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Abstract

We give a new and simple proof for the cyclic group of line cross-
ings on the 2-D torus.

1 Introduction

Let R2 be the plane. For (z1,%1), (z2,%2) € R?, define a relation R on R?
by (z1,%1) R (z2,%2) if and only if both £y — 2, and y2 — y; are integers.
This relation is an equivalence relation. The equivalence class of (z,y) is
denoted by [z,y]. The (2-dimensional) torus is defined to be the set of all
equivalence classes under R, i.e. T = R?/R. Since each equivalence class
has a unique representative in the square [0,1) x [0,1), T can be identified
with the square [0, 1) x [0,1).

A line on the torus T is the subset defined by L = {|z,y] € T|[z,y]| N L # 0)
where L denotes a line on the plane. The slope of L is defined to be the
slope of L. Now, let S be a set of n ordered pairs (a;, b;) of integers with
ged (@, b;) = 1 and a;b; # a;b; whenever @ # j. For each 1 < i < n, let
L; be the line on the plane satisfying the linear equation e;z + b;y = 0.

noo_
Figueroa and Salzberg [1] studied the set J = [ L; and showed that J is

a cyclic group under the addition module 1. Al\ mentioned by Figueroa
and Salzberg, this result can be used in dealing with the discrete limited
angle model for computerized tomography proposed by Salzberg [2] in pro-
jective spaces and developed by Salzberg and Steffens [4] in an Euclidean
geometry.

Figueroa and Salzberg [1] studied the group J by using group theory. We

shall give a new and simple proof in the next section. The method we will
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use is a generalization of the method used by Salzberg [3] for studying the
intersection of two lines Ly and L, with integral slopes k and ¢, respectively.

2 The group of line crossings

All notations in the last section are inherited here. For 1 <14, j < n, let d;,

o b . Moreover,
a; b

let d be the greatest common divisor of all d; ;, 1 < i < j <'n. We state
and prove Figueroa and Salzberg’s result in the following.

A; ; be the determinant of the 2 X 2 matrix 4; ; =

Theorem 1 Ifn =1, then J = L, is an infinite cyclic group. If n > 2,
then d > 0 and J is a cyclic group of order d with a generator [—L a

Proof. If n = 1, then J = L, is trivially an infinite cyclic group by
definition.

We now consider n > 2. Since for 1 < i # j < n, a;b; # a;b; and
ged (a;,b;) = 1 = ged (aj,b;), we have d; j #0 for all 1 < i < j < n. So,
d#0.

Let [2o,%0] € J. There are integers ¢y, -, ¢, so that (zg,y) is a com-
mon solution of linear system a;z + by = ¢;, 1 < i < n. So, (zg, %) is a
common solution of linear system

;T +by=c; (1)
a;x + bjy =Cj
foralll1<i<j<n. This implies that both zp and ¥y are rational number.
Write zg = £ and yo = ¥ with ged (s,t) = 1 = ged (u,v) and tu # 0. Since
(t, u) is a (.ommon system of (1), 1 <i < j < n, both t and u divide
d;; for all 1 <4, j < n. So, t|d and u|d. This implies that we may write
(zo,%0) = ( =, d) for some integers sq and ty. Therefore, every element of
J is of the form [ 5 d] for some integers s and t.

On the other hand, (zo,%o) is a common solution of equations a1z +

b1y = ¢1 and ag + boy = co. So, (o, %) = c2 (;—,b;', ,%) + ¢ (d,,,;—?f)
by Cramer’s rule. This implies that every element of J can also be writ-

di2 * di2 dia? di
ged(aq,b1) = 1, there are integers s; and t; satisfying sya; + t10; =
= 3 —a
1. Now, [dla’d_?zz] + (sla2 +t1b2) [d12 ) dl2] = (slal +t1b1) [E%’ d_lza] +

(b1a2+t1b2) [d,g’?alt] = [Sl(all:lzl;'azbl),tl(all:izl';ﬂ2bl) = [tl,t2] = [0,0].

ten as s [—b'- 2L ] +1t [ ‘—“Z] for some suitable integers s and t. Since

Thus [ 2= d:; = — (102 + t1bs) [ T d ] Combining the results above,

every element of J is also of the form 'Tﬁzh, %ﬁ] for some integer w.
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Notice that, from the definition, [z;,¥1] = [23,%2] if and only if both
zy — 77 and y3 — 7, are integers. Since ged (a1,51) = 1 and every element

of J can be written in two forms [-3, ﬁ] and ['—bﬂ‘- m], every element of

diz ? diz
J must be of the form r [ -, 4 ] for some integer r.
Finally, if we can show that for any integer r, a,z-'—b-‘ﬁ%—b L is an integer

for all 1 < i < n, then J is a cyclic group of order d w1th a generator
[=, 4] In fact it is sufficient to con<1der r=1.

Trivially a1 =* + 0% = 0 and a3+ + 0% = 4‘11-1- are integers. For
any 3<i<n, let £, Z,g and ¢; be mtegerq so that ged (£;1,4:2) = 1 and
21 (a1,b1) + Lz (a2,b2) = £;(as,b;). Then, dy; = -"2,2"’" and dy; = -‘%d“"
for all 3 < i < n. Since ged (€51,%:2) = 1 and d divides both dy; and
dy;, we have that for 3 < i < n, ¢; divides dj5 and d divides —l!;&. This
implies that £; divides 4—;‘11 for all 3 < i < n. Now, for any 3 < i < n,

a,-;d'l’- +b4 = ‘-’(-‘l-i = Qﬁz is an integer. This completes the proof.
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