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Abstract. We present necessary and sufficient conditions for the de-
composition of the complete symmetric bipartite digraph into each of the
orientations of a 4—cycle (in the cases for which such decompositions are
not already known). We use these results to find optimal packings of the
complete symmetric digraph with each of the orientations of a 4—cycle.
Finally we give necessary and sufficient conditions for the existence of a
decomposition of the complete symmetric digraph on v vertices with a
hole of size w into each of the orientations of a 4—cycle.

1 Introduction

A mazimal packing of a digraph D with isomorphic copies of a digraph
d is a set {d1,ds, ..., dn} where d; = d and V(d;) C V(D) for all 4,
n

A(d:)NA(d;) =0 if i # j, | Jdi C D, and

i=1

AO\ U A(d,-)‘

i=1

is minimal, where V(D) is the vertex set of digraph D and A(D) is the
arc set of digraph D. A maximal packing of D with isomorphic copies of d

such that U d; = D is an isomorphic decomposition of D into copies of d
=1

(or a “d—decomposition of D” for short). Packings and decompositions of

(undirected) graphs are similarly defined. Decompositions of the complete

graph on v vertices, K, into cycles have been extensively studied (see [5]
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for a survey). Packings of the complete graph with isomorphic copies of a
graph g have been studied for g a 3-cycle [7], g a 4-cycle [9], g = K4 1],
and g a 6-cycle [3, 4].

Let K(v,w) denote the complete graph on v vertices with a hole of
size w. Namely, K(v,w) has vertex set V(K (v,w)) = V,, UV,,_w where
[Vy—w| = v —w and |V,,| = w and edge set

E(K(v,w)) = {(a,b) | @ # b,{a,b} C Vy— | J Vv and {a,b} £ V,,}

(the complete symmetric digraph on v vertices with a hole of size w,
D(v,w), is similarly defined). A 3-cycle decomposition of K(v,w) is a
Steiner triple system of order v with a hole of size w and the existence of
these designs is studied in [6].

There are four orientations of a 4-cycle:

b c b c b c

X Y Z

and the 4—circuit. We denote these digraphs as [a, b, ¢,d] x, [a, b, ¢, d]y, and
[a,b, ¢, d] z, respectively, we denote the 4—circuit with arcs (a, b), (b, ), (c,d)
and (d, a) as [a, b, ¢, d]c and we denote the complete symmetric digraph on
v vertices as D,,. An X —decomposition of D, exists if and only if v =0 or
1 (mod 4), v # 5, a Y —decomposition of D, exists if and only if v =0 or
1 (mod 4), v ¢ {4,5}, and a Z—decomposition of D, exists if and only if
v =1 (mod 4) [2]. A C4— decomposition of D, exists if and only if v =0
or 1 (mod 4), v # 4 [8].

The purpose of this paper is to give necessary and sufficient conditions
for the decomposition of the complete bipartite symmetric digraph, Dy, ,,
into each of the orientations of a 4—cycle (in the cases where such de-
compositions are not already known). We will then use these results to
solve the problem of packing D, with each of the orientations of a 4—cycle.
Finally, we give necessary and sufficient conditions for the existence of a
decomposition of D(v,w) into each of the orientations of a 4—cycle.

2 Decompositions of Dy, ,

The following result is due to Sotteau {10]:
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Theorem 2.1 A Cy—decomposition of Dy, , exists if and only if m,n > 2
and mn = 0 (mod 2).

We now give necessary and sufficient conditions for the existence of a
d—decomposition of Dy, , where d € {X,Y}. Throughout this section, we
assume D, , has partite vertex sets {0p, lo,...,(m —1)o} and {04, 14,...,

(n - 1)1}.

Theorem 2.2 An X —decomposition of Dy, . ezists if and only if either
m=n=0(mod?2) orm=1 (mod2), m>3, and n =0 (mod 4).

Proof. Since D,, , contains 2mn arcs and X contains 4 arcs, it is clearly
necessary that either m = 0 (mod 2) or n =0 (mod 2).

