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Abstract. The general Randié index wq(G) of a graph
G is the sum of the weights (dg(u)dg(v))* of all edges
wv of G. We give bounds for w_;(T") when T is a
tree of order n. We also show that lim,_e f(n)/n
exists, and give bounds for the limit, where f(n) =
max{w_1(T): T is a tree of order n}. Finally, we find the
expected value and variance of w, for certain families of
trees.

1. Introduction

In studying branching propertics of alkanes, Randié (7] proposed several
numbering schemes for the edges of the associated hydrogen-suppressed
graph based on the degrees of the end vertices of an edge. To preserve
rankings of certain molecules, several inequalities involving the weights of
edges needed to be satisfied (only the seven inequalities arising from the
isomers of the smaller members butane, pentanc and hexane were required).
Randié [7, p. 6611] stated that weighting all cdges uv of the associated
graph G by (dg(u)dg(v))™! or all by (dg(u)dg(v))~/? preserved these
inequalities and eventually chose the latter. The sum of these latter weights
over the edges of G — sometimes called the Randié index of G - has been
closely correlated with many chemical properties (see [4]). We are interested
in the former index proposed by Randié, and extensions, for trees. First,
we provide a general setting and a survey of some known results.
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Fix « € R— {0}. For an edge uv of a graph G, let wa(uv) =
(de(u)dg(v))® and let wa(G) = X ,,cp(c) Waluv) denote the general
Randi¢ index of G. Hence, w_y/5(G) is the ordinary Randi¢ index of
G. Yu [11] gave the sharp upper bound of w_;,5(T) < (n + 2v/2 - 3)/2
when T is a tree of order n. Bollobds and Erdés [1] gave the sharp lower
bound of w_; /3(G) > v/n — 1 when G is a graph of order n without isolated
vertices; a sharp upper bound for w,(G), & € (0,1], when G is a graph of
size m; and a sharp lower bound for w,(G), a € [-1,0), when G is a graph
of size m. In this paper we give several extremal and probabilistic results
for wo(T) for T belonging to certain families of trees.

The set of vertices (cdges) of a simple graph G is denoted by V(G)
(E(G)). The order of G is |V(G)|. The degree dg(u) of a vertex u is the
number of vertices in G which are adjacent to u. A vertex of degree one in
a tree is called a leaf. The path of order n is denoted by P,,. The star K;,m
in which each edge has been replaced with a path of length 2 is denoted
by K} ,,- The nonnegative integers are denoted by N and the real numbers
by R. All notation, terminology and presumed results may be found in
West [9).

II. Bounds for w_;(T)

We first give bounds for w_;(T) (see [1] for a related, but different,
result). We assume the trees have vertex set [n] := {1,...,n}.
Theorem 1. For a tree T of order n > 2,

n+ 8
18

1w (T) <

Proof. The lower bound follows immediately from (1) below, hence, we
only consider the upper bound. By way of contradiction, let T be a tree
of order n with w_1(T") > (5n + 8)/18 where n is as small as possible. We
deduce a number of properties of 7. Qur result is readily seen to be true
forall2<n <8,son>9 Sincel =w_1(Kin-1) < (57 +8)/18 and
(m +1)/2 = w_1(KT,,) < (10m +13)/18, T' 2 Kjn—1 nor Kj . Let
Z1,...,Zy (r 2 1) be the leaves of T adjacent to a vertex y and zy,...,2
be the other vertices of T adjacent to ¥y, where r + s is as large as possible.
Then s > 1 (as T ¥ Ky,n—1) and all dr(2z;) 2 2. Now 2<n—-r<n-1),

T 2 1 T
w_l(T)=w_1(T—{a:1....,a:r})—s(r+s);dT(zj) t0 O
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<5('n.-'r)+8 T S | T 5n+8

- 2
- 18 s(r + s) pact dr(z;) + r+s~ 18 '’ @)

provided r + s > 4, hence, r + s < 3.

Suppose 7 = 2 and s = 1. Then (2) holds for dr(21) < 6. Let wy,...,w;
(t > 6) be the vertices of T, other than y, adjacent to z;. Now (n—3 > 7),

1 <« 1 P S
tt+1) & dr(w;) " 3(+1)

5(n—3)+8 5 5n+8
<ARTHFE 2 MmTE
ST tT7<

w_1(T) = w_s(T - {z1,22,y}) — ’g'

Suppose r =1 and s =2. Now (n —2>7),

1 1
’U)_l(T) = w_l(T+ 2120 — {xl,y}) — dT(Zl)dT(zz) + 3d'r(21)
y L .1
3dr(z2) 3
5(n—2)+8 1 1 1 1
< - + + + =
18 dT(zl)dT(zz) 3dT(z1) 3dT(Zz) 3
< 5n+ 8
- 18
provided
1 1 2 1

3dr(zn) | 3dr(m) =37 dr(z1)dr(z2) ®

Considering dr(z1) and dr(22) > 3; dr(21) = 2 and dp(22) > 3; dr(21) > 3
and dr(22) = 2; and dr(z;) = dp(22) = 2 shows that (3) holds.

