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Abstract

Let G be a group of permutations acting on an n-vertex set V,
and Xand Y be two simple graphs on V. We say that X and Y
are G-isomorphic if Y belongs to the orbit of X under the action of
G. One can naturally generalize the reconstruction problems so that
when G is Sn, the symmetric group, we have the usual reconstruc-
tion problems. In this paper, we study G-edge reconstructibility of
graphs. We prove some old and new results on edge reconstruction
and reconstruction from end vertex deleted subgraphs.

1 Introduction

Unless specified, all the graphs in this paper are assumed to be undirected
and without multiedges or loops, and to have n vertices and m edges. Dis-
tance between any two vertices u and v is denoted by d(u, v), and maximum
degree in a graph X is denoted by A(X) or simply A when there is no con-
fusion. The automorphism group of a graph X is denoted by autX.

The vertex deck of a graph X, denoted by V D(X), is the collection of all
its unlabelled vertex deleted subgraphs, and the graph X (or a property or
a parameter of X) is said to be vertex reconstructible if X (or the property
or the parameter) can be uniquely obtained from VD(X). Similarly one
also defines edge deck ED(X) and edge reconstructibility. The collection
of unlabelled subgraphs of X obtained by deleting degree-1-vertices, called
end-vertex deck, is denoted by V. D;(X), and correspondingly we have end-
vertex reconstructibility. Vertex reconstruction conjecture (VRC) states
that graphs with at least three vertices are vertex reconstructible. Edge re-
construction conjecture states that graphs with at least four edges are edge
reconstructible. One can also pose the same conjectures in the language
of hypomorphisms between labelled graphs as follows. Two graphs X and
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Y are said to be vertex hypomorphic, denoted by X ~ Y, when there is
a bijection f, called vertex hypomorphism, from V(X) to V(Y) such that
X —u=2Y — f(u) for all w € V(X). VRC then states that X ~ Y implies
X 2 Y, provided n > 3. One similarly defines edge hypomorphism and
can pose ERC. Reader is referred to [B] for survey of various reconstruction
problems.

Let V(X) =V(Y) =V, and G be a group of permutations acting on
V. The action of G defines the orbits of X and Y, and we say that X and

Y are G-isomorphic, denoted by X g Y if Y is in the orbit of X under
the action of G. We can then naturally extend the above definitions to G-
vertex (or edge) hypomorphism, (denoted by the symbol g), G-vertex (or
edge) reconstructibility etc., and study the corresponding reconstruction
problems.

Given a graph X and and an edge set E C E(X), an edge set F is called
areplacingedgeset of Eif X —E+F~ X (or X - E+ F g X) and
EnF=0.

In this paper we demonstrate that edge or vertex reconstructibility of
graphs can be proved under some circumstances by suitably choosing a
group G and considering the problem as G-ERC or G-VRC. In Section 2,
we state a generalization of the well known Nash-Williams’ lemma. It is
then applied to ERC in Section 2.1, and to vertex reconstruction of graphs
from their end-vertex deleted subgraphs in Section 2.2.

This is an expanded version of [T3].

2 (G-edge reconstruction

Let V(X) =V (Y) =V and F be a spanning subgraph of X. For a group
G, we denote |{g € Glg(Y) N X = F} by [Y <5 X|r. The following
lemma, which is a generalization of the Nash-Williams’ lemma, is our tool
in dealing with the reconstruction problems considered in the next two

subsections. It can be proved along the same lines as Theorem 1.1 in [T1],
and also follows from Theorem 2.1 in [ACKR)].

Lemma 2.1 If X and Y are G-edge hypomorphic but not G-isomorphic
then for every spanning subgraph F of X, we have

X S X|p =Y S X|p = (-1)"EONG N autX|
In the following, we demonstrate that many reconstruction problems can

be naturally formulated as G-edge reconstruction problems, and Lemma 2.1
can be applied.
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2.1 Edge reconstruction

The graphs considered in this section are 2-edge connected bipartite graphs
or separable graphs with 3-connected pruned centre.
2-edge connected bipartite graphs

Proposition 2.2 Let X be a 2-edge connected bipartite graph with s and
t as the sizes of the two parts. Then X is edge reconstructible provided
m > stf2 or 2771 > lautKs ¢|.

Proof The recognition is trivial. Also, because of 2-edge connectivity, the
vertex partitions are uniquely recognized in the subgraphs, so we assume
the edge hypomorphism between X and a possible reconstruction Y to be
a G-edge hypomorphism, where G is autK;.. Now the claim is a simple
corollary of Lemma, 2.1.

