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ABSTRACT. The sum graph of a set S of positive integers is
the graph G*(S) having S as its vertex set, with two distinct
vertices adjacent whenever their sum is in S. If S is allowed
to be a subset of all integers, a graph so obtained is called an
integral sum graph. The integral sum number of a given graph
G is the smallest number of isolated vertices which when added
to G result in an integral sum graph. In this paper, we find
the integral sum numbers of caterpillars, cycles, wheels, and
complete bipartite graphs.

1 Introduction

The sum graph of a subset S of N = {1,2,3,---} is the graph G*(S) whose
vertex set V = S and whose edge set E = {uwv|u#vin S and u+v € S}.
A sum graph is a graph that is isomorphic to the sum graph of some subset
of N. This concept was introduced in [4], where some basic properties of
sum graphs were presented. Given any graph G with n vertices v; and m
edges, it is trivial that the union G U mK; of G with m isolated vertices
is a sum graph. This fact follows at once by labeling each v; with 10° and
the m isolated vertices with 10° + 107 whenever v;v; € E. From this, we
can define the sum number o(G) of G as the smallest nonnegative integer
m such that GUmKj is a sum graph. Note that G is a sum graph if and
only if 6(G) = 0.
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Harary [5] gave
3, ifn=4,
7(Ca) = { 2, ifn#d.

Ellingham [3] proved that ¢(T) =1 for any nontrivial tree T. Bergstrand
et al. [2] found that o(Ky) = 2n — 3 for n > 4. Hartsfield and Smyth [6]
demonstrated that o(Kmn) = [32342=3] for 2 < m < n. The following
example shows that their solution is only a good upper bound rather than
an exact value of o(Kpm n). If

A=1{1,5}, B ={90,91,92,95,96,100}, I = {93,97,101,105},

then Gt(AUBUI) = Ky U4K; and so 0(K26) <4<5= [ﬁ%s—_—s']

Suppose S is a subset of the set Z of all integers. The integral sum graph
G1(8) is defined as the sum graph, the difference being that S C Z, instead
of S C N. The integral sum number {(G) is the smallest nonnegative integer
m such that GUmK] is an integral sum graph (i.e., GUmK is isomorphic
to G+(S) for some S C Z). These concepts were introduced by Harary [5],
who also raised some unsolved problems.

The main results presented in this paper are the integral sum numbers
of caterpillars, cycles, wheels, and complete bipartite graphs.

2 Caterpillars, cycles, and wheels

The purpose of this section is to prove that every caterpillar, every n-cycle
C, with n # 4, or every n-wheel W,, with n # 3 is an integral sum graph.
Note that a sum graph is an integral sum graph. Therefore we have

Lemma 1 0 < {(G) < o(G) for any graph G.

Lemma 1, together with Ellingham’s result, shows that 0 < {(T') < 1 for
any tree T. A star K, , is an example where ((K1n) =0 < 1 = o(K) ),
since G*({l,n+1,n +2,--,2n,2n + 1}) = K1, U K; and G*({0,n +
1,n+2,--+,2n}) = K . Harary [5] showed that any P, is an integral sum
graph. He then conjectured that any integral sum tree is a caterpillar. Chen
[1] gave an infinite number of integral sum trees that are not caterpillars.
Our first result is to show that every caterpillar is an integral sumn graph.
We conjecture that any tree is an integral sum graph.

For technical reasons, we define a more general concept than an integral
sum graph as follows. Suppose z is a vertex of a graph G = (V, E). G is
said to be a (x)-sum graph with respect to z if Conditions (S1) and (S2)
hold.

(S1) There is a one-to-one function f from V to Z such that G is an
integral sum graph of {f(u): u € V}.

(S2) f(z) > |f(u)] >0> f(v) forallue V — {z} and some v € V.
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Lemma 2 If G = (V,E) is a (¥)-sum graph with respect to z, then
G* = (V*,E*) is a (x)-sum graph with respect to zi, where V* = V U
{z1,z2, -+ ,z¢} and E* = EU {zz1,zZ2,- - ,zzk} for some k > 1.

