Gracefulness of the union of cycles and paths

M.A. Seoud, A.E.I. Abd el Magsoud

Faculty of Science Ain Shams University

Abbassia

Cairo

Egypt

J. Sheehan

Department of Mathematical Sciences
University of Aberdeen

Aberdeen

Scotland

ABSTRACT. Frucht and Salinas [1] conjectured that $C(k) \cup P(n)$ $(n \geq 3)$ is graceful if and only if $k + n \geq 7$. We prove that $C(2k) \cup P(n)$ is graceful for $n \geq k + 1$ $(k \geq 3)$.

For smaller cases we prove that $C(2k) \cup P(n)$ is graceful for k = 3, 4, 5, 6; $n \ge 2$.

1 Introduction

Let G be a finite simple graph with n vertices and q edges $(q \ge n - 1)$. Then G is said to be *graceful* if there is an injection f (labelling)

$$f: V(G) \rightarrow \{0, 1, \ldots, q\}$$

such that the induced function

$$f^*: E(G) \rightarrow \{1, 2, \ldots, q\}$$

defined by

$$f^*(xy) = |f(x) - f(y)|$$
 (for all $xy \in E(G)$)

is an injection.

The images of f and f^* are called respectively vertex and edge labels.

ARS COMBINATORIA 54(2000), pp. 283-292

Frucht and Salinas [1] conjectured that $C(k) \cup P(n)$ $(n \ge 3)$ is graceful if and only if $k+n \ge 7$: C(k) and P(n) denote respectively the cycle of length k and the path of length n. We prove (Corollary 7) that $C(2k) \cup P(n)$ is graceful for $n \ge k+1$, $k \ge 3$. For smaller cases we prove that $C(2k) \cup P(n)$ is graceful for k = 3, 4, 5, 6; $n \ge 2$.

Graceful labellings were first considered by Rosa [3] in 1966; a useful survey of results appears in Gallian [2].

2 Labelling a path with a constraint on the first vertex

Let P(n) $(n \ge 0, n \ne 1)$ be the path with n vertices. If n = 0 then P(n) is the empty path. Let w_1, w_2, \ldots, w_n be the vertices of P(n) $(n \ge 2)$. Write

$$n-1=3s+\theta \quad (1\leq \theta \leq 3).$$

Define a vertex labelling

$$h: V(P(n)) \rightarrow \{1, 2, \ldots, n\}$$

(setting $h(w_i) = h(i)$ and $\lfloor x \rfloor$ for the integer part of x) as follows:

- (1) h(1) = 2.
- (2) For $t, 1 \le t \le n \theta$, t odd,

$$h(t) = (t+1) - 3(\lfloor t/3 \rfloor - \lfloor t/6 \rfloor).$$

(3) For $t, 1 \le t \le n - \theta$, t even,

$$h(t) = n + 2 + t/2 - 3[(t+2)/3].$$

(4) For $t, 1 \le t \le \theta$,

$$h(n-\theta+t) = h(n-\theta) + \begin{cases} (-1)^{\lfloor (\theta-2)/2\rfloor+t} \lfloor (t+1)/2 \rfloor & (n-\theta \text{ even}) \\ (-1)^{\lfloor (\theta-1)/2\rfloor+t} \lfloor (t+1)/2 \rfloor & (n-\theta \text{ odd}) \end{cases}$$

We prove h is a graceful labelling:

Lemma 1. h is a bijection.

Proof: Suppose that

$$h(t) = h(t') \tag{1}$$

where $1 \leq t, t' \leq n$.

Case 1. $(1 \le t, t' \le n - \theta; t, t')$ both even). From (1),

$$t - t' = 6(|(t+2)/3| - |(t'+2)/3|). (2)$$

From (2), $t \equiv t' \pmod{6}$ and hence $t + 2 \equiv t' + 2 \pmod{3}$; again from (2), t = t'.

