the 10 points of class (III). We call these points
Zy,...,Z10. Our problem now is to choose the other points of £, in such
a way that each of the z; is on exactly one line having two points in this
new part of ;.

As before, we denote the zero vector in A = AG(4,3) by 0, and D is
the set of points # 0 of .A which are on lines 0k for some k € K (i.e. the
vertices of Her(2,3) adjacent to 0), that is, if the line Ok; contains points a;
and b for { =1,...,10, then D = {a;, by : I = 1,...,10}.

Fig. 5
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We want to partition D into two parts D, and D3 such that the 10
points z,..., 1o from class (III) are on exactly one line having two points
in D;. We use the following observation.

Observation 4.5 Let x be a point of P\ K and L a bisecant to K through
z. Then, in the plane generated by L and 0, there are two lines through =
meeting D in two points each. More precisely, if L contains the points k;
and k; of K, then z is

(i) either on the lines @a; and b;b;

(ii) or on the lines a;b; and b;aj.

Fig. 6 Observation 4.5

Conversely, any line of A through x meeting D in two points corresponds
to a bisecant (within P) through x.

If z is on a tangent to K in the point k;, then the lines Ta; and zb; meet
D only in a; and by respectively, but not in any other point. Conversely,
any line of A through T meeting D in ezactly one point corresponds to a
tangent to K through z.

Note that D has the property that the only lines of PG(4,3) meeting D in
more than two points are the lines 0k for some k € K (which are contained
in DU {0} UK).

Each of the points z,,..., 10 is on one bisecant of type 3/3. We can
assume without loss of generality that

x; is on bisecant kek7, 2 is on bisecant koks,
3 is on bisecant kgke, 4 is on bisecant kgkio,
s is on bisecant krks, g is on bisecant krks,
7 is on bisecant krki0, g is on bisecant ksks,
g is on bisecant kgkio, Z1o is on bisecant kgkio.
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Moreover, using the above observation, we may also assume that

z, is on lines @ga; and bgby,
Z, is on lines @gds and  Dgbs,
z3 is on lines @gag and bgbe,
z4 ison lines @gaip and bgbyo.

We define Dy := {as,ar,as,0a9,010}, D3 := {a1,02,a3,04,0s,b1,...,b10}.
Then we know that each of the points zy,...,z4 is on (precisely) one line
meeting D; in two points. We still have to show this for zs, ..., z10.

Lemma 4.6 With z,,z2 and x5 as above,
(i) z1,z2 and z5 are on a common line in P,
(ii) zs is on lines Grag and brbs.

Proof:

(i) Look at the plane P, C P generated by kg, k7 and kg. P contains
1,22 and zz and the remaining points y;,y2,ys of the bisecants
kek7, keks and krkg respectively (as in Lemma 4.2). Suppose the line
T:%2 does not contain z5. Then, as any two lines meet in Py, T1Z2
has to meet the line k7ks in ys. It follows that Z17z meets kykg in
z5 and F172 contains ys. Thus, if 21,22 and z5 are not on a common
line, then y;,y2 and y5 must be collinear. We want to show that this
is not possible.

So suppose ¥;,y2 and ys are on a common line L.

Y2 s
Z3
Ys

I

k k N -
6 7 \
kg
Fig. 7 Lemma 4.6
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The plane P, contains kg, k7 and ks, so the fourth point of the cor-
responding oval must be in K,. Let this point be k;. Now there are
two possibilities.

(2)

(b)

If L does not meet X, then L is contained in two oval planes (one
of them being P;) and two tangent planes. Thus, y1,y2 and ys
have two tangent points in common, and at least one of these
tangent points must be in K; (otherwise the second oval plane
P, corresponds to an oval contained in K;). Call this tangent
point k.

As we saw in Lemma 4.2, the lines z1 k2, 22k and zsks all have
to be bisecants of type 1/3 to K. Now

$1k2nK3 € {k87k91k10}’
ko N3 € {k7, ko, klO}’
zsko NK3 € {ke,ko,k10}.

Thus, at least one of these bisecants contains a point from

{ke, k7,ks}, so that ko is on (at least) one of the lines zks,
Zok7, Tske. But that implies that ko € P;, which contradicts
our assumption that ks is in one of the tangent planes containing
L.

