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Abstract

An alternating circular list of distinct r-element subsets of
some finite set X and distinct r~partitions of type T is said to
be a r-loop if successive members of the list are orthogonal.
We address the problem of finding complete 7-loops including
all r-element subsets of X, for any fixed |X| and type 7.
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1 Introduction

An r-partition of an n-element set X has type 7 = {[m;,t;] |1 =
1,...,s}if it has m; classes of cardinality ¢;,i = 1,...,s. We assume
that class sizes are distinct. To exclude trivial types, we assume
1 <r < n, where n = _‘Z‘,m;t,- and r = _im,-. Let A be an r-
element subset and let = Bela.n r—partition (;f i‘( We say that A and
7 are orthogonal if A is a transversal of 7, that is every class of x has
an element in A.

An alternating circular list of distinct r—element subsets of X
and distinct partitions of type 7 is called a T-loop, or a loop with
partitions of type r, if each r—element subset is orthogonal to both of
its neighboring partitions. A 7—loop on X is said to be complete if it
includes all r-element subsets of X. A 7-loop (4;,71,..., Am, Tm)
with r—partitions is called strong if |A; N A;yq| = r — 1, for every
1<i<m.

For given n > 3 and non trivial type 7, we address the problem
of finding complete T-loops. An obvious necessary condition for the
existence of a complete -loop is N(7) > (T), where N(r) is the
number of partitions of type 7. We conjecture that this condition is
sufficient: there exists a complete 7-loop for every non trivial type T
if and only if N(7) > (7). In this paper the conjecture is supported
with particular cases that are thought to have some interest for their
own right,.

Exceptional partition types violating the inequality N(r) > (7),
have been characterized in [5]. In Section 2 we include a proof, for the
sake of completeness, and we verify the conjecture for small n. The
constructions given for n < 7 illustrate some methods of construction
or serve as basis cases in later recursions.

In Section 3 a related concept, the notion of complete r~loops
is introduced. An r-matching is the union of r pairwise disjoint
2-element subsets of X. An r-element subset A C X and an -
matching v are orthogonal, if each pair of v has an element in A.
An alternating circular list of r-element subsets and r-matchings
of X is called an r-loop, or a loop of X with r~matchings, if each
subset is orthogonal to both of its neighboring matchings. A loop
is strong if in addition consecutive r—element subsets share r — 1
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common elements. In Section 3 we show that an n element set has
a complete strong r-loop, for every 7 > 1 and n > 2r + 1 (Theorem
3.1). This result implies the existence of complete strong T-loops,
for every T with classes of size 1 or 2 (Corollary 3.2). In Section 4 we
use a different construction based on parity considerations, and we
show the existence of complete 7-loops with partitions of the same
type, for every n > 2r > 8 (Theorem 4.2).

We know the conjecture is true for 2-partitions, as well. We just
state the corresponding result from the first version of the present
paper without proof: There ezist complete strong T-loops with 2-
partitions of any non ezceptional type.

A complete T-loop consisting of all r—element subsets of X con-
nected by partitions of any type may be used to calculate the cardi-
nality of a minimal generating set of idempotents of the semigroup
K (n,r) of all the total transformations of X with a range of at most
r elements (see [2]). The semigroups K(n,r), 1 < r < n, are special
cases of Sp—normal semigroups, the transformation semigroups on X
that are invariant under conjugations by permutations of X. It was
shown in (4] that an S,—normal semigroup is idempotent-generated,
but the minimum size of a generating set, the idempotent rank, re-
mains unknown. Complete 7-loops of X with particular partition
types should aid greatly in determining the idempotent rank of Sn—
normal semigroups.

The existence of complete 7— or r-loops are special instances of
a general problem of finding cycles in "highly symmetric“ bipartite
graphs that cover the smaller partite set. Let U be the set of all r-
element sets of some underlying set X, and let V' be the set of some
objects of prescribed type associated to X (e.g. subsets, partitions,
matchings, etc.). Consider the bipartite graph G[U,V] on vertex
set U UV defined by a binary relation on U X V (e.g. inclusion, or
u € U and v € V are orthogonal, etc.) The indicated examples result
in bipartite graphs with a high degree of symmetry. The alternating
circular chains of r—tuples and objects of X (e.g. r—loops or r-loops)
that include all r—tuples correspond to cycles covering every vertex
in U. If JU| = |V], then the complete loops become hamiltonian
cycles in the bipartite graph G[U, V].