Hence, 7 = s = 1. Then (2) holds for dr(z) = 2. Let wy,...,w; (t > 2)
be the vertices of T, other than y, adjacent to z;. Now (n —2 > 7),

1 <& 1 1 1
w1 (T) = w1 (T — {z1,4}) - t(t+1) =~ dr(w;) + 2(t+1) + 2
5(n—-2)+8 1 1 _05n+8
< - <
ST T+n 2Tl

provided ¢ > 8. Hence, each leaf z in T is on a path z,y, z with dr(y) = 2
and dp(z) = 3,4, 5, 6, 7 or 8 (as r + s is as large as possible). We call
r.y. z a suspended path from z to 2. Let z;,...,z; ( > 1) be the distinct
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lcaves of T on suspended paths z1,41,2;- -+ ;25,¥;,2 and wy,...,wq—; be
the vertices of T', other than y, . .., ¥;, adjacent to z (which we call a (j, d)-
system centered at z). Hence, 1 <j<d-1<7,d>3 (asT ¥ K7} ,,).
Now (n—2>17),

d—j .
d—j 1
w—l(T) -l(T {zl)./l} d(d 1) Z dT 2d(d _ 1) + 5
(n—2)+8 1 g d—j 1
18 T dd - 1) & dr(w) 2d(d -1) 2
< 5n + 8
- 18
provided
d—j _ 1 E
_— < —
2d(d-1) = 18 d(d P Z dT(w,) “)
We examine (4) for all pairs (j,d) with 1 < j < d-1<7,d > 3.

Now (d — j)/2d(d — 1) < 1/18 for (5,d) = (3,4), ( 5) ( ) (3,6), (4,6),
(5,6), (3,7), (4,7), (5,7), (6,7), (2,8), (3,8), (4,8), (5,8), (6,8) or (7,8),
so (4) holds for these pairs. Also, (4) holds for (j,d) = (1 3) unless some
dr(w;) > 4; (2,3) unless some dr(w;) > 7; (1,4) unless some dr(w;) > 4;
(2,4) unless some dp(w;) > 7; (1,5) unless some dp(w;) > 5; (2,5) unless
some dr(w;) > 8; (1,6) unless some dr(w;) > 7; (2,6) unless some dr (w;) >
13; (1,7) unless some dr(w;) > 10; (2,7) unless some dr(w;) > 31; and
(1,8) unless some dp(w;) > 19.

For each such (j,d)-system centered at 2z, take the edges of the j
suspended paths along with the distinguished edge 2w; with dr(w;) as
specificd above where, say, w; is as small as possible (recall V(T) = [n]).
By considering the degrees of both ends of the distinguished edge, it is
easily seen that the collection of all such cdge-sets is pair-wisc disjoint
except, possibly, that pairs of (1, 4)-systems or pairs of (1,5)-systems share
their distinguished edge. Let m; g denote the number of such (4, d)-systems
in T; mj, denote the number of pairs of (1,4)-systems sharing their
distinguished edge; and mj 5 denote the number of pairs of (1, 5)-systems
sharing their distinguished edge. Then, when we calculate the weights of
these specified edges belonging to these systems we find that,

21

29 11 x .
w_ 1(T)< mlg+ maz+ — (M14 — 2m1’4)+ﬁm1,4-.

21 16 7 M2a
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49 L
40 1.6

6
mas5 + 78 39 ma6

6 31
+%(m15 2m15)+ m15+

L +@m +_1§
70 217 27" 304

(ma4 — 2m{_4) +(ma5 — 2m;‘,5) +mye+my 7+ ml,s]

myg+ %{n —1-3[m 3+

- 5[m}‘_4 + mf‘s +ma3 + Mo +mos + Mae + ’m.z’-;']}

n—1 11 1 3 1 11
=2 +8—4m2,3 16m14+16 14+%mz'4-—mm1,5
21 1 1 11 23
+ 100 mys — Emz,s - 7ml,6 - ﬁmz,e - mmm
89 59
—@mzﬂ—mmm
<n;+11m23+im14+lm24
- 4 84 32 v 28

since each remaining non-specified cdge has weight at most 1/4 while
2mj 4 < my4 and 2m3 5 < my 5. Now the maximum of 11z /844y/32+2/28
where z, y, z are nonncgative real numbers with 5z + 5y/2 + 52 < n—1is
at z =(n—1)/5, y =z =0. Hence,

n—1+ 11(n—1) 29(n—1) < 5n+8.