Case 2. $(1 \le t, t' \le n - \theta; t, t' \text{ both odd}).$

From (1),

$$t - t' = 3(|t/3| - |t'/3|) + (|t/6| - |t'/6|). \tag{3}$$

From (3), $t \equiv t' \pmod{3}$ and so, since t and t' are both odd, $t \equiv t' \pmod{6}$; again from (3), t = t'.

Case 3. $(1 \le t, t' \le n - \theta; t \text{ odd and } t' \text{ even}).$

From (1),

$$2n \le (t+t')+3 \tag{4}$$

$$\leq 2n - 2\theta + 2. \tag{5}$$

Hence $\theta = 1$ and equality holds in (4) and (5): from (5), $\{t, t'\} = \{n-1, n-2\}$ and from (4), $t \equiv 1 \pmod{6}$ and $t' \equiv 4 \pmod{6}$. This is impossible.

Case 4. $\theta = |\{h(n - \theta + i) : i = 1, ..., \theta\}|.$

This follows immediately from the definition of $h(n-\theta+i)$.

Case 5. $(1 \le t \le n - \theta - 1, n - \theta + 1 \le t' \le n)$.

Set $t = 6k + \alpha$, $0 \le \alpha \le 5$ and $t' = n - \theta + i$, $1 \le i \le \theta$. Write

$$h(n-\theta+i)=(n+\theta)/2+w(i,\theta)$$

where

$$w(i,\theta) = \begin{cases} (-1)^{\lfloor (\theta-2)/2 \rfloor + i} \lfloor (i+1)/2 \rfloor & (n-\theta \text{ even}) \\ (-1)^{\lfloor (\theta-1)/2 \rfloor + i} \lfloor (i+1)/2 \rfloor + (3-2\theta)/2 & (n-\theta \text{ odd}) \end{cases}$$
(6)

Set $w = w(i, \theta)$.

Firstly suppose that t is odd, which in turn implies α is odd. Then, from (1)

$$n + \theta + 2w = (t+2) + \alpha - 6(\lfloor \alpha/3 \rfloor - \lfloor \alpha/6 \rfloor). \tag{7}$$

Set $t = n - \theta - \varepsilon$ ($\varepsilon \ge 1$) and $\delta(\alpha) = \alpha - 6(\lfloor \alpha/3 \rfloor - \lfloor \alpha/6 \rfloor)$. Then $\delta(1) = 1$, $\delta(3) = -3$ and $\delta(5) = -1$. From (7)

$$2(\theta + w - 1) + \epsilon = \delta(\alpha). \tag{8}$$

Now suppose that $n-\theta$ is even. From (6), $\theta+w\geq 1$. Hence, from (8), $1\geq \delta(\alpha)\geq \varepsilon\geq 1$ and so $\alpha=\varepsilon=1$. Recall that, by definition, $n=3s+\theta+1$. Hence $t=n-\theta-\varepsilon=n-\theta-1\equiv 0\pmod 3$ which is impossible since $\alpha=1$. Consequently we may assume that $n-\theta$ is odd. From (6), $\theta+w=1/2$. Hence, from (8), $\delta(\alpha)\geq \varepsilon-1$. It follows that $\alpha=1$ and $\varepsilon=2$ (ε is even since both $n-\theta$ and t are odd). Therefore $t=n-\theta-2=3s-1$ which is impossible since $\alpha=1$.

Finally suppose that t is even, which in turn implies α is even. Then, from (1),

$$\theta + 2w = n + 4 - t + 2\alpha - 6 |(\alpha + 2)/3|. \tag{9}$$

Set $t = n - \theta - \varepsilon$ ($\varepsilon \ge 1$) and $\delta(\alpha) = \alpha - 3\lfloor (\alpha + 2)/3 \rfloor$. Then $\delta(0) = 0$, $\delta(2) = -1$ and $\delta(4) = -2$. From (9),

$$2w - \varepsilon - 4 = 2\delta(\alpha). \tag{10}$$

Suppose now that $n-\theta$ is even. Then, since t is even, so also is ϵ . From (6) and (10), $-4 \le 2\delta(\alpha) \le -2 - \epsilon \le -4$. Hence $\epsilon = 2$ and $\alpha = 4$. Therefore $t \equiv 1 \pmod{3}$. But $t = n - \theta - \epsilon = 3s - 1 \equiv -1 \pmod{3}$ which is impossible.