Several problems in the literature have a similar form or have a
very similar nature. For1 < r < p < n = |X|, let V be the set
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of all p—element subsets of X, and assume that the binary relation
is defined by inclusion. Then G = G[U,V] is the bipartite graph
induced between two levels of the boolean lattice B,. It is an open
problem to determine whether G has a cycle (or path) which includes
every vertex of the smaller of the two partite sets. In particular, the
famous Middle Layers Problem (for p = r 4+ 1, n = 2r 4+ 1) or the
Antipodal Layers Problem (for p = n — r) are still unsolved (see [3],
(6], and [7]). In the lack of general existence theorems for large cycles,
most of the partial results are based on recursive constructions or
algorithms exploiting the particular structure of the bipartite graphs.
Our problem of finding 7-or r—loops has the same characteristics.
However, the involved bipartite structures seem to be less restrictive
compared to the subgraphs of the boolean lattice mentioned above,
thus offering complete answer to some particular questions.

2 Exceptional types and small cases

A necessary condition for the existence of a complete 7-loop is N (1) >
(:f), where

|
N(r) = ——
IL[mat (t:1)™3]
is the number of partitions of type r = {[m;,t;] | i = 1,...,s} (see

e.g. [1]). Types violating this inequality, called here exceptional
types, have been characterized in [5]. We include a short proof for
the sake of completeness.

Proposition 2.1 For2<r<n—1, N(r) < (¥) if and only if T is
one of the following types: {[2,2]}, {[2, 3]}, {[3,2]} or {[1,¢],[n—¢,1]}
with t > (n+1)/2.

] 8
Proof. By substituting r = 3, m; and n = }_ m;t;, we obtain

=1 =1

N(r) _ _rifa=n)t _ ( r ) (.-g:lmi(ti— 1))! |

OV fmaeym) \mamaees
1=1
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Assume that t; >ty > ... > t;. If s > 2, we have

(T') (Z mt(tz— 1)) m1 (ml +1 m1+2 ) m1+k)
G~ l-‘I = Tom a as ak '
J=2

1'.:1«

3
where k= Y m;(t;-1)-mi=n—-r—-mj,anda; <az < ... <Gk
i=1 )
is a monotone permutation of the factors of the denominator not

counted in 2™, If t, > 2, then a; = 2. Because m,!/2™~! > 1 and
(my +k)/ax > 1, we obtain N(7)/(7) > 1.

This argument shows that if N(r) < (7), then either t; < 2 or
s< 2.

The first case, t; < 2, clearly implies t; = 1and s = 2. If m; > 2,
then the sequence (a;) starts with a; = 2, thus the right-hand side is
at least 1. Hence we may assume that m; = 1. Because r = n—{;+1,
we have N(7)/(") = r/t; = (n — t1 + 1)/t . Consequently, for s = 2,
N(r) < (7) if and only if ¢; > (n +1)/2. The corresponding type is
{(1,t1), [n — t1,1]} as stated.

Assume now that s = 1. In this case r = m;, n = rt;, thus we get
N(r) _(n=n)t_ (“ﬁ’r+k)
(:) (tl')" 2r

k=1 Gk

If r > 4 then the right-hand side is at least 1. Thus we may assume
that r=2o0r 3. If r=3 and ¢; > 3, then

2t[ t -1 .
N(r) & (tl + 1) igl (t1+9) ) /st-3 2t +1\ 2
@) ()2 = ty! o it2 )2 !
therefore £, = 2 follows. If r =2 and ¢; > 4, then
t1—2
N DO+ e+ Tholtd)
G w2 \gy o i !
therefore ¢; = 2 or 3 follows. It is easy to verify that N(7)/(}) < 1
holds for the obtained types {[2,2]}, {[2,3]} and {[3,2]} . o
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Trivial types (r = 1 or n), together with non trivial types char-
acterized in Proposition 2.1 are called ezceptional. We study the
question whether there exist complete 7-loops, for every non excep-
tional type 7. As a first step we consider small cases that either
will serve as basis cases in later recursions or just illustrate some
techniques of construction.

Proposition 2.2 There ezxist complete strong T-loops for every non
ezceptional type T and n < 6.

Proof. Let X = X, = {1,2,...,n}, where the elements are
considered as mod n congruence classes (in particular, n + 1 = 1).
The sequence of transversals and the sequence of partitions in a 7—
loop (A;,71,...,Am,™m) is denoted by A and II, respectively.

Forr = {[1,2],[n-2,1]}and n > 3, A; = X\ {si}, m = {i,i +
IMi+2}...{i =1}, i =1,...,n, define a complete strong T-loop.
Thus, we may assume that either m; > 2 or t; > 3, where m;
and t; is the number and size of the largest classes of the partition,
respectively. In particular, n > 5.