< =
wa(T) < — 420 105 18

This completes the proof of the theorem. H

Remark. It is easily scen that w_1(T) = 1 if and only if T & Kin
The argument for the upper bound could perhaps be further refined, but
the improvement may not be worth the additional effort.

For n > 2, let f(n) = max{w_;(T): T is a tree of order n} and, set
f(0) = f(1) =0. Then f(2) =1and f(n) =(n+1)/4 for 3 < n < 8. Any
tree T of order n with w_;(T) = f(n) will be referred to as a max tree.

Lemma 2. ForallneN, f(n+1)> f(n).

Proof. Suppose lcaf y is adjacent to z in a max tree T of order n > 2.
Let T" = T + zy (where z is a new vertex). Then f(n+ 1) > w_,(T") =
w1 (T) = 1/2d7(2) +1/2 > w_1(T) = f(n). N

We next show that f(n) is an cssentially super-additive function.
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Lemma 3. Forallm,neN, f(m+n+2)2> f(m)+ f(n).

Proof. Our result is readily seen to be true for all m,n € Nwith m+n <
6. Suppose m +n > 7. For either m <1 or n < 1, our result follows from
Lemma 2, so we assume that m,n > 2. Let T}, T be vertex disjoint max
trees of order m, n, respectively. Let lcaf z; be adjacent to y; in T35 21, ..., 2¢
be the other (if any) vertices of T} adjacent to 1; and wy,...,ws be the
other (if any) vertices of T3 adjacent to y. Let T'=T1 +To + r1utuv+vze
(where %, v are new vertices). Suppose m =2 (and r = 0) son > 5 (and
s > 1). Now,

5

f(n+4) >2w_(T) = w_l(T2)_ﬁ+Z > w_1(T2)+1 = f(m)+ f(2),

(similarly for m > 5 and n = 2). Suppose m > 3 (and 7 > 1), n > 3 (and
s > 1). Then,

fm+n+2) 2w (T) =w_i(Th) + waa(T2) - 2(1~1+ 1) 2(sl+ nt

> w_i1(T1) + w-1(T2) = f(m) + f(n). B

3
1

Our next result is a (very) slight extension of Fekete’s Lemma [3].
Theorem 4. lim,_o f(n)/n exists and is a nonnegative real number.

Proof. Fix m € Z*. Any integer n > 2 can be uniquely written as
n = s(m+2)+t+2 for appropriate nonnegative integers s,t with ¢t < m+1.
Now Lemmas 2, 3 imply

f(n) 2 f(t) + sf(m)
so that
f(n) > M_I_ f(m) f('m)(28+t+2).
n - n m mn
Hence,

5 . . . f(n) _ f(m) 2f(m)
]—8">‘hnnl~lolcl>f " 2 — T m(m+2)

by Theorem 1 and noting that

. 2s4+t4+2 2
lim = .
n—oo n m+ 2
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Then,

—5- > liminfm > limsup m,
18 n—oo N meoo M
since Theorem 1 implies
2(m) _ o m

n}gnoo mim+2)

The value K := limy—o0 f(n)/n is of interest and appears difficult to
cvaluate. We next describe the best constructive lower bound we have been
able to find.

For an integer 7 > 2, T, denotes the tree obtained from the star K ,. by
appending three internally-disjoint paths of length 2 to cach leaf of Kj ;.
Then T has order v(T}.) = 7r + 1 and weight w_,(7,) = (157 + 2)/8, so
that lim, . w_1(T3)/v(T) = 15/56. As a consequence, 0.267857--- =
15/56 < K < 5/18 = 0.277777---. We also note this implies that paths
are not max trees for all sufficiently large n, since w_,(P,) = (n + 1)/4 for
n > 3.