Now suppose m = 2 (mod 4), » = 1 (mod 2), and let V; and V;
be the partite vertex sets of D,,, where |Vi| = m and |V3| = =n. If
there is an X —decomposition of D n, say {X1,X2,...,Xz}, then z =
mn/2 =1 (mod 2). For each i € {1,2,...,z}, either X; = [aq, b1, co,d1]x
or X; = [a1,b0,c1,do]x for some a,b,c,d. If X; = [ag,b1,c0,d1]x then
od(b)+od(d;) = 1 (where od(b) is the out-degree of vertex b and id(b) is the
in-degree of vertex b) and if X; = [a1, bo, c1,do]x then od(a;)+od(c;) = 3.
In either case, in X; the sum of the out-degrees of vertices in V; is odd.
Since there are z = 1 (mod 2) isomorphic copies of X in such a decompo-
sition, it must be that the sum of out-degrees of all vertices in V3 is odd.
However, each vertex of V» has out-degree m = 2 (mod 4), a contradiction.
Therefore such a decomposition does not exist.

Now if m =n =0 (mod 2), then the set

{[(21)0a (1 + 2.7')1’ (1 + 2i)O) (2j)1]X’ [(27’)1, (1 + 2j)0, (1 + Zi)l’ (2.7)0])(

| 1€ Zm/Zaj € Zn/Z}

forms such a decomposition.
Finally, suppose m = 1 {mod 2), m > 3, and n = 0 (mod 4). Then the
set

{[(4’i)1,00,(4i + 1)1, ]o]x, [10, (4’i + 1)1,20, (4’i)1]x I 1€ Zn/4}
U{[Oo, (4’i + 3)1, 1o, (4‘i + 2)1]){, [(41, + 2)1,20, (4i + 1)1,00]x | 1€ Zn/q}
U{[ZO, (4i+ 2)1, 1o, (42 + 3)1])(, [(41 + 3)1, 09, (44)y, 20]x lie Z"/4}

forms an X —decomposition of D3 . Since Dp, », can clearly be decomposed
into a copy of D3, and a copy of Dm—3,x, this result along with the fact that
an X —decomposition of D,,—3,, exists as shown above (sincem—-3=n=0

(mod 2)) yield the existence of an X —decomposition of Dy, - |
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Theorem 2.3 A Y —decomposition of D, n ezists if and only if m,n > 2
and mn = 0 (mod 2).

Proof. As argued in Theorem 2.2, it is necessary that either m or n is
even. The case m = n = 0 (mod 2) is presented in [2]. So suppose m =1
(mod 2), m > 3, and n =0 (mod 2). Then the set

{[001 (21)11 101 (21' + 1)1]Y1 [10’ (21)1a 20’ (21 + l)l]Ys

[20, (22 + 1)1,00, (20)1)y | % € Zp/2}
forms a Y —decomposition of D3 . As in the final case of Theorem 2.2, this
theorem follows. .

Finally, Z—decompositions of Dy, , were dealt with in [11]):

Theorem 2.4 A Z—decomposition of Dy, », exists if and onlyifm=n=0
(mod 2).

3 Packing D,

If {dy,da,...,d,} is a packing of D, with copies of d, then following the
terminology of Kennedy (3, 4], we define the digraph L with arc set A(L) =
n

A(D,,)\U A(d;) and vertex set induced by A(L), as the leave of the packing.
i=1

Therefore a maximal packing of D, minimizes |A(L)|. In this section, we
give necessary conditions on the structure of L for a maximal packing of
D, with copies of each of the orientations of a 4—cycle (we only consider
v > 4). We then show these necessary conditions are sufficient by presenting
a specific packing which minimizes |A(L)|. Throughout this section we
assume D, has vertex set Z,.

Theorem 3.1 An optimal packing of D, with copies of Cy and leave L
satisfies:

1. L=0ifv=0o0r1 (modd4), v#4,
2. |[A(L)| =4 ifv=4,
3. L=D; ifv=2 or3 (mod 4).

Proof. If v =0or 1 (mod 4), v # 4, then there exists a C4—decomposition
of D, (8] and the result follows.
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Now |A(D4)| = 12 and a C;—decomposition of D, does not exist, so a
packing of D4 with leave L where |A(L)| = 4 would be optimal. Consider
the packing {[0,1,2,3]¢,[0,3,2,1]c} and leave L = {(1,3),(3,1),(0,2),
(2,0)}.

If v = 6, then we have the packing of Dg of {[0,1,4,2]c, [1,2,5,3]c,
[0,2,3,4]c, (1,3,0,5]¢, [2,1,0,3]¢, [5,0,4,3]c, [2,4,1,5]c} with leave L =
{(4,5), (5,4)}.