Finally suppose that $n-\theta$ is odd. Then, from (6), $w \le 1/2$ and hence, from (10), $-4 \le 2\delta(\alpha) \le -\varepsilon - 3 \le -4$. Hence $\varepsilon = 1$ and $\alpha = 4$. But $t = n - \theta - \varepsilon = 3s \equiv 0 \pmod{3}$. Since $\alpha = 4$, $t \equiv 1 \pmod{3}$. This is the final contradiction.

It is easy to show that h is a surjection and then the proof is complete. \square

Theorem 2. h is a graceful labelling of P(n); h(1) = 2.

Proof: Set

$$\beta = \lfloor (n - \theta - 2)/6 \rfloor$$

and

$$t=6k+2, \quad 0\leq k\leq \beta.$$

Suppose that $i \in \{0, 1, 2\}$, except when $n \in \{0, 1, 5\}$ and $k = \beta$, in which case i = 0. Then

$$h(t+2i) - h(t+2i+1) = n - t/2 - i - 3(\lfloor (6k+2i+4)/3 \rfloor - \lfloor (6k+2i+3)/3 \rfloor + \lfloor (6k+2i+3)/6 \rfloor)$$

$$= n - t/2 - i - 3\delta(i)$$
(1)

where $\delta(0) = k$ and $\delta(1) = \delta(2) = k + 1$. Then, from (1),

$$h(t+2i) - h(t+2i+1) = n - t + \varepsilon(i) \tag{2}$$

where $\varepsilon(0) = 1$, $\varepsilon(1) = -3$ and $\varepsilon(2) = -4$.

Suppose that $i \in \{0, 1, 2\}$ except when $n \in \{0, 1, 5\}$ and $k = \beta$ in which case $i \in \{0, 1\}$. Then

$$h(t+2i) - h(t+2i-1) = n - t/2 - i + 2 - 3(\lfloor (6k+2i+4)/3 \rfloor - \lfloor (6k+2i+1)/3 \rfloor + \lfloor (6k+2i+1)/6 \rfloor)$$

$$= n - t/2 - i + 2 - 3(k+1)$$

$$= n - t - i.$$
(3)

By definition

$$|\{|h(n-\theta+i)-h(n-\theta+i+1)|: i=0,\ldots,(\theta-1)\}|=\{1,\ldots,\theta\}.$$
 (4)

The result follows from (2), (3) and (4).

Corollary 3. Write h(t) = (n+1) - h(t) for t = 1, 2, ..., n. Then h is a graceful labelling of P(n); h(1) = n - 1.

Proof: This is an immediate consequence of the theorem.

We now label a disjoint union of a certain path P and cycle C where $|V(P \cup C)| = k$.

3 The main theorem: Theorem 6

Let $k (\geq 7)$ and $n (\geq 0, \neq 1)$ be integers. Suppose that $k \equiv 2, 4, 5 \pmod{6}$ and set $m = \lfloor k/6 \rfloor$. Define $\theta = \theta(k)$ and w = w(k, n) as follows:

$$\theta = \begin{cases} 1 & (k \equiv 5 \pmod{6}) \\ 0 & \text{otherwise} \end{cases} \quad w = \begin{cases} 1 & (k \equiv 4 \pmod{6} \text{ and } n = 0) \\ 0 & \text{otherwise.} \end{cases}$$

Notice that $k = 3\theta + 2w + 6m + 2$.