If L meets K, then L N X must be a point of P;, and thus must
be k;. Then k; is a common tangent point for y;,y2 and ys,
and L is contained in one tangent plane (the tangent plane for
k1) and three oval planes (one of them being P;). Moreover, by
Lemma 4.2, the lines z;k;, z2k) and x5k, must be bisecants to
K, and as ki, kg, k7, ks form an oval, we must have

z, is on bisecant k;ks,
To is on bisecant kik7,
s is on bisecant k; kg.

Now z,,z2 and z5 each must be on a further bisecant of type
1/3. As each of these three bisecants must contain one of the
points kg, k10, either kg or kio must be a bisecant point for (at
least) two of the points z1,z2 and z5. We may assume without
loss of generality that ko is on bisecants with the points z; and
9. Let ko be the point of Xy on the line Z1kg. Then y; has
tangent points ki, k2, ks and kg, and we may assume w.l.o.g.
that y; is on bisecants k3k4 and kskyo-
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Fig. 8

Consider the plane P; generated by ki, k3 and k4. The fourth
point of the corresponding oval O2 must be a tangent point of
#1, and it must be in K3. If O, contains kg, then z; and nd g, are
in Py (because z; € kiks, y1 € kskq), so that Tig7 = kgky is in
Py, contradiction. Therefore, we must have

(02) kikskyko

Moreover, consider the plane P; generated by ko, k3 and k4. The
corresponding oval O3 must have a tangent point of ¥, contained
in K3 as fourth point, too. Obviously, this point cannot be kg,
so that
(O3)  kakakqks.

Now we saw above that kg is a bisecant of type 1/3. Obviously,
Tokg cannot meet K, in ky or ko. If zokg contained ks, then
k1kskskg would be an oval (generated by two bisecants through
x9) having three points in common with O;. Analogously, k4
cannot be contained in Zokg. Therefore, the only possibility is
that z, is on the bisecant kskg. This means that z, has tangent
points ks, k3, k4 and kjo. These four points form an oval, which
has three points in common with Og, contradiction.

Thus, as none of the two cases is possible, y;, y2 and ys cannot be on
a common line, and we must have that z,, z, and x5 are collinear.

(ii) Suppose z5 is not on the line a7as. Then z5 must be on a7bg and
brag, and ys has to be on the lines azag and b7bs. By (i), z1, z2 and
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z5 are on a line L. This line together with the point ag generates a
plane E which also contains the points a7 and ag, and the line @7ag.
Now @7as meets P in some point z, and as ENP = L, z must be
a point of L. But if y5 is on the line a7ag, we must have z = ys, so
that ys would have to be on L, which is not possible. It follows that
z5 is on the lines @7ag and brbs.

m}

Using the same arguments as in the above lemma for the other triangles
kik;k; of points in K3, we can show that

zg ison lines @rag and  brby,
T7 is on lines artlo and b7b10,
zg is on lines @gas and  Dgby,
Zg is on lines @gajp and  bgbio,
T10 is on lines @gajg and  bgbyo.

We define the partition IT = (Q;,Q2, Q3,8%) of PG(4,3) as follows:

W D1UIC1={as,...,am,k1,...,k5}

Qs D3UIC3={al,...,as,bl,...,bm,kﬁ,...,km}
Q = {0}

Q, = PG(4,3)\(DUKU{0}).

It still requires some work to show that this partition defines a distance-
regular antipodal 3-cover of Her(2,3).

Lemma 4.7 Any point from Q2 is on ezactly one line meeting () in two
points.

Proof: There are three types of lines having two points in £;:
a) lines containing two points from Kp, i.e. bisecants of type 1/1,
b) lines containing two points from D,
¢) lines containing one point from K, and one point from D;.

Note that no line can have more than two points in §2; because such a line
would imply that there is a line in P meeting the ovoid K in more than two
points. The lines from a) are lines of P, whereas the lines from b) and c)
are lines of A, i.e. they contain exactly one point from P and three points
from A.
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(i)

Any point z € 2, NP = P \ K is on exactly one line having two
points in Q;: Note that a point z € P \ X cannot be on a line from
c). Moreover, we have seen in Corollary 4.3 that z must belong to
one of three classes according to the types of bisecants z is on. If z
is from class (I) or (II), then z is on (exactly) one line from a). We
have chosen D, in such a way that each of the points z;, ..., o from
class (III) is on exactly one line from b). As there are 3! = 10 lines
as in b), and each of them meets P in exactly one point, it is clear
that the statement of the lemma holds for any point z from P \ K.