If v =2 or 3 (mod 4), v > 7, then |A(D,)| = 2 (mod 4). Each vertex
of D, has in-degree equal to out-degree and each vertex x of Cy4 satisfies
id(z) = od(z) = 1. Therefore the leave of a packing must have each vertex
with in-degree equal to out-degree. So a packing of D,, with leave Dy would
be optimal. D, can clearly be decomposed into a copy of D,_3, a copy of
D,_3,, and a copy of D,. Since D,_2 can be decomposed into copies of
C4 [8], and D,_32 can be decomposed into copies of Cy by Theorem 2.1,

then D, can be packed with copies of Cs with a leave of L = Ds. I

Theorem 3.2 An optimal packing of D, with copies of X and leave L
satisfies:

1. L=0ifv=0o0r1(modd), v#35,
2. |A(L)| =4 ifv=35,
3. L=Dy ifv=2 or 3 (mod 4).

Proof. If v =0or 1 (mod 4), v # 5, then there exists an X —decomposition
of D, [2] and the result follows.

Now |A(Ds)| = 20 and an X —decomposition of Ds does not exist, so a
packing of Ds with leave L where |A(L)| = 4 would be optimal. Consider
the packing {[0, 3,2,4]x, [1,4,2,3]x, [3,0,2,1]x,[4,1,2,0]x } and leave L =
{(3a 4)’ (4’ 3)’ (0’ 1)’ (170)}‘

If v = 2 or 3 (mod 4), then |[A(D,)| = 2 (mod 4). Each vertex of D, has
total degree 2(v — 1) and each vertex of X has total degree 2. Therefore
the leave of a packing must have each vertex with even total degree. So a
packing of D, with leae Dy would be optimal.

If v = 2 (mod 4), then D, can clearly be decomposed into a copy of
D,_2, a copy of D,_32, and a copy of Ds. Since D,_2 can be decomposed
into copies of X (2], and D,—_32 can be decomposed into copies of X by
Theorem 2.2, it follows that D, can be packed with copies of X with a
leave of L = Ds.

If v = 7, then we have the packing of D, of {[0,3,5,4]x, (1,4,5,0]x,
[2,0,5,1)x, {3,1,5,2)x, [4,2,5,3]x, [4,6,3,0]x, [0,6,4,1]x, [1,6,0,2]x, (2,
6,1,3]x, [3,6,2,4]x} with leave L = {(5,6), (6,5)}.
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If v =3 (mod 4), v > 11, then D, can clearly be decomposed into a
copy of D,_z, a copy of D,_77, and a copy of D;. Since D,_7 can be
decomposed into copies of X [2], D,_7,7 can be decomposed into copies of
X by Theorem 2.2, and D7 can be packed with copies of X with a leave of
D5 as seen above, it follows that D, can be packed with copies of X with
a leave of L = D,.

Theorem 3.3 An optimal packing of D, with copies of Y and leave L
satisfies:

1. L=0ifv=0or1 (modd), v¢ {45}
2. |A(L)]| =4 ifv € {4,5},
3. L=Dy ifv=2 or 3 (mod 4).

Proof. If v=0or 1 (mod 4), v ¢ {4,5}, then there exists a Y —decompo-
sition of D, (2] and the result follows.

As in Theorems 3.2 and 3.3, packings of D, where v € {4,5} with leave
L satisfying |A(L)] = 4 would be optimal. Consider the packing of D,
of {[1,0,3,2]y,[3,0,1,2]y} and leave L = {(0,2),(2,0),(1,3),(3,1)}. Con-
sider the packing of Ds of {[0,1,4,2]y,[2,0,3,1]y, [3,4,0,1]y,[4,3,2,1]y}
and leave L = {(0,4), (4,2),(2,3),(3,0)}.

If v = 2 or 3 (mod 4), then the argument of Theorem 3.2 shows that a
packing of D, with leave Dy would be optimal.