Proof: Suppose f(y) = min{f(v): v € V and f(v) < 0}. Define f* on V*

by
* — _f(u)'l if'UrEV,
f(u)_{if(x)—f(y), ifu=z;and1<i<k,

see Figure 1 for the construction of G* and f*. We shall show that f*, with
respect to zy, satisfies Conditions (S1) and (S2). Note that

[ (ze) > fH(ze-1) > - > (1) > |f* ()| >0> f*(z) forall u € V.

Then f* is a one-to-one function from V* to Z and Condition (S2) holds
for f* with respect to zx. So, we only need to show that G* is the integral
sum graph of {f*(u): u € V*}.

First note that f*(y) > f*(u) for all u € V — {y}. Therefore, for u # v
inVandwe V* -V, ff(w) > f(z) - fy) > -2f(y) = 2f*(w) >
() + F*(v), e £*(u) + F*(@) # F*(w). Next, suppose f*(u) + f*(v) =
f*(w) for some u € V* —V,v € V* — {z}, and w € V*. If w € V, then
|F* ()] = f* ()= f* (w) 2 f(z)+f*(@v) - f*(w) = f(z). Ifw € V*~V, since
w#u, |f*©)] = |f*(w) - f*(u)] > |f(z)]. In any case, v € V* — V, which
implies w € V* — V too. So, if(z) — f(y) +jf(z) — f(y) = pf(z) - fy)
for some 1 < 4,5,p < k. Hence (i + j — p)f(z) = f(y), which implies
If(¥)| = |f(z)|, a contradiction. Therefore f*(u) + f*(v) # f*(w) for
ueV*-V,veV* - {z}, and w € V*. Thus G* is an integral sum graph
of {f*(u): ue V*}. o

Figure 1. The construction of G* and f*
Theorem 3 Every caterpillar is an integral sum graph.

Proof: Suppose T, = (V, E,) is a caterpillar with a spine of length r as
shown in Figure 2, i.e.,

Ve={uij: 0<i<rand1<j<n} and
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Er = {uintiq1,5: 0<i<r—1land1<j<ni},

whereng=1<n; for1 <i <rand 2 <n; for r > 2. Note that, if we
consider T;_; as G in Lemma 2 and %,_1n,_, as  and n, as k, then T is
G*.

uo,1 Uy,n, U2,n, Ur-1n,.., Urn,

Uy Utn,-1 ua 1 U2 nq=-1 Ur,1 Urn, -1
Figure 2. A caterpillar T

Forr=1,T) = G*({0,n1+1,n1+2,--- ,2n,}) is an integral sum graph.
For r» = 2, define

11 ifz'=08,ndj=11
B j_2nh ifz:landlSJSnlv
falwid) =31 _p,, ifi=2andj=1,

14(—1)ny, ifi=2and2<j < n,

see Figure 3. Since n; > 2, it is straightforward to check that T, is an
integral sum graph. Moreover, for the case of ng > 3, T% is a (*)-sum graph
with respect to uzn,. Hence, by induction and Lemma 2, T’ is an integral
sum graph for r > 3 and ny > 3.

1 —-ny 14 (n2 = )m

1-2n J=2m -1 -n 1—-n t+n 14+ (j—1ny 1+ (n2—2)ny
Figure 3. A labeling f, for T5
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For r = 3 with ns < 2 < 3 < ny, define

3, ifi=0and j =1,

35 —14, ifi=1land1<j<n,
fa(uij) = ¢ =3n; +7, iffi=2and j=1<2=mna,,

—3n; + 3, if i =2 and j = n,,

3jn; —35+2, ifi=3and1<j<ns

(see Figure 4). Since ny > 3, a direct check shows that T3 is a (*)-sum
graph with respect to u3n,. Hence, by induction and Lemma 2, T; is an
integral sum graph for r > 3 and np <2 <3 < n;.