ITI. Expected Value and Variance of the General Randié Index
for Simply Generated Families of Trees

Let there be given a sequence I' = (cg,¢1,¢2,...) of nonnegative
constants where cg = 1. Let F = Fr denote the set of weighted ordered
trees such that each ordered tree T is assigned the weight

oT) = I[P,

i>0

where N;(T') denotes the number of vertices of T° of out-degree 2. We call
such a family a simply generated family of trees (sce, c.g., [5]). Let
Fn denote the subset of trees T in F such that 7" has n vertices and let
Yn = D 7ex, ¢(T). Then the generating function Y = 3} 7°ynz™ of the
family F satisfies the relation

Y = z0(Y) (5)
where ®(2) = 1+ > 1° c;z®. We note, for later use, that this implies that

zY’' = (1-z®'(Y))"tY. (6)
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We now determine a relation for the generating function

[o ]

M(z) =Y e(n,a)ynz™

1

where
e(n, @)y, = Z we(T)e(T)
TEFn
for any given simply generated family F of trees and for any fixed value of
a. We assign each tree T € F, probability ¢(T)/y. so that e(n,a) is the
expected value of w, over Fy,.

Theorem 5. Let F(t) = Y 5q¢s(s + 1)%t° and G(t) = 3,5, ¢t
Then B B

M(z) =2?Y lzY' FI(Y)FY) + 22(F'(Y) - G'(Y)FY). (7

Proof. Let B(z) =3 7" bnz™ denote the generating function of the trees
in F with a distinguished leaf, i.e.,

o=y No(T)e(T).

TE'FYI

It is not difficult to see that B(z) = z + £®'(Y)B(z); this and relation (6)
imply that

B(z) = z(1 — 2®'(Y)) = (z/Y)zY". (8)

(This is a special case of a more general result proved in [6]; and it is
essentially the same result as relation (3.3) in [2].)

Consider any edge uv of a tree T' from F where we may assume that
the path from the root of T' to v contains u. Let us suppose that u and v
have out-degrees r and s, respectively, where 7 > 1 and s > 0. If we remove
the 7 edges incident with u (that lead away from the root) then T falls into
(a) an ordered collection of r subtrees one of which is rooted at v and has
out-degree s, and (b) a subtree T” rooted at the root of 7" and in which u
is a leaf.

The generating function for trees in which the root has out-degree s is
zc,Y®, so the generating function for collections of trees as described in
(a) is 7Y™ lzc,Y°. (The factor r is present to account for the fact that
the subtree containing v can occur in any onc of r possible positions.) The
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generating function for trees 7” with a distinguished leaf u that is not the
root-vertex is clearly B(z)—z. If we join the roots of the trees in an ordered
collection of type (a) to the leaf u of such a tree 7’ then the degrees of u and
v in the resulting tree T are 7 +1 and s+ 1, 80 wa(uwv) = ((r +1)(s +1))*.
When we take this into account, observe that the weight factor associated
with the vertex u in T is ¢, and then sum over r and s we find that the
contribution to M(z) of all edges uv where u is not the root-vertex is

(B(z) — z) Z'rc,.('r +1)°y™1t. :z:z cs(s +1)°Y*

r>1 520
=xz(B(z) — z)F'(Y)F(Y). (9)

Now suppose that the vertex u is the root-vertex of 77, i.c., that 7" is
the trivial tree consisting of the single vertex u. This time when we join
the roots of the trees in an ordered collection of type (a) to u the degrees
of u and v in the resulting tree T are r and s+ 1, 50 wo(uwv) = (r(s+ 1))“.
Continuing as before, we find that the contribution to M(z) of all cdges uv
where u is the root-vertex is

z Z rer?Y™ g Z cs(s +1)°Y* = 22G/(Y)F(Y). (10)

r>1 520
The required relation (7) now follows from relations (8), (9), and (10). W

Before stating the general asymptotic behaviour of e(n,a) we impose
some technical conditions, namely, that the function ®(t) that appcars in
relation (5) is analytic in the disk |f| < R < oo and that

¢i >20fori>1and ¢; >0 for some i > 1;
ged{i:i>1and ¢; >0} =1; and
7®'(7) = ®(7) for some 7, where 0 < 7 < R.

It follows from these assumptions (see [5] or [8]) that 7 is unique and that
Y (z) is analytic in the disk |z| < p = 7/®(7) cxcept at x = p; furthermore,
Y (x) has an cxpansion in the neighborhood of p of the form

Y@ =1-bp-2)"" ~bs(p~z)---- (11)
where b = &(7)(2/79" ('r))l/z. Hence, by Darboux’s theorem (cf. [10; p.

150)),
Yo =ap "1+ 0(n™)) (12)
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as n — 0o, where a = (<IJ(1')/27r<I>”(T))1/2.
Corollary 6. For any fixed o,
e(n,a) = p?r L F'(T)F(T)n + O(1) as n — oo. (13)

Proof. The functions F(t) and G(t) are analytic in the disk |{| < R where
7 =Y(p) < R, in view of our assumptions about the function ®(¢). The
required conclusion follows readily from relation (7) and expansion (11)
upon appealing to Darboux’s theorem. W

By an extension of the foregoing arguments, we can find the variance
0%(n, ) of w, over Fy.