If v = 6, then we have the packing of Dg of {[3,2,0,1}y, [0,3,4,1]y,
5,0,2,1]y, [2,3,0,4]y, 2,1,3,5]y, [0,5,2,4]y, [4,3,5, 1]y} with leave L =
{(4,5), (5,9}

If v = 7, then we have the packing of D7 of {4,5,3,0]y, [0,5,4,1]y,
[1,5,0,2ly, [2,5,1,3]y, 3,5, 2, 4]y, [3,6,4,0]y, [4,6,0, 1]y, [0,6,1, 2]y, [1,6,
2,3y, [2,6,3,4]y} with leave L = {(5,6), (6,5)}.

If v =2 or 3 (mod 4) and v > 10, then D, can clearly be decomposed
into a copy of D,_2, a copy of Dy—2,2, and a copy of D,. Since D,_2 can
be decomposed into copies of Y [2], and D,_2,2 can be decomposed into
copies of Y by Theorem 2.3, it follows that D, can be packed with copies
of Y with a leave of L = Ds.

Theorem 3.4 An optimal packing of D, with copies of Z and leave L
satisfies:
1. L=0ifv=1 (mod4),

2. |A(L)| = v and the arcs of L are arranged in a collection of disjoint
circuits if v =0 or 2 (mod 4),
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3. |A(L)| = 6 and the arcs of L are arranged in such a way that each vertex
of the leave has in-degree = out-degree = 0 (mmod 2) if v =3 (mod 4).

Proof. If v = 1 (mod 4), then there exists a Z—decomposition of D,, [2]
and the result follows.

If v = 0 or 2 (mod 4), then each vertex z of D, satisfies id(z) =
od(z) = 1 (mod 2). Since each vertex of Z has in-degree and out-degree
even, the leave of an optimal packing must have each vertex with both in-
degree and out-degree equal to 1. Therefore the leave of an optimal packing
will consist of v arcs arranged in disjoint circuits. We show these necessary
conditions are sufficient in the following 3 cases:

Case 1. Suppose v = 4t where t =0 (mod 2). Then the set

{64 —1-254+4,144,2+i+2]z | i € Z4s,5 € Zg—syj211}U
{lEt+3+i+25,1+4,3t—2+i—2j]7 | 4 € Zas, 5 € Z—sy21} U
{[B3t+144,i4+2,t+1+4)z i€ Zy}U

{[5,3t + 3,2t +i,t +1i)|z | i € Zot}

forms a packing with leave L = {(¢,2t +2), (2t + 4,4) | ¢ € Za:} (a
collection of v/2 disjoint 2—circuits).

Case 2. Suppose v = 4t where ¢t = 1 (mod 2). Then the set
{348 =1 =25+ 4,1+ 4,2+ i+ 2]z | i € Zas,§ € Zg—3y/241} U
(Gt +2+i+25,1 44,3t —1+i-2j]7 | i € Za,j € Z—3)/241} U
{[6,3t + 4,2t + i, t + ]z | i € Zu}

forms a packing with leave L = {(¢,2t + i), (2t +4,%) | i € Z} (a
collection of v/2 disjoint 2—circuits).

Case 3. Suppose v = 4t + 2. Then the set
{54t +1+i—24,1 44,241+ 2j]z | i € Zyt42,] € Z;}

forms a packing with leave L = {(3,2t +1 +1), (2t + 1 +14,3) | 1 € Zg:}
(a collection of v/2 disjoint 2—circuits).

If v = 3 (mod 4), then each vertex z of D, satisfies id(z) =od(z) =0
(mod 2). Since each vertex of Z has in-degree and out-degree even, the
leave of an optimal packing must have each vertex with both in-degree and
out-degree even. Since |A(D, )| = 2 (mod 4), then for any packing, the leave
L must satisfy |A(L)] = 2 (mod 4). We cannot have all vertices of both
in-degree and out-degree even with only 2 arcs. This condition is possible
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with 6 arcs and a packing with leave L = D3 would be optimal. D, can
clearly be decomposed into a copy of D,_s, a copy of D,_3,2, and a copy
of D3. Since D,_3 can be decomposed into copies of Z [2], and D,_3 2 can
be decomposed into copies of Z by Theorem 2.4, it follows that D, can be
packed with copies of Z with a leave of L = Dj.

Theorems 3.1-3.4 give necessary and sufficient conditions for an optimal
packing of D, with each of the orientations of a 4—cycle.