3 3n; -4 -3ny; +3 3nzn; —3nz +2

Uin,

-1 3j—-4 Ing =7 =3ny+7 3Iny -1 3iny =3i+2 Jnz-1)(n —-1)+2
(if no =2)

Figure 4. A labeling f3 for T3 withns <2 <3<
For r = 3 with ng < 2 = n,, define

na+1, ifi=0andj=1,
na, ifi=land =1,
Ja(uij) =< -1, ifi=1land j=2,
no+2, ifi=2andj=1<2=ny,
o +1, ifi=2andj=ny
(see Figure 5). It is easy to check that T is a (x)-sum graph with respect

to ugn,. Hence, by induction and Lemma. 2, 7. is an integral sum graph
forr >3 and no < 2=mn;. ]
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na + 2na +1

-

na + 2
(lf na = 2)

Figure 5. A labeling f4 for To withng <2 =n;

Next, we study the integral sum numbers of n-cycles C,, and n-wheels W,,,
which are obtained from C,, by adding a new vertex adjacent to each of the
vertices in Cy,. Harary [5] showed that {(C,) = 3 and {(Ws) = {(K,) = 5.
Except for these two cases, however, all other cycles and wheels are integral
sum graphs.

Theorem 4 The n-cycle C,, is an integral sum graph for n # 4.

Proof: It is easy to confirm that

Cs = G+({~1,0,1}),

Cs = C+({1,2,~1,3,-2}),

Ce = G+({1,4, -3, —1,5, —4}),

Cr = G+({1,2, -5,7,~3,4,3)}),

Cs = G+({1,5,2,7, 2,9, -8, 6}),

Co = G+({3,4,-1,5, 12,17, ~7,10,7}),

Cn. =G*({a1,a2, -+ ,an_4,—Cn—5,0n_3,83 — Gn_3,8n_3 — G1})

forn> 10, wherea; =1,a2=2,and a; = a;—1+ai—2for3<i<n. 0O
Theorem 5 The n-wheel W, is an integral sum graph for n # 3.

Proof: It is easy to confirm that

Wa = G*+({1,-1,2,-2,0}),

Ws = G+({1,2,~2,3,-3,0}),

We = G+({1,2,3, —3,5, 4, 0}),

W, = G+({1,2,3,5, 5,8, —6,0}),

We = G+({1,2,-9,11,-7,7,4,3,0}),

We = G*({1,2, -10,12, -3,3,9, -8, 8,0}),

Wio = G+({3, 4, -1, 5, -22,27, -17,17,10,7,0}),

W, = G+({a1y az,:+* ,0n—4, —0n-4,0n-3,03 — Gn-3,0n-3 — A1, 0})
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forn > 11, wherea; =1,a2=2,and ¢; =0a;_1+a;2for3<i<n. 0O

3 Complete bipartite graphs

As the example in Section 1 shows, Hartsfield and Smyth’s solution is only
a good upper bound rather an exact value for 0(Km ). This section
gives complete solutions to (K n) and (K n). As shown in Section
2, (K1) =0 < 1= 0(Ky,). So, from now on, we consider only K n
with m > 2 and n > 2.

In this section, we suppose that S C Z is such that G*(S) = Kyn U
C((Kmmn)K1, where AC S, B C S, and S— A — B corresponds to the partite
set of m vertices, the partite set of » vertices, and the isolated vertices in
¢(Kmn)K1. Note that 0 ¢ S, otherwise K 5 U ((Kmmn)K: has a vertex
adjacent to all other vertices, which contradicts m > 2 and n > 2.

Lemma 6 (i) If a+bé€ B for some a€ Aand b€ B, thena'+b€ B
forall o’ € A.

(i) If a+b € A for some a € A and b € B, then a+b € A forall b' € B.

Proof: (i)a’ € Aand be Bimplya'+b€ S. Also,a’€ Aanda+be B
imply @’ + (a+b) € Sora+ (a’+b) € S. Then,a € A, a’+b€ S and
a+(a’+b) € Simply a=a’'+bor o’ +b € B. Since a’ +b € B means (i)
holds, we may assume

a=a +b. )

And so, 2a = a’+(a+b) € S. Next, a € A and a+b € B imply a+(a+b) € S
or2a+b€eS. Then,2a€ S, be B, and 2a+b € S imply 2a = bor 2a € A.
We shall prove that neither is true.