Any point z € QN A is on exactly one line having two points in §;:
We know that z cannot be on a line from a). Each of the 10 lines
from b) contains exactly one point from {z1,...,Z10} and one point
of 0, N A. The 25 lines from c) each contain two points in 2, N A.
Thus, as |Q2 N A| = 60, it suffices to show that no point z € Q2N A
is on two lines from b) and/or c).

1.) Suppose z is on two lines @@, and @;a, from b). Then the point
z := 02N 7P has to be on two bisecants of type 3/3 (namely k,k,

and k.k;), which is not possible.

2.) Suppose z is on two lines k;a, and kja, from ¢). Then the
plane P defined by these two lines meets P in a line L;. As L;
contains k;, k; € Ky, it is a bisecant to KC of type 1/1. In the
plane P, L, := Gpa, meets L) in a point z € P\ K. In fact, by
our choice of Dy 3 a,,ay, the point £ must be one of the points
z1,...,T10 from class (III) of Corollary 4.3, but then z cannot
be on a bisecant of type 1/1. Contradiction.

Fig. 9 Lemma 4.7

3.) Suppose z is on a line @@, from b) and on a line k;a, from c),
i.e. 1€ {1,...,5} and p,q,7 € {6,...,10}. Then these two lines
generate a plane Py, which meets P in a line L; 3 k;. Moreover,
L; contains the points z; := @ga@; NP, zx = Gpa, NP and
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Ty 1= Gy N P.
As z;,r,2; are points from class (III) of Corollary 4.3, L, is
a line as we found in Lemma 4.6 (i). We show that such a line
cannot contain a point k; € K;. For convenience, we substitute:
k= kiv
ks = kp, k7 = kq, kg = k,.,
I) =T, IT2:1=T4, I3 = Tj.

L, \k1 3321 xl/ vz~

Qg

as

ar

Fig. 10 Lemma 4.7

Then z,,z2, 3 are points from class (III) of Corollary 4.3, and
the bisecants of type 3/3 through them are T1kek7, Tokeks, and
Zskzks. The line L; consists of the points 1, %2 and z3 and
k, € K1. Then kjkgkrks form an oval and, as k; is a common
tangent point for =1,z and zs,

kg is a tangent point for z,,
k7 is a tangent point for z,
kg is a tangent point for z3.

Now z,, T2, z3 are each on two bisecants of type 1/3, and as the
only remaining poil points from K3 are kg and ko, we must have
that T:ke and z;k10 meet K; for i =1,2,3. Let k» := T1ke N K,
and k3 := z1k10 N Ky, then kokzkokio is an oval. Now Toke N K,
cannot be ky. Also, we cannot have k3 = Zake N K, (because
then the plane determined by z;, k9 and klo would contain z,,
and also k;). Thus, we can assume kg = ZToke N Ky and ks =
T2k1o N K. But Z3ke also has to contain a point from K,, and
this point cannot be k1, k2, k3, k4 or ks. Contradiction.

O
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Theorem 4.8 The partition II = (21,02, Q3,4) as defined above gives
rise to a linear distance-regular graph ' on the points of AG(5,3). The
intersection numbers of I' are equal to the intersection numbers of a 3-
cover of Her(2,3).

Proof:
Let T be the graph having the points of AG(5,3) as vertex set and adjacency
defined by

z~yinl = 7y meets PG(4,3) in a point of ;.

We use Theorem 2.3 to find all the intersection numbers p;;(l) for T
If we find the p;;(l) to be the same as for a 3—cover of Her (2,3), then
the properties (ii) and (iii) of Corollary 2.4 are clear, so that I is a linear
distance-regular graph.
Note that the intersection numbers of a 3-cover of Her(2,3) can be cal-
culated from the intersection array (20, 18,4,1;1,2, 18,20) of such a cover
using the recurrence relation given in 1.1.

It is easy to see that in "

p(0) = 2-|Qy| 20, p22(0) = 2.
p33(0) = 2-|Qs| 40, pa(0)= 2

We now look at z € €, for [ = 1,...,4 and at the structure of the lines
through z.