4 Decompositions of D, with holes

In this section we give necessary and sufficient conditions for the existence
of a decomposition of D(v, w) into each of the orientations of a 4—cycle.
We call such designs decompositions of D, with a hole of size w. We only
consider v — w > 1 since if v — w = 1, D(v,w) = D,.

Theorem 4.1 A Cy—decomposition of D, with a hole of size w exists if and
only if {v(mod 4), w(mod 4)} C {0,1} or {v(mod 4), w(mod 4)} C {2,3}
and v —w > 3.

Proof. A C;—decomposition of D(v, w) where v —w = 3 induces a decom-
position of D3 into isomorphic copies of

Clearly such a decomposition does not exist. Therefore, v —w > 3 is
necessary.

An obvious necessary condition is that 4 | | A(D(v, w))|, which is equiva-
lent to {v(mod 4),w (mod 4)} C {0,1} or {v(mod 4),w (mod 4)} C {2,3}.

If either v = 1 (mod 4) and w = 0 (mod 4) or v = 3 (mod 4) and w =2
(mod 4), then we can clearly decompose D(v, w) into a copy of D,_., and
a copy of Dy—_y,. Since, in this case, D,_,, can be decomposed into copies
of C4 [7] and Dy—y,. can be decomposed into copies of Cy by Theorem 2.1,
it follows that D(v,w) can be decomposed into copies of Cy.

If v = 6 and w = 2, then a decomposition of D(v,w) into copies of Cy is
equivalent to a packing of D, with a leave of D2. Such a structure is given
in Theorem 3.1.

For each of the remaining cases, we can clearly decompose D(v,w) into
a copy of Dy—w41 and a copy of Dy—y,w—1. In these cases, v —w +1=0
or 1 (mod 4), and so Dy—_y+1 can be decomposed into copies of Cy [7),
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and since either v — w or w — 1 is even, D,_,, .,—1 can be decomposed into
copies of C4 by Theorem 2.1. It follows that D(v,w) can be decomposed

into copies of Cjy. I

In the remainder of this section, we assume the vertex set of D(v,w)
is Vi UVu—w where these sets are as described in Section 1 and V,, =
{00,10,...,(’(1)— 1)0} and V_w = {01,11,...,('0—11)— 1)1}

Theorem 4.2 An X —decomposition of D, with a hole of size w exists if and
only if {v(mod 4), w(mod 4)} C {0,1} or {v(mod 4), w(mod 4)} C {2,3},
and v — w # 3 in the case of v = 2(mod 4) and w = 3(mod 4).

Proof. First, suppose there exists an X —decomposition of D(v,w) with
v = 2 (mod 4), w = 3 (mod 4), and v—w = 3. Let B be a set of isomorphic
copies of X in such a decomposition. Then |B| is even. Let

zy = |{la1,b1,¢1,do)x | [a1,01,¢1,do]x € B for some a, b, c,d}|
z2 = |{la1,bo,c1,d1])x | [@1,b0,c1,d1]x € B for some a,b,c,d}|
T3 = |{[a1,b1,60,d1]x l [al,bl,Co,d1]X € B for some a, b,c,d}l
zg = |{[ao,b1,c1,d1]x | [ao,b1,c1,d1]x € B for some a,b,c,d}|
zs = |{[a1,bo,c1,d0]x | [a1,b0,c1,do]x € B for some a, b, c,d}|
ze = |{[ao,b1,c0,d1]x | [@0,b1,c0,d1]x € B for some a, b, c,d}|.

Then |B| = z; + x2 + - - + x¢. Since the in-degree equals out-degree for
each vertex in {0g, lo, ..., (w—1)o}, it follows that z; +z5 = z4 +z¢. Such
a decomposition induces a decomposition of a copy of D3 with vertex set
{01, 1;,2;} into orientations of a 2—path and therefore z, +z2+x3+z4 = 3.
Since there are only 4 such decompositions of D3 (up to isomorphism), we
deduce that either

(i) z2 =3,

(ii) z3 = 3,

(iii) zo =1and z1 + 24 = 2, or

(ivlzz=1and z; + 24 = 2.

In each case, we reach a contradiction as follows:

(i) If z2 = 3, then z; = z3 = 4 = 0 and therefore z5 = zg. But then
|B| = 3 + 2z, contradicting the fact that |B| is even.

(ii) If z3 = 3, then a similar argument to that given in (i) leads to a
contradiction.