Case n = 5. Let Ag and IIp be lists of doubletons and 2-
matchings, respectively, defined as follows:

Ao= ({1,2},{2,3},{3.4},{4,5}, {5.1},
{1,3%,{3,5}, {5,2},{2,4}, {4, 1}),
o= ({1,3}{2,4},{2,4}{3,5}.{3,5}{1,4},
{1,4}{2,5},{3,5H{1,2}, {1,5}{3,4},
{2,3}{4,5}, {4,5}{1,2}, {1,2}{3,4}, {2,4}{1,5})-
There are three types to consider. For r = {[1,3],(1,2]}, IT is
obtained by extending each member of Ilp to get a list of distinct
partitions of type r. For example,
M= ({2,4,5}{1,3},{1,2,4}{3,5},{2,3,5}{1,4},
{1,3,4}{2,5), {3,4,5}{1,2},{2,3,4}{1,5},
{1,4,5){2,3},{1,2,3}{4,5}, {1,2,5}{3,4}, {1,3,5}{2,4}).

A complete strong T-loop is obtained by alternately taking elements
from Ag and II.
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For 7 = {[2,2],[1,1]}, let A = {X5\ A; | A; € Ao}, and define II
by extending every member of [Ty with the uncovered element of X5

as a singleton class.
For 7 = {[1, 3],(2, 1]}, 2 complete strong T-loop is defined with

A= ({1,2,3},{1,3,4},{3,4,5},{1,3,5},{1, 2,5},
{2,3,5},{2,3,4},{2,4,5},{1,4,5}, {1,2,4}),

0= ({2’4»5}{1}{3}’{112!5}{3}{4}’
{1,2,4}{3}{5}, {2,3,4}{1}{5},
{1,3,4}{2}{5}, {1,4,5}{2}{3},
{1,3,5}1{2} {4}, {1,2, 3{4}{5},
{2,3,5H{1H{4}, {3,4,5}{1}{2}).

Casen = 6. There are four types to consider. For 7 = {[2, 2], (2,1]}
we obtain a complete strong T-loop with

A= ({1,4,5,6},{1,2,5,6},{1,2,3,6},{2,3,4,6},{2,4, 5,6},
{1,2,4,6},{1,3,4,6},{1,3,5,6},{2,3,5,6},{3,4,5,6},
{2,3,4,5},{1,3,4,5},{1,2,3,5},{1,2,3,4}, {1,2,4,5}),

= ({2,4}{3,5}{1}{6}, {3, 5H4, 1}{2}{6}, {4, 1}{5,2H{3}{6},
{5,3}{1,2}{4}{6}, {1,5}{3,4}{2}{6}, {3,2}{5,4}{1}{6},
{5,412, 1{3}{6}, {2, 11{4,3}{5}{6}, {4, 2{1, 5{3}{6},
{1,4}{2,6}{3}{5}, {1,2}{3, 6}{4}{5}, {2,4 {1, 6 {3 }{5},
{4,5}{3,6}{1}{2}, {3,5}{1,6}{2}{4}, {8,4{2, 6 {1 H{5}).

For r = {[1,3],[3,1]}:

A= ({1,2,3,4},{1,2,3,5},{1,2,4,5},{1,4,5,6},{2,4,5,6},
{2,3,4,5},{2,3,4,6},{2,3,5,6},{1,2,5,6},{1,3,5,6},
{3,4,5,6},{1,3,4,5},{1,3,4,6},{1,2,3,6},{1,2,4,6}),

I= ({4,5,6{1{2}{3},{3,4, 6 H1}{2}{5}, {2, 3,6 {1 H{4}{5},
{1,2,3}{4}{5}{6}, {1,3,6}{2}{4}{5}, {1, 5, 6 }{2H{3H{4},
{1,4,5}{2}{8}{6}, {1,3,4H{2}{5}{6}, {2,3, 4 {1 }{5}{6},
{1,2,41{8}H{5}{6}, {1, 2,6}{3}{4}{5}, {2,5, 6 H{1H{38H4},
{2,4,5}{1}{3}{6}, {3,4, 5}{1H{2}{6}, {3,5, 6 {1}{2}H{4}).
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For r = {1, 3),[1,2],[1,1]}:

A= ({3,4,6}, {4,5,6},{1,5,6},{1,3,6},{3,5,6},
{2,5,6},{2,4,6},{1,4,6},{1,2,6}, {2,3,6},
{2,3,5},{1,3,5},{1,3,4},{1,2,4},{2,4, 5},
{2,3,4},{1,2,3},{1,2,5},{1,4,5}, {3,4,3}),

M= ({2,3,5}{1,4}{6},{1,3,4}{2,5}{6}, {3,4,5}{1,2}{6},
{2,3,4}{1,5}{6},{1,4,5}{23}{6},{1,2,3}{4,5}{6},
{1,2,5}{3,4}{6},{1,3,5}{2,4}{6},{2,4,5}{1,3}{6},
{1,5,6}{2,4}{3}, {1,2,6}{3,4}{5}, {4,5,6}{1,2}{3},
{2,3,6}{4,5}{1},{1,5,6}{3,4}{2},{3,5,6}{1,2}{4},
{1,4,6}{2,5}{3}, {3,5,6}{1,4}{2},{2,4,6}{3,5}{1},
{1,3,6}{2,4}{5},{2,5,6}{1,3}{4}).