(i) Q4 ={0}.
Through the point 0 there are 10 lines of structure [1, 0, 2, 1] and 30
lines of structure {0, 3, 0, 1].
That gives p11(4) = p12(4) = p23(4) = 0. Obviously, as || = 1, we
have p14(4) = p24(4) = p34(4) = 0 and py4(4) = 1. Also, we find

180,
2.

i
o

p13(4) = 10-1-2 = 20,
p33(4) = 10-2-1 = 20,
p22(4) = 30-3-2 = 180.

(ii) Let z € ;. Through z there are

1 line of structure [1,0,2,1] (the line through 0 € £,),
9 lines of structure [2,2,0,0] (lines through the other
points of £,),
18 lines of structure [1,2,1,0] (lines through points of £13),
12 lines of structure [1, 3, 0, 0].

That gives pi4(1) = p24(1) = paa(l) = 0, pas(1) = 2, p13(1) = 0,

211



pll(l) =1, and

p33(1) = 1-2= 2,

pa(l) = 9-2+18-2+12-3-2=126,
pi2(l) = 9-2=18,

p23(1) = 18-2=36.

(iii) Let =z € Q3. Then z is on

1 line of structure |1, 0, 2,1] (the line through Q4),
9 lines of structure [1,2,1,0] (lines through points of Q,),
18 lines of structure [0, 2,2,0] (lines through other
points of Q3),

b K

12 lines of structure [0, 3, 1, 0].

That gives p1a(3) = p34(3) = 1, p24(3) = pua(3) = pu(3) = 0,
p13(3) = 1, p33(3) = 1, and

p22(3) = 9-2+18-2+12-3-2=126,
p2(3) = 9-2=18,
p23(3) = 18-2=36.

(iv) Let z € 2. We know that z is on

1 line of structure [0, 3, 0, 1]  (the line through Q4),
1 line of structure [2, 2, 0, 0]  (exactly one line meeting
; in two points).

We don’t know yet what structure the other lines through z have.

(a) Suppose z € P. Then z is on three bisecants and four tangents
to K, and by Lemma 4.3, z is in one of three classes according
to the types of the three bisecants. By observation 4.5, each
bisecant and each tangent gives rise to two lines of A through z:

e A bisecant of type 1/1 means that z is
on two lines of A having structure [0, 2, 2, 0].

o A bisecant of type 1/3 means that z is
on one line of structure (1, 2, 1, 0] and
one line of structure [0, 2, 2, 0] in A.

o A bisecant of type 3/3 means that z is

either on two lines of structure [1, 2, 1, 0],
or  on one line of structure [2, 2, 0, 0] and
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one line of structure [0, 2, 2, 0]

depending on whether z is in class (II) or (III) of Lemma 4.3
(by construction of D).

¢ A tangent to a point in K, means that z is on two lines
meeting D3 in exactly one point each.

e A tangent to a point in K3 means that z is on one line
meeting D; in exactly one point, and one line meeting D3
in exactly one point.

We see that any tangent through z gives rise to one line of
structure {1,3,0,0] and two lines of structure [0,3,1,0] (one of
these three lines is the tangent itself), so that any point = €
PN K, is on 4 lines of structure [1,3,0,0] and 8 lines of structure
[0,3,1,0]. Looking at the three classes of points from Q; NP
separately, we find the structures of the lines through = meeting
Q; UQ3 in two points. Note that from Lemma 4.7 we know that
any point in {2, is on exactly one line meeting Q; in two points.

(I) If = is on bisecants of type 1/1, 1/3, 1/3, then z is on lines
of structure
(2, 2,0, 0], [1,2,1,0] -2 (the bisecants),
[0,2,2,0]-4, [1,2,1,0]-2 (in A, coming from
the bisecants).

b |

(II) If z is on bisecants of type 1/1, 1/3 and 3/3, then z is on
lines of structure
(2,2,0,0], [1,2,1,0], [0,2,2,0] (the bisecants),
[0,2,2,01-3, [1,2,1,0] -3 (in A, coming from
the bisecants).

(IIT) If z is on bisecants of type 1/3, 1/3 and 3/3, then z is on
lines of structure
[0, 2, 2, 0], 1,2,1,0] -2 (the bisecants),
[0,2,2,01-3, [1,2,1,0] -2, [2,2,0,0]
(in A, coming from the bisecants).