That m > st/2 is sufficient for edge reconstructibility, was proved in
[Vyi].
Separable graphs with 3-edge connected pruned centre

For a graph X, define the block-cutpoint tree T(X), whose vertex set
has all the cutpoints and all the maximal two connected subgraphs (2-
blocks) in it, and two vertices of T(X) are joined by an edge iff one of
them is a 2-block and other is a cutpoint on the same 2-block. The pruned
graph P(X) is the maximal subgraph without end-vertices. The center of
T(P(X)) corresponds to a 2-block or a cut vertex of X, and is called the
pruned center of X, denoted by C(X).

Proposition 2.3 Let X be a separable graph with end vertices, having a 3-
connected pruned center C(X). Suppose we colour the vertices of C{X) blue
and vertices outside C(X) red. Let G’ denote the automorphism group of
the coloured graph X — E(C(X)), and G its subgroup induced by V(C(X)).
Then X is edge reconstructible if C(X) is G-edge reconsiructible.

Proof When an edge incident with an end vertex is deleted, (which is easily
recognizable), we know the pruned graph and the pruned centre uniquely.
This allows us to recognize the subset S of ED(X) obtained by deleting an
edge of C(X) —given X —e, e € E(C(X)) iff T(P(X)) = T(P(X —e)) and
|[E(C(X))| = |[E(C(X —e€))|+1. Once S is recognized, we can assume that

the pruned centres of X and Y, (where Y ~ X), have the same vertex set,
G
and we are given only the graphs in S. Therefore, C(X) = C(Y) is enough

for an isomorphism between X and Y.
Following are some of the immediate consequences:

1. If 21BCEON > |G| or |E(C(X))| > |V(C(X))|/2 then X is edge recon-
structible. Note that we have 2/E(C(X)I rather than 2/B(C(XNI-1 pe.
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cause we know C(X) uniquely. Version of Lovész’s result was proved
earlier in [VY].

2. If C(X) is claw-free or P4-free or chordal, then X is edge recon-
structible. (A graph is chordal if no induced subgraph on four or
more vertices is a cycle. A graph is claw-free if no induced subgraph
is isomorphic to K, 3. A graph is Py-free if no induced subgraph on
four vertices is a path.)

We in fact have something stronger:

(2)

(b)

(c)

One can observe that all connected claw-free graphs other than
paths are G-edge reconstructible for all groups G (irrespective
of their connectivity). We do not give the details of the proof
here, but refer the reader to [T2], where it is proved that a
collection of connected claw-free graphs can be reconstructed
from its shuffled edge deck. We only comment that all the steps
in that proof are actually based on the fact that some edge set in
a claw-free graph has no replacement unless it is a path. Paths
are not G-reconstructible for some groups, (for example, a 2k-
vertex path, for k > 2, is not Aj-edge reconstructible, where
Aoy is the alternating group).

In case of chordal graphs, we again follow the proofs in Section
4 of [T2], and claim that all 2-connected chordal graphs are G-
edge reconstructible for all groups G. We also point out that,
all trees except the thirteen trees listed in [CS] are G-edge re-
constructible, since it is proved in [CS] that some edge sets in
all the other trees have no replacing edge sets.

Connected Py-free graphs are G reconstructible for all groups G -
the complement of any connected Py-free graph is disconnected,
therefore, set of all the edges cannot be replaced.

Question Can one reduce ERC for graphs with 3-connected pruned centre
to 3-connected graphs?

2.2 End vertex deleted subgraphs

Let Z be a graph with minimum degree at least 2, and X be a graph ob-
tained by adding some more vertices of degree 1, making the new vertices
adjacent to vertices in Z. We give simple proofs of some results on recon-
struction from end vertex deleted subgraphs, some of which appeared in
[L]. First we consider the case in which r; vertices of Z are made adjacent
to 71 new vertices of degree 1.
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Proposition 2.4 If r; > |[V(2)|/2 or 277! > autZ then X can be recon-
structed from its end-vertex deleted subgraphs.

Proof Since there are no end vertices in Z, vertices of Z are recognizable
in every member of the deck. We identify all the end vertices of X, call the
resulting vertex v and colour it blue, and rest of the vertices red. Call this
graph Y. Since no two end vertices of X have a common neighbour, X is
reconstructible from its end vertex deleted subgraphs, if Y is reconstructible
from its subgraphs Y — av, where av is an edge between v and a red vertex
a. Thus we are just edge reconstructing a graph which is a disjoint union of
an r;-star and some isolated vertices, with the centre of the star coloured
blue, with respect to the group autZ. A direct application of Lemma 2.1
gives the result.