For r = {[1,4],(1,2]}:

A= ({3,4},{1,3},{1,4},{4,6},{1,6},
{5,6},{3,5},{3,6},{2,6},{2,3},
{1,2},{1,5},{2,5},{2,4},{4,5}),

II= ({1,4,5,6}{2,3}, {2,3,4,6}{1,5},{1,3,5,6}{2,4},
{1,2,3,4}{5,6},{1,2,4,5}{3,6},{1,2,3,6}{4,5},
{2,4,5,6}{1,3},{1,2,3,5}{4,6}, (3,4, 5,6}{1,2},
{1,3,4,6}{2,5},{2,3,4,5}{1,6},{1,2,4,6}{3,5},
{1,3,4,5}{2,6},{1,2,5,6}{3,4},{2,3,5,6}{1,4})-

3 Loops with r-matchings

Let r > 1,n > 2r, and let X be a set of n elements. W.lo.g. we
may assume that the underlying set X is either X, = {1,...,n} or
X2, ={0,1,...,n — 1}, and the elements of X are considered as
modulo n congruence classes.

Theorem 3.1 There exist complete strong loops with r-matchings,
forevery n>2r+123.
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Proof. Induction on r and n. The theorem is true for r = 1 and
n 2> 3. Indeed, 4; = {i} and p; = {f,i + 1}, for 1 < i < n, define a
p-loop on X, with 1-matchings.

Step A.Let r > 2,n > 2r+2,p= (*7") and ¢ = (?Z}). Set
X = X,?_l and X' = X,-;. Suppose that there exist complete
strong loops with r-and (r — 1)-matchings on (n — 1)-element sets.
Let (A1,p1,...,Ap,1p) be a complete strong loop on X' with r—
matchings such that 4, = {1,2,...,r}, A1 = {2,...,7,7 + 1}, and
pp = {{i,(r+14)} | 1 <i < r}. Let (By,vq,..., By, v;) be a complete
strong loop with (r —1)-matchings on the set {b;,...,b,—1}. Assume
that By = {b1,...,b,—1}, and B = {b,...,b;_1,b,41} if 7 > 3, and
Bl = {bs3}if r = 2. ’

Consider the natural extension of the bijection 8(b;) = ¢ from
the subsets of {b,...,b,_1} onto the power set 2X'. For every
1< i< g, let B; = B(B;)U {0}, and let v; = {{B(z),B(y)} | {z,y} €
vi} U {0,8(z;)}, where z; € {b1,...,ba—1} \ {b,} is an arbitrary el-
ement not covered by v/. Notice that such an z; exists, because v;
covers 2(r — 1) < (n — 1) — 2 elements, by assumption. Observe
that every r—element subset of X occurs exactly once in the list
(A1,...,A4p, By, By—1,...,B1), furthermore, A,N B, = {1,...,7—1}
and BiNA; = {2,...,7—1,r+1}. Furthermore, the list (p1,...,tp-1,
Vg-1,-..,¥1) contains distinct r-matchings of X.

Define two variants of p, as follows: wy = {1,2r}u{{i,r+i} |2 <
i <r—-1}u{0,r}and wy = {r+1,2p} U {{i,r+3} | 2< i<
r — 1} U {0,7}. Note that both w; and w; contain the pair {0,7},
hence they are different from any g; or v;. It is straightforward to
verify that (Ay, p1,...,tp-1, Apyw1, By, Vg—1, Bg—1,...,v1, B1,w2) is
a complete strong loop of X with r—matchings.

The circular lists Ag and IIp used in the proof of Proposition 2.2
define a complete strong loop with 2-matchings, for n = 5. Because
the theorem is also true for r = 1 and n > 3, Step A provides the
construction for r = 2 and every n > 5. In the same way, if there
is a loop with r—-matchings for fixed » and n = 2r + 1, then Step A
yields the required loops for every n > 2r + 1. To conclude the proof
of the theorem it is enough to construct loops, for every r > 3 and
n=2r+1.