In each of the three cases, the lines through = meeting 2; U3 in
two points are 1 line of structure (2, 2, 0, 0], 4 lines of structure
[0, 2, 2, 0], and 4 lines of structure [1, 2, 1, 0]. The remaining
lines through z then have all points in {22, so that = is on 18
lines of structure [0, 4, 0, 0].
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(b) Now suppose £ € A. Let z be the point where the line 0z
meets P. Each line through £ which meets §; U 23 in one or
two points corresponds to a tangent or a bisecant to K through
z. Vice versa, any bisecant or tangent through z gives rise to
three lines through z meeting ©; U§23 in two points or one point
respectively.

¢ If z is on a bisecant of type 1/1, the three lines through z
have structure [1,2,1,0] -2, [0,2,2,0].

¢ If 2 is on a bisecant of type 1/3, the three lines through z
have structure
either (a) [0,2,2,00-2, [2,2,0,0]
or (B) [1,2,1,0-2, [0,2,20]

o If z is on a bisecant of type 3/3, the three lines through z
have structure

either (a) [0

or (B) [1

¢ Any tangent through z gives rise to lines through z having
structure (1, 3,0,0], [0,3,1,0]-2.

12,2,0
2,1

-2, [2,2,0,0]
y &y )02

, [0,2,2,0].

In Lemma 4.7 we showed that any point = from ; is on exactly
one line of structure [2, 2, 0, 0]. Thus, only one of the bisecants
through z can give rise to lines as in (a). This helps us to
determine the structure of the lines through z. We find that in
each of the three cases

(I) 2 is in class (I),
(II) z is in class (II),
(III) z is in class (III),

z is on 1 line of structure [2
1 line of structure [0,
4 lines of structure [0
4 lines of structure |
4 lines of structure |
8 lines of structure |

18 [

lines of structure

Thus, for any point z in (3, the structure of the lines through z
is the same, and we get p11(2) = 2, p1a(2) = p34(2) = pas(2) = 0,
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p24(2) =1-2=2, p13(2) =4, and

p12(2) = 1-2+4-1+4-2=14,
p3(2) = 4-2+4-1+8-2=28,

p33(2) = 4'2=8,

p2(2) = 1-24+4-2+8-2+18-3-24+1=135.

As we found all the p;;(I) to be equal to the intersection numbers of a 3-
cover of Her(2,3), Corollary 2.4 implies that the partition IT = (£;, Qs, Q3, Q)
indeed defines a linear distance-regular graph. m]

Theorem 4.9 The graph T' defined by the partition II = (23,2, Q3,84)
is a linear 3-cover of Her(2,3).
Proof: We give a covering map v : V(I') = AG(5,3) - AG(4,3) =
V(Her(2,3)) using the coordinatization of PG(5,3):
T
To
PG(5,3) ={| ™ |- GF@®) :%,0,...,24 € GF(3) not all =0}.

T2
T3
T4

Let the partition IT = (92,05, 3,824) corresponding to I’ be defined on
the hyperplane

P ={z€ PG(5,3):%=0,20,...,74 € GF(3) not all =0} = PG(4,3)
of PG(5,3), so that the vertices of I' are the points of
A={z e PG(5,3):i#0,z0,...,74 € GF(3) } = AG(5,3).
Moreover, let P = PG(3,3) be the hyperplane

0
0
z; - GF(3) :z1,...,24 € GF(3) not all =0}
T3
T4

hS)
Il

of P containing the ovoid X, so that the partition ¢ = (K,P \ K) of P
corresponds to the graph Her(2,3) having the points of A = AG(4,3) as
vertex set, where

A={(0,1,z1,22,23,24)T - GF(3) :1y,...,24 € GF(3) }.
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As all ovoids in PG(3,3) are projectively equivalent, and are equivalent to
the elliptic quadrics in PG(3,3), we can without loss of generality take the

ovoid K to be

oo

K={ :; -GF(3) € P:z12 + 232 + 3% — 242 = 0}.

I3
T4

We see that the set D of points on lines 0k for k € K (where 0 = (0,1,0,0,0,0)7-
GF(3) € A) used in the construction of IT above then is

D= {xe .A:a:12+a:22+:c32 —242 =0;21,...,24 € GF(3) not all=0}.
Look at the mapping
v : PG(5,3) \{0} — P = PG(4,3)

I 0
To T
T I
2| er@) — 2 |- cre)
I3 I3
T4 T4

Then ~ has the following properties:

(i) ¥ maps A = AG(5,3) onto A = AG(4,3), so that ¥ maps the vertices of
T to the vertices of Her(2,3). Each point z = (0,1, z1,22,23,24)7 in
A has three preimages under v, namely the points z(¥ = (1,4, ;, z2, 23, 24)7
for i = 0,1,2. These three preimages of £ have mutual distance 4 in
T" because they are on a common line (9 z(1)z(2) which meets P in

Qy = {0}.