Suppose 2a = b. By (1), —a=a'. a € Aand 3a = a+b € B imply
4a € S. Then, —a = a’ € A, 4a € S, and —a + 4a = 3a € B imply
—a = 4a or 4a € B. Since —a = 4a implies 0 = a € S is impossible, we
may assume 4a € B. a € A and 4a € B imply 5a € S. But this implies
b+ (a+b)=5a€ S for be B and a+b € B, contradicting b # a + b and
{b,a+b} ¢ E(Kumn).

Suppose 2a € A. This, together with b € B and a + b € B, implies
2a+beSand3a+beS. Then,a€ A, 2a+beS,anda+(2a+b)e S
imply a =2a+bor2a+be€ B. Sincea=2a+bimpliessG=a+be B
is impossible, we may assume 2a+b € B. o' € A and 2a+ b € B imply
o’ + (2a +b) € S. But this and (1) imply a+ 2a = a’ 4 (2a + b) € S for
a € A and 2a € A, contradicting a # 2a and {a,2a} ¢ E(Km ).

(ii) The proof is similar to that of (i). O
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Lemma 7 If |A| < |B|, then a+b€ S— A forall a€ A and be B.

Proof: Suppose a+b € A for some a € A and b € B. By Lemma 6 (ii),
a+b € Afor all b’ € B, and so |A| > |B|. However,a+0€ Aand 0 ¢ B,
so |A] > |B|, which is impossible. ' 0
Now, for convenience, we assume 2 < |[Al] =m < n = |B|. Let A =
{e1,02, -+ ,an} With @y < a3 < +-- < @, and Bo = S — A— B. For
any b € B, by Lemma 7, we have a; +b € S — A. If ay + b € B, then
a1+ (a1 +b) = 2a; +b € S — A. Continuing this process, there must
be a positive integer z such that za; + b € By. For any b € B, let ky =
min{z|za; +b € Bg and z € N} and k = max{k|b € B}. Then, B can be
partitioned into By, By, --- , Bx, where B; = {b € B}k, = i}.
Denote X +Y ={z+y|z€ X andy € Y}.

Lemma 8 A+ B; C B;—; and |B;—1| > |Bi|+m—1 for 1 <i<k.

Proof: We shall prove A + B; C B;_.; by induction on .

Suppose @ +b ¢ By for some a € A and b € B; C B. By Lemma 7,
a+beS—-Aandsoa+be B. By Lemma 6 (i), a € A, b € B, and
a+be€ B imply a; +b € B and so a; + b ¢ By, contradicts the fact that
b e B;. Thus, A+ B; C By.

Assume A + B;_; C B;_s. For any b € B;, ta; +b € By or (1. - 1)(11 +
(a1+b) € By, i.e., kg, 46 < i—1. On the other hand, k,, 1501+ (a1 +b) € By
or (kay+b+1)a1 +b € By implies ko, 45+ 1 > ky =i. So, kg, 46 =i —1 and
then a; +b € B;_,. For any a € A, a + (a; + b) € B;_5 by the induction
hypothesis. Consequently, (i —2)a; +a+ (a1 +b) = (i—1)a; +(a+b) € By,
i.e., ka.+b < i-1. Also, ka+ba1+(a+b) € Byor (ka+b—l)a.1+a+(a1+b) € By
implies kg5 —1 2 kot (a,+5) = 1—2. So, kg1 = i—1 and then a+b € B;_;.
Thus, A+ B; C B;_;.

Moreover, for 1 <i < k, let B; = {by;b,--- ,b;}, where by <by < --- <
bj. We have

a1+b <az+b <--<am+b <am+br<--<am+bj,
which are m 4 j — 1 distinct element in B;_;. So, |B;—;| > |B;]+m—1.0

Lemma 9 If m, n, h, no,n1,n2,--- ,np are positive integers such that

h .
2<m<Sn=)y; niandni1 2ni+m—1forl <i < h, then
Ko UngK, is a sum graph.

Proof: Choose integers d > h + 1 and ¢ > max{2md, h + nod}. Consider
the following sets of positive integers

X={zg=1+(g-1d[1<q<m},
Yi={wj=c+h-i+jd1<j<m} for0<i<h
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Note that
1<z, <md<c<yj <2c forzy,€ X andy;j €Y. (2)

So any y;; > any zg, i.e,, XNY; =0 for0<i < h. Also ;NYyr =0 for
0 <i < < h,otherwise c+h—i+jd=c+h—1i+ 5'd would imply 7' — ¢
is a multiple of d, which contradicts 1 < —i < h <d. Let

Y=Y1U---UYand S=XUY UY,.