Step B. Let r > 2, n = 2r +3,p = (*#!) and ¢ = (¥'1).
Set X = X, and X' = X\ {n - 1,n} = X,_,. Suppose that
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there exist complete strong loops with 7— and (r — 1)-matchings on
(n — 2)-element sets. Let (Ay,p1,..., Ay, pup) be a complete strong
loop with r-matchings on A = {a1,...,a2;41}. For every 1 <¢ < p,
let A; = A\ Al. One may assume that A, = {a1,a2,...,8r41},
Ay = {ag,...,8r41,8,42}, and pp, = {{ai, @, 414} |1 S P <7}

Consider the natural extension of the bijection a(a;) = i from 24
onto 2%". Define y; = {{a(u:), a(v:)} | {ui, v} € pi}u{e(zi),n -1},
for every 1 < i < p, where z; € A is the unique element not covered
by p!. In particular, g, = {{{,r+1+i} |1 <i<r}u{r+1,n—-1}.
Note that (A1, 1,- .., Ap, tp) is a strong p—loop including all (r+1)-
element subsets of X not containing n — 1 and n, furthermore, its
(r + 1)-matchings do not cover n.

Next we construct loops including (r + 1)-element subsets of X
that contain exactly one of n — 1 and n. We start with defining a
bijection ¥ : A — X’ which maps the loop (A7, ], Apsip)
into a loop of X’. One may assume that v(4,) = {1,2,. .,7} and

v(A}) = {2,...,7,7+2}. Foreach 1 < i< p, let C; —'y(A’)U{n},
m = {{7(w), ‘1(1)‘)} | {wi,vi} € i} U {y(zi),n}, where z; € A is the
unique element of A not covered by p!. Note that n—1 is not covered
by any ;. Let D; = y(AD)U{n—1}, pi = {{y(w:),7(vi)} | {mi,vi} €
[1:} U {n -1, n} Clearly, (Cla Tlyeeey cp)ﬂ'p) and (thl’ vee Dp’ pp)
are strong loops that include all (r + 1)-element subsets of X con-
taining exactly one of n — 1 and n.

Finally, let (Bj,v},...,Bq,v;) be a complete strong loop with
(r = 1)-matchings on B = {bl, .yb2r41}. Assume that B, =
{b1,...,b,—1} and B} = {bz,...,br_1,br42} (if » = 2, then B'
{b4}). For each 1 < i < g, the (7‘ — 1)-matching v} covers 2(r — 1) =
(2r+ 1)—3 elements. Hence there exists a pair z;,y; € B not covered
by v} such that {z;,3:} # {br,br41}. Consider the natural extension
of the bijection B(b;) = i from 28 onto 2X’. For every 1 <7 < ¢,
let B; = B(B))U {n - 1,n}, and let »; = {{B(2),B(¥)} | {z,y} €
v} U {B(z;),n — 1} U {B(yi),n}, where z; and y; are as above. Note
that (By,v1,...,Bq,v,) is a strong loop that includes all (r + 1)-
element subsets of X containing both 7 — 1 and n. Furthermore, by
definition, no v; covers both 7 and 7 + 1.

The (r + 1)-matchings we have defined so far are distinct. In-
deed, matchings from different loops are distinguished by their in-
tersections on {n — 1,n}. Now we combine the four p—loops into
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one by removing p,, 7y, pp, ¥4 and by joining the pieces with distinct
variants of p, = {{{,r +1+i} |1 <i<r}u{r+1,n—1}. Set
wo = {{i,7+1+:}|2<i<r-1}, and define

wi = {L2r+1}u{rn}u{r+1l,n-1}Uwo,
wp = {r+2,2r+1}U{r+1,n}u{r,n-1}Uwg,
w3 = {r+2,1}u{rnn}u{r+1,n-1}Uwo,
wy = {r+2,1}u{r+L,n}U{r,n—1}Uwg.

These (7 + 1)-matchings differ from any v; on the set {r,r + 1},
by the definition of v;. Furthermore, any w; is distinguished from
any pj, m; or p; by its intersection on {n — 1,n}. Clearly, w; is
orthogonal to A, = {1,...,r+ 1} and D, = {1,...,7,n — 1}, wy
is orthogonal to C; = {2,...,7,7 + 2,n} and 4; = {2,...,7 +
2}, w3 is orthogonal to Dy = {2,...,7,7 +2,n — 1} and By =
{2,...,7=1,74+2,n-1,n}, and w, is orthogonal to B, = {1,...,7—
1,n—-1,n} and Cp = {1,...,r,n}. Consequently, (A1, #1,...,4p,w1,
Dp,pp_l,. . ,pl,Dl,w3,B1,1/1, cen ,Bq,w4,Cp,7rp_1, e ,1r1,C’1,w2) is
a complete strong loop with (r+1)-matchings for the (2r+3)-element
set X. This concludes Step B and the proof of the theorem. O

As a corollary of Theorem 3.1 we obtain the following result on
T-loops.