Theorem 7. For any fixed a, there exists a positive constant c, with

o%(n,a) = can®? + O(n) as n — 0.

It follows from Chebyshev’s inequality that the distribution of wa becomes
increasingly concentrated around its mean as n increases.

We now find e(n,a) or Ly := lim,—,00 €(n,@)/n when @ = —1 or 1 for
certain families of trees.

o= —1. In this case, F(t) =Y cs(s +1)7!t* and

Ft)=3{1-(s+ 1) }est* ™ = ‘I’_itl _ F_gt)_

Therefore,
Lo = PP R (r) = PP {p«b(r) _ pF(r)}
T T T (19)
_rofno)
®(7) o(r) )

Consequently, L_; < 1/4 for all families satisfying our assumptions. In
fact it is not difficult to show that for such families 2F(7) > ®(7) so that
L_, <1/4

Consider the family F for which ®(t) = 1+t + (8t)*/(k — 1) for some
positive constants v and § and some integer k > 2. Then 7 =1 /B and

F(r)  y(K*—1)+ 20K
®(1)  2y(k2—1)+28k(k+1)"

(15)
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This tends to k/(k + 1) as v — 0 which is arbitrarily close to 1 for large
values of k; and this quantity tends to 1/2 as 8 — 0. So F(7)/®(7) can
take on any value between 1/2 and 1 and, consequently, L_; can take on
any value between 0 and 1/4. (We could regard the collection of paths as
a limiting extreme case with ¢ = cg =---=0.)

If F is the family of rooted labelled trees then ®(t) = e*, 7 = 1 and
F(t) = (et — 1)/t. Hence, F(7)/®(T) = (e — 1)/e and

Loi=el—e?=0232544---. (16)

In fact, for this family it can be shown that

e(n,—1) = n{(l - %)n_l -(1- 2)"_1} . (17)

n

If F is the family of ordinary ordered trees then ®(t) = (1-t)~', 7 = 1/2
and F(t) =t"1log (1/(1 —t)). Hence, F(r)/®(r) = log 2 and

L_; =log2(1 —log2) =0.212694--- . (18)

a=1. In this case,
F(t) = (s+1)est® = t&'(t) + (1)

and
F'(t) = 2@'(t) + t®"(¢).

When we substitute these expressions in (13) and recall that p®(7) = 7
and p®’(7) = 1, we find that

Ly = 77 pF(7)pF'(7)
=771 (rp®'(7) + p®()) (20%'(7) + pr&" (7))
=2(2+ A), (19)

where A = pr®”(7). The quantity A can take on any positive value (see
[5; p. 1005]), so L; can take on any value greater than 4. (Again, paths
can be regarded as a limiting extreme case.)

If F is the family of rooted labelled trees, then it can be shown that
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e(n,1) = (n—1) (6-5+ 12) (20)

and, if F is the family of ordinary planc trees, then

_ _@2n-1)(n-1)
e(n,1)=4(n 1)—-(77 TmtD) (21)

If F is the family of binary trees, then an explicit formula for the
expected value of w,(T) for all a follows readily from first principles. We

observe that of the
. _ 1 2n
Yon+1 = ntiln

rooted binary trees with n vertices of out-degree 2 and n + 1 leaves, there
are 2yan,—1 trees in which the root is joined to a leaf and y2n41 — 2y2n—1 in
which it is not, for n > 2. Any edge of a non-trivial binary tree must have
weight 1/2, 1/3, 1/6, or 1/9 and it is not difficult to count the number of
edges with these weights in the two types of trees just described. In this
way we find that

n+1

e(2n+1, ) = {(n—2)9%+(n+1)3%+2- 60}"‘ {ga 6%-37+2%} (22)

for n > 1. In particular,

8n2+3n—2

e(2n+1,-1) = 52n—1)

and
24n? — 34n + 14

e(2n+1,1) = o1

IV. Conclusion

We conclude with several questions that may be of interest.

(1) Find K = limy_oo f(n)/n. We know that 15/56 < K < 5/18 and
suspect that the lower bound is closer to K than the upper bound.

(2) Refine the upper bound in Theorem 1 for w_,(T') so that it is sharp for
infinitely-many values of n.

(3) Find the asymptotic distribution of w_; over the class of labelled trees
of order n as n — oo.
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