(ii)  maps P\ {0} onto P 2 PG(3,3), so that the partition II is mapped
to a partition y(II) of P. We see that v(; UQ3) = y(DUK) =K
and () = P\ K, so that y(II) = 0.

(iii) If z® ~ y) in T, then y(z()) = z ~ y = y(y")) in Her(2,3) because
if the line z()y() of A meets P in 0, then the line Z§ of A meets P
in K.

Thus we know that ~y is a graph homomorphism mapping I to Her(2,3). It
remains to show that v is a local isomorphism. Suppose z(?) € V(T) has
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neighbours ;U1 ..., 420129), and let z := y(z¥), y = (1) for | =
1,...,20. Then we know that y1,. .., y20 are the neighbours of . AsT" has
intersection number p;;(1) = 1, we can assume that yg_; G21-1) ~ yy,(21)
for Il = 1,...,10, and there are no other edges between the neighbours
yl(j‘), cee ,ygo(j"’o) of z(¥. Then we know that You-1 ~yy forl=1,...,10
in Her(2,3). As Her(2,3) also has intersection number py; (1) = 1, there are
no other edges between the neighbours y,,...,y20 of z. Thus,

e {$(i)’yl(jl)a"-7y20(j20)} — {-'3,?/1,---,y20}

is an isomorphism. Note that p;;(1) = 1 for I’ (and for Her(2,3) respec-
tively) is true if and only if there is no line in P meeting €, in more than
two points (and no line in P meeting K in more than two points respec-
tively). If the points (9, yo;_,920-1) and ygl(”') form a triangle in I, then
they are on a common line in A meeting P in ;. Analogously, if z,ya_;
and yy form a triangle in Her(2,3), then they are on a common line in A
meeting P in a point of XK.

0

Theorem 4.10 The linear 3—cover of Her(2,3) is unique.

Proof: The proof has two parts. In the first part, we show that all parti-
tions IT = (4, 22, 3, Q) constructed as above are projectively equivalent,
so that they all yield the same graph. In the second part we prove that for
any linear 3—cover of Her(2,3), the corresponding partition of PG(4,3) can
be constructed by the above method.

Part I: We look again at our construction of the partition II and show
that wherever we chose one out of several possibilities, all possible choices
are projectively equivalent.

(i) As all ovoids in PG(3,3) are projectively equivalent, it doesn’t matter
which ovoid K we start with.

(ii) In Lemma 4.4 we found 72 distinct partitions (K, C3) of K having
property (*). We show that all these partitions are projectively equiv-
alent. As PGO_(4, 3) is triply transitive on the points of an ovoid K,
we can choose any 3-triple of points of X to be in K; and it suffices
to prove that the six possible partitions of K having a given triple of
points in X; are projectively equivalent. We use the coordinatization
of the points of PG(4,3):

Zo
I
z=]| zo |- GF(3) for zg,...,z4 € GF(3) not all =0.
I3
Tq
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Again, let P = {z € PG(4,3) : zo =0} and
K = {z € P: 22 + 2% + 232 — 742 = 0}. Then K consists of the
following points:

kl = (010) 0,1, 1) : GF(3) ) kﬁ = (Oa 01 110a 2) ' GF(3) )

ks = (0,0,0,1,2) - GF(3), k7 =(0,1,0,0,1)- GF(3),

ks = (0,0,1,0,1)- GF(3), ks =(0,1,2,1,0)- GF(3),

ks = (0,1,0,0,2) - GF(3), ko =(0,1,2,2,0)- GF(3),

k5 = (0:11]-,1’0)' GF(3) ’ klO =( 14y :0) GF(3) .
Note that if we set

a=k, a' =k, b= ks, c = ky, f=ks,
b' = ke, c = ks, d = kg, e = kg, g = ko,

then the elements of X form ovals as given in the proof of Lemma 4.4,
and the partitions having property (*) and satisfying ki, k2, k3 € K,
are