Corollary 3.2 There exist complete strong T-loops with partitions
of type {[m,2],[n - 2m,1]}, for everyn > 2m +1 and m > 1.

Proof. From Theorem 3.1 immediately follows that there is a com-
plete strong loop (A1,41,...,Ap, ttp) on X, with m-matchings, for
every n > 2m. Extend each p; with the uncovered n — 2m elements
of X, to a partition 7; of type 7 = {[m,2],[n — 2m,1]}. The com-
plement A; = X, \ 4; is orthogonal to 7;, and (A7, 71,...,dp,7p) is
obviously a complete strong 7-loop of X,. o

4 Partitions with classes of size 1 or 2

For my > 0,my > 1, let 7 = {[my,1],[m2,2]} be a partition type.
Set n = my 4 2my, r = m; + my, and m = (7). Note that if m; =0,
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then any partition of type 7 becomes an r-matching. Classes of size 1
and 2 in a partition are called singletons and doubletons, respectively.
The parity of a singleton {k}, for k& € X;, is defined as the parity
of the integer k. Based on parity considerations we give a recursive
construction which extends to any partition with classes of size 1 or
2. This method resolves the missing case of n = 2r, and also offers a
second proof for Corollary 3.2.

Let (A1,71,...,Am,Tm) be a complete 7-loop on X, with parti-
tions of type 7. We say that the loop satisfies the parity condition if
the number of even singletons in ; is |m;/2], for every 1 < ¢ < m,
and it satisfies the boundary conditions if A; = {1,2,...,r} and
Am ={1,2,...,7r — 1,n}. Parity and boundary conditions will help
us in pasting loops together in the recursive construction.

It is easy to see that there are no complete 7-loops satisfying the
parity condition if m, = 1 and n is odd. Therefore we will assume
that mq > 2, and n > 6. First we construct complete r-loops with
the parity and boundary conditions, for mg = 2 and every n 2 6.

Lemma 4.1 For every r > 4, there exist complete T-loops with par-
titions of type {[r — 2,1],(2,2]} satisfying the parity and boundary
conditions.

Proof. The sequence of r-element subsets and the sequence of par-
titions in a T-loop will be denoted by .A and II, respectively. Set
n =r+2. If r = 4, then the following lists define a complete loop
on Xg satisfying the parity and boundary conditions.

A= ({1,2,3,4},{3,4, 5,6},{2,3,4,6},{1,3,4,6}, {1,2,5,6},
{2,4,5,6}, {1,2,4,5}, {1,3,4,5},{1,4,5,6}, {2,3,4,5},
{1,2,3,5},{2,3,5, 6},{1,3,5,6},{1,2,4,6}, {1,2,3,6}),

II= ({3H4H1, 5}{2,6}, {3}{4}{1,6}{2,5}, {3}{4}{1v2}{576}1
{1}{6}{2,4}{3,5}, {5}{6}{1,4}{2,3}, {21{5}{1,6}{3, 4},
{4}{5}{1,6}{2,3}, {4}{5}{1,2}{3,6}, {4{5}{1,3}{2, 6},
{2}{8}{1,4}{5,6}, {21{3}{1,6}{4,5}, {3{6}{1,2H{4, 5},
{1}{6}{2,3}{4,5}, {L}{6}{2,5}{3,4}, {2}{3}{1,5}{4,6}).

Suppose now that 7 > 5, thatisn=r+2> 7. Let X = Xp, X' =
Xn-1 and set m’ = (*Z1). Assume that there exists a complete loop
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(A}, 7, ..., Apr,7h,) on X' with partitions of type {[r—1, 1],[2,2]}
which satisfies the parity and boundary conditions. In particular,

' ={1,2,...,r—1} and A, = {1,...,r = 2,7 +1}. Fori =
1,2,...,m, define A; = A} U {n} and let m; be the partition of
X obtained by extending w} with the singleton {n}. Define m =
{1}{2}...{r = 2}{r - L, + 1}{r,n}.

Let By = {1,2,...,7},andfori = 2,...,r+1,let B; = X'\ {i-1}.
Define 0, = {3}{4}...{r}{1,7 + 1}{2,n}, and ory1 = {1}{2}...
{r=2}{r,r+1}{r —1,n}. For i =2,...,r, let o; be the partition of
X with two doubletons, {i—1,i} and {r+1,n} (and r—2 singletons).