(iii) If z; = 2 and x5 = 1, then z3 = 4 = 0 and 2 + =5 = x¢. But
then |B| = 5 + 2z, a contradiction. Similarly if z; = 1 and z4 = 2, we get
|B| = 5 + 2z¢, a contradiction. Now if 1 = 29 = 24 = 1 then 23 = 0 and
z5 = xg. But then |B| = 3 + 2z5, a contradiction.
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(iv) If z3 = 1 and z; + 24 = 2 then a similar argument to that given
in (iii) leads to a contradiction.

If v =0 (mod 4) and w = 1 (mod 4), then we can clearly decompose
D(v,w) into a copy of D,_y+1 and a copy of Dy_y,y—1. Since Dy,_y4g can
be decomposed into copies of X [2] and D,_y,w—1 can be decomposed into
copies of X by Theorem 2.2, it follows that D(v,w) can be decomposed
into copies of X.

If v =3 (mod 4) and w = 2 (mod 4), then we can decompose D(v, w)
into a copy of Ds,—2, a copy of D(7,2), a copy of Dy_—5,2, a copy of
Dy—w—-5,w-2, @ cOpy of Dy—_y—5,5, and a copy of Dy—y-5. Since Dy_y—5
can be decomposed into copies of X [2], the bipartite digraphs can be de-
composed into copies of X by Theorem 2.2, and a decomposition of D(7,2)
is given in Theorem 3.2, it follows that D(v,w) can be decomposed into
copies of X. .

If v = 10 and w = 3, then the following is an X —decomposition of
D(10,3):

{[31,01,11,21]x, 41,01, 21,00} x, (10,01, 00, 21] x, [21, 01,31, 1o x,
[00,04,41,31]x, [41,11,01,10]x, [00, 11, 31, 41]x, [Lo, 41, 21, 1] x,
(11, 10,31,00]x, [21,31, 11,41]x, [51, 01, 20, 11) x, (51, 21, 20, 31] x,
(51,41, 20,61)x, [61, 11, 20, 01] x, 61, 31, 20, 21] x, [61, 51, 20, 41] x,
[04, 61,20, 51]x, 11,51, 00,61]x, {21, 61, 00, 51]x, [31, 51, 10, 61] x,
[41,61,10,51]x}-

If v =2 (mod 4), w = 3 (mod 4) v — w # 3, and (v,w) # (10,3), then
D(v,w) can be decomposed into a copy of D(10,3), a copy of Dz ,-—3,
a copy of Dy_y-7,3, @ copy of Dy—y-7,w-3, @ copy of Dy_,_77, and a
copy of Dy_y—7. Since D,_,,—7 can be decomposed into copies of X [2],
the bipartite digraphs can be decomposed into copies of X by Theorem 2.2,
and an X —decomposition of D(10, 3) is given above, it follows that D(v,w)
can be decomposed into copies of X.

If v = 9 and w = 4, then the following is an X —decomposition of
D(9,4):

{[01,11,34, 21]x, {21, 11,01,31) x, [31, 11, 21,01] x, [41, 01, 20, 11] x,
[41,21,30,31]x, {31, 30, 21,41]x, [41, 00, 11, 10] x, [41, 20, 01, 0] x,
(10,31, 00,41])x, [30, 11, 20, 41] x, [20, 31, 10, 21] x, [21, 00, 31, 20] x,
(01, 10,11, 00)x, [00, 21, 10,01) x, [11, 30,01, 41]x }.

Ifv =1 (mod 4), w = 0 (mod 4), and v —w = 5 then D(v,w) can be
decomposed into a copy of D(9,4) and a copy of Ds —4. Since D5 .4 can
be decomposed into copies of X by Theorem 2.2 and an X —decomposition
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of D(9,4) is given above, it follows that D(v,w) can be decomposed into
copies of X. If v —w > 9, then D(v,w) can be decomposed into a copy of
D,_. and a copy of D,_y . Since D,_,, can be decomposed into copies
of X (2], and Dy_y,. can be decomposed into copies of X by Theorem 2.2
it follows that D(v,w) can be decomposed into copies of X.

In the remaining cases, v —w = 0 (mod 4). D(v,w) can be decomposed
into a copy of D,_., and a copy of Dy—y,w. Since D,_,, can be decomposed
into copies of X [2] and Dy, can be decomposed into copies of X by
Theorem 2.2, it follows that D(v,w) can be decomposed into copies of X.