Then, |X|=m, |[Y]|=mn, |S|=m+n+np. For z, € X and y;; € ¥; with
1<i<h1<g<mandl<j<n;implyl < j+g-1<ni+m—1<ny_,,
and so

Tgt+yj=c+h-(i-1)+(G+q-1)deY;_ CS

Also, for all other (z,y) € S xS, z+y ¢ S. More precisely, for z,,z, € X,
Tp+za=24+@p+q—-2)d g X and 2, + 2, < 2md < ¢ < any y;;.
Forz, € X and yo; € Yo, zg+%j = c+h+ 1+ (g+ 35— 1)d # any
c+ h -1+ 5'd with 0 < ¢ < h, otherwise i 4 1 is a multiple of d, which
contradicts 1 <i+1< h+1 < d. For Yij, Yirjt € }’,yij + yirge > 2c, and so
Yij + Yitj is not in S. Thus G+(S) = Km,n UnoKl. O

Theorem 10 If 2 < m < n, then ((Kmn) = 0(Knyn) = [%4_!&1).2&12],
where p = [/ 28 + 111 is the unique positive integer such that £=12{m=1)
<n< P!Z'{'lz!!m—l!.

Proof: Let ng = |Bo| = {(Km,n) and p be a unique positive integer such
that

1+p(m—1)<no < (p+1)(m-1). (3)

From Lemma 8, we have |B;| < ng —i(m — 1) for 1 < i < k. In particular,
1< |Bgl <no—k(m—1) < (p+1—-k)(m—1), and so k < p. Next,
n=|B|=|UL; Bl = S, |Bil € Xi_i{no —i(m — 1)} < T, {no -
i(m—1)} =pno—ﬂ(m¥"‘—‘12. Note that, by (3), each n; = ng—i(m—1) > 1
forl <i<p.

Suppose n < png — ﬂ&%m—_l} —p=3Y"_,(n;—1). Choose h such that
Z::ll(n.-—l) <n$2?=1(n,-—l); andsetn;=n;—1for0<i<h-1
and nj =n— 2?-;11 n;. Then m, n, h, ng, -+ - ,n), satisfy the conditions in
Lemma 9. By Lemma 9, K, , UnyK] is a sum graph, which contradicts
ng < ng = {(Kmyn). So,

_plp+1)(m—1)

—p<n<pn -~ )
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or .
nyt)m-1 o n, HYm-D
P 2 p 2

and then ((Kmgq) = [2 + {££2m=11 By (3) and (4), we have

(p—ng—1)<nsp@+4§m—1%

or

1o o 1 _ 2n 1 _ 1 1.,
—-) = — — - < - .
p-3)=p Pty< ——gtgSPtrty @+2L

—_— 2n 1 1
orp=[/Z21+1 -3l

Finally, by applying Lemma 9 and by using m, n, h = k, ng = | Bo|,n1 =
|Bil, -+ ,n = |Bx|, we have 0(Kpmn) < ((Kmn). This together with
Lemma 1 gives 0(Kp ) = ((Km,n)- o

References

[1] Z.Chen, Two conjectures of Harary on sum graphs over all the integers,
submitted.

[2] D. Bergstrand, F. Harary, K. Hodges, G. Jenning, and L. Weiner,
The sum number of a complete graph, Bull. Malaysian Math. Soc. 12
(1989), 25-28.

[3] M.N. Ellingham, Sum graphs from trees, Ars Combinatoria 35 (1993),
335-349.

[4] F. Harary, Sum graphs and difference graphs, Congr. Numer. 72
(1990), 101-108.

[5] F. Harary, Sum graphs over all the integers, Disc. Math. 124 (1994),
99-105.

[6] N. Hartsfield and W.E. Smyth, The sum number of complete bipartite
graphs, Graphs and Matrices, ed. Rolf Rees (Marcel Deccer 1992),
205-211.

268