Obviously (B1,01,.+» Bra1,0r41, Amty Tt =15+ -, T Ay, mo)is a
complete 7-loop on X, and it satisfies the parity and boundary con-
ditions. o

Theorem 4.2 There ezxist complete T-loops for every non ercep-
tional partition type with classes of size 1 or 2.

Proof. For my > 0,mq > 1, let 7 = {[my,1],[m2,2]}, n = m1 + 2ma2,
r = my + mz, and m = (7). For m; = 1, complete loops are given
in Proposition 2.2. For my = 2, Lemma 4.1 implies the existence of
complete loops. Hence the theorem is true for m; =1 and 2.

If my > 3, 7 = {[1,1],(3,2]} is the only non exceptional type, for
n = 6 and 7. In this case a complete r-loop with the parity and
boundary conditions is defined as follows.

A= ({1,2,3,4},{1,2,3,5},{1,2,4,5},{2,3,4,5},{1,3,4,5},
{2,3,4,6},{1,2,3,6},{1,2,4,6},{1,3,4,6},{3,4,5,6},
{2,4,5,6},{1,3,5,6},{2,3,5,6},{1,2,5,6},{1,4,5,6},
{1,3,5,7},{1,2,5,7},{1,4,5,7},{1,5,6,7},{3,5,6, 7}
{3,4,5,7},{2,5,6,7},{2,3,5,7},{2,4,5,7},{4,5,6, 7},
{1,2,4,7},{1,4,6,7},{1,3,6,7},{2,4,6,7},{3,4,6,7},
{2,3,6,7},{1,2,6,7},{1,3,4,7},{2,3,4,7},{1,2,3,7}),

M= ({3}{1,5}{2,61{4, 7}, {3H{1L,6}{2,7H{4,5},
{5}{1,6}{2,7}{3,4}, {8}{1,3}{2,7}{4, 6},
{3}{1,2}{4,7}{5,6}, {3H1,6}{2,51{4, 7},
{3H{1,41{2,516,7}, {1H{2,5{3,4}{6, 7},

249



{11{2,3}{4,5}{6, 7}, {3}{1,5}{2,4}{6, 7},
{5H{1,4}{2,3}{6,7}, {5}{1,2}{3,4}{6,7},
{3H1,2}{4,5}{6, 7}, {5}{1,3}{2,4}{6, 7},
{11{2,4}{3,5}1{6, 7}, {5}{1,2}{3,4}{6, 7},
{5H1,6}{2,3H{4, 7}, {5H{1,6}{2,4}{3,7},
{6H{1,2}{4,6}{3, 7}, {5}{1,3}{2,6}{4,7},
{5H1, 71{2,3}{4,6}, {5}{1,7}{2,4}{3,6},
{51{1,21{3,6}{4,7}, {8}{1,7}{2,6}{3,4},
{51{1,4}{2,6}{3,7}, {7}{1,6}{2,5}{3,4},
{7H1,3}{2,6}{4,5}, {7}{1,2}{3,4}{5,6},
{7TH1,4}{2,3}{5,6}, {7}{1,6}{2,3}{4,5},
{7H{1,3}{2,4}{5,6}, {7}{1,3}{2,5}{4,6},
{7H1,5}{2,4}{3,6}, {7}{1,2}{3,6}{4,5},
{7H1,4}{2,5}{3,6}).

For the recursive constructions we need stronger parity and bound-
ary conditions formulated in the following properties:

(1) the number of even singletons in m; is [m/2], for 1 < i < m,
(2) A1 ={1,2,...,r}, An={1,2,...,7=1,n}ifm; >0, and
Ap={r-1,r...,n=3,n}if m =0,

(3) if {1} is a singleton in m; then {n — 1,n} is a doubleton in =,
for m; = 1, and {n} is a singleton in m;, for m; = 2.

Observe that properties (1)-(3) are satisfied by the loop above
and by those constructed in Lemma 4.1, for m; = 2. Suppose now
that mg > 3, n > 8, and assume that there exist 7-loops on X} with
properties (1)-(3), for all non exceptional types such that mg > 2
and 7<k <.

Case 1: my > 2. Let X = Xn, X' = Xp_1, and set k = (*]7),
l = ('r‘j) Let (A1, 71,...,Ak,7;) be a complete loop on X’ with
partitions of type {[m; +1,1], [m2—1,2]}, and let (B}, 01,..., B}, 07)
be a complete loop on X’ with partitions of type {[m; — 1, 1], [m2,2]}.
Also assume that both loops satisfy properties (1)—(3).