Set $C = C(4m + 2(\theta + w) + 2)$ and $P = P(2m + \theta)$. Suppose that

$$V(P) = \{u(i): i = 1, 2, \dots, 2m + \theta\}$$

and

$$V(C) = \{v(i) : i = 0, 1, \dots, 4m + 2(\theta + w) + 1\}.$$

Set

$$X = \{s \colon s = 0, 1, \dots, 3m + 2\theta + w\}$$

$$\cup \{n + 3m + 2\theta + w + s \colon s = 1, 2, \dots, 3m + \theta + 1 + w\}$$

and define mappings

$$f: V(P) \to X, \quad g: V(C) \to X$$

as follows: write f(u(i)) = f(i) and g(v(i)) = g(i) then

(1) (i)
$$f(2i-1) = w-2+3i$$
, $(i=1,2,\ldots,m+\theta)$
(ii) $f(2i) = k+n-3i$ $(i=1,2,\ldots,m)$

(2) (i)
$$g(0) = 0$$

$$\begin{aligned} &\text{(ii) } g(2i-1) \!=\! \begin{cases} k\!+\!n\!+\!2\!-\!3i & (i\!=\!1,2,\ldots,m\!+\!1) \\ n\!-\!w\!-\!3\!+\!3i & (i\!=\!m\!+\!2,m\!+\!3,\ldots,2m\!+\!w\!+\!\theta\!+\!1) \end{cases} \\ &\text{(iii) } g(2i) \!=\! \begin{cases} w\!-\!1\!+\!3i & (i\!=\!1,2,\ldots,m\!+\!\theta) \\ k\!-\!w\!+\!1\!-\!3i & (i\!=\!m\!+\!\theta\!+\!1,m\!+\!\theta\!+\!2,\ldots,2m\!+\!w\!+\!\theta) \end{cases}$$

(iii)
$$g(2i) = \begin{cases} w - 1 + 3i & (i = 1, 2, ..., m + \theta) \\ k - w + 1 - 3i & (i = m + \theta + 1, m + \theta + 2, ..., 2m + w + \theta) \end{cases}$$

Define

$$h^*: V(P) \cup V(C) \to X$$

to be the mapping which extends both f and g.

Lemma 4. h^* is a bijection.

Proof: We use

$$k = 3\theta + 2w + 6m + 2$$

and check separately the three cases: $\theta = w = 0$; $\theta = 1$, w = 0; $\theta = 0$, w = 1.

Lemma 5. The set of edge labels induced by h^* is

$${n+i: i=1,2,\ldots,k-1}.$$

Proof: We use

$$k = 3\theta + 2w + 6m + 2 \tag{1}$$

and recall that when w = 1, n = 0.

Case 1. (path edge labels)

(i) For i = 1, 2, ..., m,

$$f(2i) - f(2i - 1) = n + 3\theta + w + 6m + 4 - 6i$$

which gives label set

$${n+3\theta+w-2+6i: i=1,2,\ldots,m}.$$
 (2)

(ii) For $i = 1, 2, \dots, m + \theta - 1$,

$$f(2i) - f(2i+1) = n + 3\theta + w + 6m + 1 - 6i$$

which gives label set

$${n-3\theta+w+1+6i: i=1,2,\ldots,m+\theta-1}.$$
 (3)

Case 2. (cycle edge labels)

(i) For i = 2, 3, ..., m + 1,

$$g(2i-1)-g(2i-2)=n+3\theta+w-10+6i$$

which gives label set

$${n+3\theta+w-4+6i: i=1,2,\ldots,m}.$$
 (4)

(ii) For $i = 1, 2, ..., m + \theta$,

$$g(2i-1) - g(2i) = n + 3\theta + w + 6m - 5 - 6i$$

which gives label set

$${n-3\theta+w-1+6i: i=1,2,\ldots,m+\theta}.$$
 (5)

(iii) For $i = m + 2 + \theta, m + 3 + \theta, \dots, 2m + \theta + w + 1$,

$$g(2i-1) - g(2i-2) = n - 3\theta - 2w - 6m - 9 + 6i$$

which gives label set

$${n+3\theta-2w-3+6i\colon i=1,2,\ldots,m+w}.$$
 (6)

(iv) For $i = m + 2, m + 3, ..., 2m + \theta + 1$,

$$g(2i-1)-g(2i)=n-3\theta-2w-6m-6+6i$$

which gives label set

$${n-3\theta-2w+6i: i=1,2,\ldots,m+\theta}.$$
 (7)

(v)

$$g(1) - g(0) = n + 3\theta + 2w + 6m + 1 \tag{8}$$

$$g(2m+2\theta+1) - g(2m+2) = n + w + 1. (9)$$

When w=1,

$$g(4m+3) - g(0) = 3\theta + 2w + 6m \tag{10}$$

(recall that n=0 when w=1).