Theorem 4.3 A Y —decomposition of D, with a hole of size w exists if and
only if {v(mod 4), w(mod 4)} C {0,1} or {v(mod 4), w(mod 4)} C {2,3},
and v —w # 3.

Proof. First, suppose there exists an Y —decomposition of D(v,w) with
{v(mod 4), w(mod 4)} C {0,1} or {v(mod 4), w(mod 4)} C {2,3}, and
v—w = 3. Let B be a set of isomorphic copies of Y in such a decomposition.
Let

nn = |{[a1,b1,c0,d1]y | [a1,b1,c0,d1]y € B for some a,b,c,d}|

v2 = [{lao,b1,c1,d1]y | [@0,b1,c1,d1]y € B for some a,b,c,d}|

Y3 = I{[ao, b1, Cg,dl]y I [ao, b1,Co,d1]y € B for some a, b, c, d}l

va = [{[a1,b1,c1,doly | [a1,b1,¢1,do]y € B for some a,b,c,d}|

ys = |{[a1,bo,c1,do]y | [a1,b0,c1,do]y € B for some a,b,c,d}|.
Since each vertex of {0, 1, . .., {(w—1)o} has in-degree equal to out-degree,

%1 = y2. Such a decomposition induces a decomposition of a copy of D3 with

vertex set {01, 11, 21 } into orientations of a 2—path. Therefore y; +y2+ys =

3. However, if either y; = y2 = y4 or y1 = y2 = 0 and y4 = 3, then it is

easily seen that the necessary induced decomposition of D3 does not exist.
We now consider several cases to establish sufficiency.

Case 1. Suppose that either v = 0 (mod 4) and w = 1 (mod 4) or v = 2
(mod 4) and w = 3 (mod 4) and in either case, v —w > 3. We
can clearly decompose D(v,w) into a copy of Dy_y+1 and a copy of
Dy_ww—1. Since Dy_,41 can be decomposed into copies of ¥ [2]
and Dy, -3 can be decomposed into copies of Y by Theorem 2.3,
it follows that D(v,w) can be decomposed into copies of Y.

Case 2. If v = 8 and w = 4, then the following is a Y —decomposition of
D(8,4):

{[01, 11,00, 21}y, [11, 21,31, 10]y, [21, 10,01, 30y, [01, 00, 11, 1o]y,
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(11,31,01, 20]y, [01, 20, 11,30]y, (11, 01,31, 30]y, [31, 21,01, 00)y,
[31,30, 21, 1oy, [20, 21, 11, 31]y, [00, 21, 20, 31]¥ }-

Suppose that v = 0 (mod 4), v > 8, and w = 0 (mod 4). If, in
addition, v — w = 4, then D(v,w) can be decomposed into a copy of
D(8,4) and a copy of D4,—4. Since a decomposition of D(8,4) exists
as given here and Dyq—4 can be decomposed into copies of Y by
Theorem 2.3, the result follows in this special case. Now if v —w > 4,
then D(v,w) can clearly be decomposed into a copy of D,_,, and a
copy of Dy - Since D,_,, can be decomposed into copies of Y (2]
and Dy_,,» can be decomposed into copies of Y by Theorem 2.3, it
follows that D(v,w) can be decomposed into copies of Y.

Case 3. If v =9 and w = 4, then the following is a Y —decomposition of
D(9,4):

{[16,01,00, 11]y, [00, 21, 10, 41]¥ [10, 21, 00, 31]y, [00, 11, 10, Oa ]y,
[41,04,31, 00y, [11,21,41,31]y, (31, 11,41, 1o]y, [31, 21, 11, O]y,
[41,11,04, 21y, [01,21,31, 41y, [11, 20,01, 30]y, 21, 20, 11, 30]vs
[31,20, 21,30}y, [41, 20, 31, 30y, [01, 20, 41, 30)¥ }-

Suppose that v = 1 (mod 4), v > 9 and w = 0 (mod 4). If, in addition,
v—w = 5, then D(v,w) can be decomposed into a copy of D(9,4) and
a copy of Ds ,,—4. Since a decomposition of D(9,4) exists as given
here and Dj,,,—4 can be decomposed into copies of Y by Theorem 2.3,
the result follows in this special case. Now if v —w > 5, then D(v,w)
can clearly be decomposed into a copy of D,,_,, and a copy of Dy_y
and the result follows as in Case 2.