(1)  Ki={ki, ko, ks, ka,ks} K3z ={ke,kr, ks, ko, K10},
(2) Ky ={ki, ko, ks, ka,k10} K3 = {ks, ke, bk, ks, ko},
(8) Ki={ki,ka, ks kr,ks} K3 ={ks,ks,ke, ke ki0},
(4) Ky ={ki, ko, ks, k7,ko} Kz = {ks, ks, ke, ks,ki0},
(6) Ky ={ki, ko, ks, ks, ks} Kz = {ka,ke,k7,ko,k10},
(6) K:l — {klsk27k3ak9yk10} ’C3 = {k‘h k5’k61k77k8}-

We define E;; to be the 5 X 5 matrix having ij-entry 1 and all other
entries 0 and give elements of PGO_(4,3) mapping partition (1) to
2),..., (6):
(1) = (2): b1 =E\ +2Ey3 + 2E3 + Eyg + Ess,
1 - 3): B2 = E11 +2E23 + Ezq + Eos + E3
+FEy3 + 2E44 + Eys + 2E53 + 2E54,
(1) = @4): Bz=En+Exn+2E;+Ey+E;s
+Ey3 + 2E44 + E45 + 2E53 + 2E5,,
(1) —= (58):  Bs=En +2Es;3 + Exq + Ep5 +2E;3
+E34 + E35 + Eq2 + Ey3 + 2E4s,
(1) = (6): Ps=EFE+2E3+Es+E3+Ess
+2FE43 + 2E44 + E4s5 + E52 + 2FE54

(iii) Instead of the point 0 = (1,0,0,0,0)7 € AG(4,3) we could have cho-

sen any point z from A. All these choices are projectively equivalent
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(iv)

because, for any hyperplane H of a projective geometry Z and two
points a,a’ € H, there is always a collineation of 7 fixing H and
mapping a to a'.

When partitioning the set D into two parts, we have two choices for
D 1:

(a) Dy = {as,---,alo}>
(b) D1 = {bs,...,b10}-

These two choices are equivalent:

Let k; = (0, 1,22, 23,24)7- GF(3) be a point of K. Then the two
points a; and b on the line 0k are (1,z1,z2,%3,z4)- GF(3) and
(1,2zy, 222, 223, 224)- GF(3). The collineation of PG(4,3) exchang-
ing them (and thus exchanging the two choices for D;) is given by

the matrix
00

OO0 O~
OO NO
[ 3]

0
0
2
0

NOO OO

Thus, all partitions IT = (€, 0, 3,04) found by the construction pre-
sented above are projectively equivalent, and correspond to isomorphic
graphs.

Part II: Suppose I is any linear 3-cover of Her(2,3). Then I' has the
points of A = AG(5,3) as vertices, and corresponds to some partition 7 =
(9,02, ¥3,%,) of P = PG(4,3). We want to show that the partition 7
can be found by our construction above. We use the intersection numbers
pij(l) of T and Theorem 2.3, and the fact that T is linear.

(i)

(i)

As pgg(4) = 1, ¥4 must consist of a single point. We call this point z.
Also, from p;; (0) = k1 = 20, p22(0) = k2 = 180 and p33(0) = k3 = 40,
it is clear that |¥;| = 10, |¥2| = 90 and |¥3| = 20.

From p;;(4) = p12(4) = p23(4) = 0, we see that there are no lines
through z

o meeting ¥; in at least two points,
o meeting ¥; and ¥, in at least one point each,

o meeting ¥» and U3 in at least one point each.

Moreover, as p13(4) = 20 , p33(4) = 20 and ps2(4) = 180, the 40 lines
through 2 are of two kinds:
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(iii)

(iv)

(a) 10 lines meeting ¥, in one point, ¥3 in two points, i.e. lines of
structure [1,0,2,1],

(b) 30 lines meeting ¥ in three points, i.e. lines of structure [0, 3,0, 1].

Denote C := ¥; U ¥3. From p;1(1) =1, p11(3) =0, p13(3) = 1 and
pa3(3) = 1 it follows that the only lines containing three points of C
are the lines from (ii) (a) above (containing z). All other lines can
meet C in at most two points. Thus any point = € C is on

(a) one line ZZ which contains two more points of C,

(b) 27 lines Zy for some y € C \ {ZZ}. These lines meet C in z and
y and ¥, in two points.

(c) 12 lines meeting C only in z, and ¥, in three points.