The Lemma now follows from (2) to (10).

Notation. Set $H = C \cup P^*$ where

- (i) $P^* = P(2m + n + \theta) = P(2m + \theta)P(n)$, i.e. P^* is the concatenation of the paths considered in Theorem 2 and Lemmas 4 and 5.
- (ii) $C = C(4m + 2(\theta + w) + 2)$, i.e. the cycle considered in Lemmas 4 and 5.

Notice |V(H)| = k + n.

We now describe a graceful labelling h^{**} of H:

- (i) h^{**} extends h^* .
- (ii) Set $h^+ = h + 3m$ (see Theorem 2)

and

$$\stackrel{\leftarrow}{h}^+ = \stackrel{\leftarrow}{h} + 3m + 2$$
 (see Corollary 3).

Then when $\theta = 0$, h^{**} extends h^{+} and when $\theta = 1$, h^{**} extends h^{+} .

Theorem 6. h^{**} is a graceful labelling of H.

Proof: The definitions of h^+ and h^+ ensure that

$$|h^{**}(u(2m+\theta)) - h^{**}(w(1))| = n.$$
 (1)

Since h and h are graceful labellings of P(n) the set of edge labels, induced by h^{**} , on the edges of P(n) is

$${i: i = 1, 2, ..., n-1}.$$
 (2)

Hence, from (1), (2) and Lemma 5, the set of edge labels is

$${i: i = 1, 2, ..., n + k - 1}.$$
 (3)

Again, from the definition of h^+ and h^+ and, from Lemma 4, the set of vertex labels induced by h^{**} is

$${i: i = 0, 1, ..., n + k - 1}$$
 (4)

where if w = 1 then n = 0.

It follows from (3) and (4) that h^{**} is graceful.

Corollary 7. $C(2a) \cup P(b)$ is graceful for $b \ge a + 1$ $(a \ge 3)$.

Proof: This follows immediately from Theorem 6 on rearranging the parameters.

Theorem 8. The graphs $C(2t) \cup P(n)$, $t \in \{3,4,5,6\}$ $(n \ge 2)$ are graceful.

Proof: We use Theorem 6.

When t=3 take m=1, $\theta=0$, w=0.

When t=4 consider the cases: $m=1,\ \theta=1,\ w=0;\ m=1,\ w=1,$ $\theta=0.$

When t = 5 take m = 2, $\theta = 0$, w = 0.

When t=6 consider the cases: $m=2, \theta=1, w=0; m=2, \theta=0, w=1.$

Graceful labellings of $C(6) \cup P(3)$, $C(8) \cup P(4)$, $C(10) \cup P(i)$, $i \in \{2, 3, 5\}$ and $C(12) \cup P(i)$, $i \in \{2, 3, 6\}$ are given in Figure 1.

This completes the proof of the theorem.

Figure 1

Final Comment

Using similar techniques we have shown that $C(m) \cup P(n)$ is graceful for m = 5, 7, 9, 11 and $n \ge 2$ but the details are as yet too complicated to be published here.

References

- [1] R.W. Frucht and L.C. Salinas, Graceful numbering of snakes with constraints on the first label, Ars Combin. 20 (1985), 143-157.
- [2] J.A. Gallian, A survey: Recent results, conjectures and open problems in labelling graphs, J. of Graph Th., 13 (No.4) (1989), 491-504.
- [3] A. Rosa, On certain valuations of the vertices of a graph, Theory of graphs (International Symposium, Rome, July 1966). Gordon and Breach, New York (1967), 349–355.