Case 4. If v = 6 and w = 2, then a decomposition of D(6,2) is given
in Theorem 3.3. Suppose that v = 2 (mod 4), v > 6, and w = 2
(mod 4). If, in addition, v — w = 4, then D(v,w) can be decomposed
into a copy of D(6,2) and a copy of Dy 2. Since a decomposition
of D(6,2) exists and Dy y—2 can be decomposed into copies of Y by
Theorem 2.3, the result follows in this special case. Now if v —w > 4,
then D(v,w) can clearly be decomposed into a copy of Dy—,, and a
copy of Dy, and the result follows as in Case 2.

Case 5. If v =9 and w = 5, then we observe that D(9,5) can be decom-
posed into a copy of D(6,2) and a copy of Dy3. Since D(6,2) can be
decomposed into copies of Y by case 4, and D, 3 can be decomposed
into copies of Y by Theorem 2.3, it follows that D(9, 5) can be decom-
posed into copies of Y. Suppose that v =1 (mod 4), v > 9,andw =1
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(mod 4). If, in addition, v — w = 4, then D(v,w) can be decomposed
into a copy of D(9,5) and a copy of D4 w—_5. Since a decomposition
of D(9,5) exists as given here and Dy 5 can be decomposed into
copies of Y by Theorem 2.3, the result follows in this special case.
Now if v — w > 4, then D(v,w) can clearly be decomposed into a
copy of Dy,_,, and a copy of D,_, ., and the result follows as in Case
2.

Case 6. If v = 7 and w = 2, then a decomposition of D(7,2) is given
in Theorem 3.3. Suppose that v = 3 (mod 4), v > 7, and w = 2
(mod 4). If, in addition, v —w = 5, then D(v,w) can be decomposed
into a copy of D(7,2) and a copy of Ds,,,—2. Since a decomposition
of D(7,2) exists and Ds -2 can be decomposed into copies of Y by
Theorem 2.3, the result follows in this special case. Now if v —w > 5,
then D(v,w) can clearly be decomposed into a copy of D,—., and a
copy of Dy_y,» and the result follows as in Case 2.

Case 7. If v = 7 and w = 3, then the following is a Y —decomposition of
D(7,3):

{(31,21,01, 11]y, {01, 31,00, L1]y, (10,01, 21, L1}y,
[21’31, 01700]\’) [211 11’ 31) IO]Y, [001 11, 203 21]Y:
[20, Ol’ 10’ 11]Y1 [31) 101 21a20]}’, [01) 00, 311 20]Y}-

Suppose that v = 3 (mod 4), v > 7, and w = 3 (mod 4). If, in
addition, v — w = 4, then D(v, w) can be decomposed into a copy of
D(7,3) and a copy of D4,—3. Since a decomposition of D(7,3) exists
and Dy 4,3 can be decomposed into copies of Y by Theorem 2.3, the
result follows in this special case. Now if v —w > 4, then D(v,w) can
clearly be decomposed into a copy of D,_,, and a copy of Dy_y

and the result follows as in Case 2.

Theorem 4.4 A Z—decomposition of D, with a hole of size w exists if and
only if eitherv=w=1 (mod 4), v > 1, w>1 orv=w =3 (mod 4).

Proof. As in Theorem 4.1, it is necessary that 4 | |A(D(v,w))|. The in-
degree of each vertex of Z is even. Since D(v,w) contains v — w vertices of
in-degree w, it is necessary that w is odd. Also, D(v,w) contains w vertices
of in-degree v — w and so it is necessary that v is odd. This establishes the
necessary conditions.

D(v,w) can clearly be decomposed into a copy of D,_.+1 and a copy
of Dy—y,w—1. Since v —w +1 =1 (mod 4), D,_,41 can be decomposed
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into copies of Z [2]. Since both v —w and w—1 are even, Dy_,, ,,—; can be
decomposed into copies of Z by Theorem 2.4. It follows that D(v, w) can
be decomposed into copies of Z.

Theorems 4.1-4.4 give necessary and sufficient conditions for a decomposi-
tion of D, with a hole of size w for each of the orientations of a 4—cycle.
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