Let z be a point in ¥,. From the p;;(2) we can see what structure
the lines through = must have:

(a) one line containing z; this line has structure [0, 3,0,1] (one of
the lines of (ii)(b), note that p24(2) = 2),

(b) one line having structure {2, 2,0, 0], i.e. meeting ¥, in two points
(p11(2) = 2),
(c) 4 lines having structure [1,2,1,0] (p13(2) = 4),

(d) 4 lines having structure [1,3,0,0] (p12(2) = 14, the lines from
(b) and (c) give already 2 + 4 = 6 vertices w with d(u,w) = 1,
d(v,w) = 2 for vertices u,v with d(u,v) = 2),

(e) 4 lines of structure [0,2,2,0] (p33(2) = 8),

(f) 8 lines of structure [0, 3,1, 0] (p23(2) = 28, use also the lines from
(c) and (e) ),
(g) 18 lines of structure [0,4,0,0].

Next we want to show that there is a hyperplane H in P = PG(4,3)
which contains 5 points from ¥, and 5 points from ¥3. Choose any
point @ € ¥5. We know that a is on exactly one line L; of structure
[2,2,0,0]. Let p1,ps be the points of L, in ¥,. Moreover, let g, and
r1 be the two points of ¥3 on the line 1z , and ¢» and r2 be the
two points of ¥3 on P2z . Moreover, choose one of the four lines of
structure [1,2,1,0] through a. Such a line cannot contain g¢;,7; for
i = 1,2, because in the plane generated by L; and z the lines @gy and
@r; meet FzZ in gp or 72 (so that these lines have structure (0,2, 2,0]).
Thus, the line Ly of structure [1,2,1,0] we chose contains a point
p3 € ¥, and g4 € ¥3, and no two of the points p;, p2,ps3,qs are on a
common line with z.
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(vi)

Then, L, and L, together generate a plane E which does not contain
2. Moreover, the set {p1,p2,P3,44} is an oval in E (there is no line in
E containing more than two points from C, because z ¢ E). As the
maximal cardinality of a set of points in a projective plane PG(2,3)
no two of which are collinear is 4, this also implies that E cannot
contain any more points from C. The plane E is contained in four
hyperplanes H,,...,H; of P, and these hyperplanes partition the
points of P \ E. In particular, they partition C'\ {p1,p2,p3,q41}. Let
H; be the hyperplane generated by E and the point z. Then H,
contains at least 12 points from C, namely the points on the lines p;Z
for i = 1,2,3 and gaz. Any hyperplane not containing z must meet
each of the 10 lines of structure [1,0,2, 1] through z in exactly one
point, so that |H; N C| = 10 for i = 2,3,4. Now |C| = 30, so that

30 IENC|+(|HinC|=|ENC|)+3-(10-|ENC])
= 30+ |HinC|-3-|1ENC|,

which implies |H; N C| = 12. It remains to show that at least one
(in fact, all) of the hyperplanes Ha, H3, Hy contains 5 points from ¥,
and 5 points from ¥3. We know that H; contains 4 points from ¥,
(namely pi, p2,p3 and the point ps :=gazN¥;). Thus, Ho UH3 U Hy
contains pi,p2,ps and the 6 remaining points ps,...,p1o from ¥,.
This means that at least one of Ha, H3, Hy contains at least two of
the points ps,...,p10- Suppose Hp contains 3 (or more) of these
points, i.e. a total of 6 (or more) points from ¥;. Then there are (at
least) ‘—’é—”" = 15 lines in H, containing two points in ¥;. Each of these
lines has its other two points in H2 N ¥5. As no point in ¥5 is on
more than one line having two points in ¥;, the 30 points in H, N ¥,
all are on exactly one of these 15 lines. Note that this already shows
|H2 N ¥;| < 6. Then, there are 4 points in ¥, not in H,. Any two
of them are on a common line, and each of these lines meets Hs in
a point of H, N V5. But then these would be points being on two
lines of structure [2,2,0, 0}, which is not possible. Thus, Ha, H3, Hy
cannot contain more than 5 points from ¥, so that each of them
contains exactly 5 points from ¥,, and 5 points from ¥3.

The set H; N C for i = 2,3,4 must be an ovoid, because any set of
g*+1 points in PG(3,g) no three of which are collinear form an ovoid.

This concludes the proof.

0
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