Fori=1,...,k -1, let m; be the partition obtained from =} by
adjoining n to the least singleton class of the opposite parity (i.e.,
parity different from that of n). For each i = 1,...,{, let B; =
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B! U {n} and let o; be the partition obtained from o} by adding {n}
as a singleton class. Note that 7; and o; are distinct partitions of
X containing |m;/2] even singletons, for every 1 < i < k—1 and
1<j<i-1

For my > 4, let p; be a partition orthogonal to both A; =
{1,2,...,r=1,n -1} and B; = {1,2,...,r — 2,n — 1,n} such that
its singletons are {3},{4},...,{m1 + 2} and it contains the dou-
bleton {r — 1,n}. Let p; be a partition orthogonal to both A; =
{1,2,...,7} and B; = {1,2,...,7 — 1,n} such that its singletons
are {3},{4},...,{m1 + 2} and it contains the doubleton {r,n}. For
me = 3, p; and p; are defined similarily, but their singleton classes
are {1},{2},...,{m1}, if m1 > 3, and {2},{3}, if m; = 2. Note that
pj» § = 1,2, is different from 7, for every 1 < ¢ < k— L Indeed,
if {z,n} is a doubleton in m;, then by definition, #; has no smaller
singleton than z withparity opposite to that of », but this property
is not true for p;.

ObViOllSly (Alawlv coey =1, Akapla By, 01-1,...,01, BI,P2) is a
complete 7-loop on X, and it satisfies properties (1) and .(2). If
my = 2, then {1} is not a singleton of p; or p;. Because in this case
n = 2mg + 2 is even, {1} is not a singleton in any 7y, 1 <2 < k-1
Finally, since {n} is a singleton class in every 0,1 < j <1 -1, the
loop satisfies property (3) as well.

Case 2: my = 1. Let X = Xn, X' = Xn_1, and set k = ("),
l = (:,‘:11) Let (Ay,7),..., Ak, T;) be a complete loop on X' with
partitions of type {[2,1],[m2 — 1,2]}, and let (B{,0},...,Bj,07) be a
complete loop on X’ with partitions of type {[m2,2]}. Also assume
that both loops satisfy properties (1)—(3).

Fori=1,...,k -1, let m; be the partition obtained from = by
adjoining n to the even singleton class. For each i = 1,...,1, let
B; = B!U{n} and let o; be the partition obtained from o} by adding
{n} as a singleton class. Note that m; and o; are distinct partitions
of X with no even singleton, forevery 1 < i < k-land1 <j<I-1
Observe that {1} is a singleton in =; if and only if it is a singleton
class in 7!. Thus, by (3), {n — 1} is a singleton class in #’ which
implies that {n — 1,n} is a doubleton in ;.

Let p; be partition of X with classes {1}{r,n}{2,r+1}{3,7+2}...{r-
1,n—1}.Set z = r—1if ris even, and z = r—2if r is odd, and define
po as a partition of X with classes {z}{1,n}{2,7}{3,r + 1}...{r =
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3,n—4H{z - 1,n—2}{n - 1,n — 3}. Then (A1,71,...,Tk=1, Ak, P2,
By,014,...,01,B1,p1) is a complete loop on X satisfying properties
(1)-(3).

Case 3: my = 0. Set X = Xpn, X' = Xn-1, and k = (*7Y).
Let (A1,7,..., Ak, m;) be a complete loop on X’ with partitions of
type {[1,1],[m2 — 1,2]} satisfying properties (1)-(3). In particular,
in each partition the only singleton is odd, and if {1} is a singleton
of 7/, then {n — 2,n — 1} is a doubleton in #'. For i = 1,...,k — 1,
let 7; be the partition obtained from =} by adjoining n to the unique
(odd) singleton class.

Define a permutation 8 of X’ by 8(1) = 1,8(2) = n — 1, and
B(i) =i-1,fori =3,...,n— 1. Using B to denote its natural
extension to the power set 2X', define B! = B(A;) and g} = B(m}).
For every ¢ = 1,...,k, let B; = X \ B}, and let o; be the partition
obtained from o} by adjoining » to its singleton class. This singleton
is either even or equal to {1} which implies that =; # o;, for every
1<4,j<k-1.

Let p; = {1,n}{2,n-2}{3,n-3}...{r— 1,7+ 1}{r,n—1}, and
let p2 = {1,n}{2,7 + 1}{3,r + 2}...{r — 1,n — 2}{r,n — 1}. Note
that, by property (2), 4; = {1,2,...,7}, 4 = {1,2,...,7—1,n-1}.
Thus By = {r,r+1,...,n—2,n} and By = {r - 1,7,...,n — 3,n}.
Therefore, p; is orthogonal to Ay and By, and p, is orthogonal to B
and A;. Then (Alaﬂ'la co s Me—1, AkvplaBlyala ceeyOk=1s Bk,P2) is a
complete loop on X satisfying properties (1)-(3). o
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