Now, we extend this idea to prove something stronger. Let Z be as
above. Add end vertices in this graph to construct X as follows. Let
R; C V(Z), i = 1 to k be disjoint sets, and |R;| =r; > 0. Fori =1 to
k, we join each member of R; to precisely 7 end-vertices. Set of remaining
vertices of Z is denoted by Rp. Following result is somewhat stronger than
the results in [L].

Proposition 2.5 Ifr; > rj_1 or 271 > |awtZ| for some j < k, then X
is end-vertex reconstructible.

Proof Let VD,(Y) = VD,(X). First we make some ‘recognition’ claims.
As in Proposition 2.4, vertices of Z are recognized in every graph in the
deck. Also, the P(Y) = Z. If Y is obtained as above by joining r] vertices
to 7 end-vertices each, then r; = r;. This is trivial to prove unless 7y = 2,
r; =0fori>2and, r{ =0, 72 =1and r{ = 0 for ¢ > 3, in which case
there are obvious counter examples. It is also trivial to recognize, for any
given graph in the deck, the i for which a neighbour of u € R; is deleted.
Thus we have a natural partition of the given deck into decks D;, i =1 to
k, where a member of D; results from deleting an end-vertex adjacent to a
vertex in R;. Obviously, the multiplicity of any unlabelled graph in D; is
a multiple of 7, so we can construct reduced decks D] by reducing all the
multiplicities by a factor of d.

Construct a graph X;, j > 1 from Z by colouring vertices of R; with
colour c;, where i € {7 — 1,7} and making vertices of R; adjacent to one
end-vertex each. If X; is end-vertex reconstructible, then X is end-vertex
reconstructible. Therefore, if 7; > 7j—1 or 23~! > |autX;| then X is end-
vertex reconstructible, as in Proposition 2.4. Note that |autX;| < jautZ].

For some j, if r; > |V(Z)|/2 then the graph is end-vertex reconstructible,
which was proved in [La). This is a corollary of our results in Propositions
2.4 and 2.5.
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Remark Suppose that we are given the vertex deck of an arbitrary separa-
ble graph X with end-vertices. Given any end-vertex deleted graph X —u,
it is easy to recognize the distance of u from the nearest vertex of P(X).
Thus we know the number of end vertices at any distance j from P(X),
and we can prove analogous results on the vertex reconstruction of X.

Acknowledgements

I did a part of this work when I was at Department of Mathematics, In-
dian Institute of Science, Bangalore, India, supported by a post-doctoral
fellowship of National Board for Higher Mathematics, India. I did some of
the work here when I was supported by the grant NSERC A7331. I would
like to thank Professor A. Bondy who arranged for my visit, and was very
encouraging, and members of Combinatorics and Optimization, University
of Waterloo, Canada for their help during my stay at Waterloo.

References

[ACKR] N. Alon, Y. Caro, I. Krasikov and Y. Roditty, Combinatorial recon-
struction problems, J. Combin. Theory Ser. B 47 no. 2 (1989)
153-161.

[B] J. A. Bondy, A graph reconstructor’s manual, in ”Surveys in Combi-
natorics, 19917, (Guildford, 1991), London Math. Soc. Lecture Note
Ser. 166, Cambridge Univ. Press, Cambridge (1991) 221-252.

[CS] C.R.J.Clapham and J. Sheehan, The thirteen two-free trees, preprint,
Dept of Mathematical Sciences, Univ. of Aberdeen (1991).

[La] J. Lauri, End vertex deleted subgraphs, Ars Combinatoria, 36 (1993),
171-184.

[Lo] L. Lovédsz, A note on the line reconstruction problem, J. Combin.
Theory Ser. B 13 (1972) 309-310.

[Mn] V. B. Mnukhin, The k-orbit reconstruction and the orbit algebra,
Acta Applicandae Mathematicae 29 (1992) 83-117.

[Mij] V. Miiller, The edge reconstruction hypothesis is true for graphs with
more than n.log, n edges, J. Combin. Theory Ser. B 22 no. 3 (1977)
281-283.

[T1] B.D. Thatte, On the Nash-Williams’lemma in graph reconstruction
theory, J. Combin. Theory Ser. B 58,2,(1993)280-290.

298



[T2] B.D. Thatte, Some results and approaches for reconstruction prob-
lems, The first Malta Conference on Graphs and Combinatorics, May-
June 1990, Discrete Mathematics, 124(1994), 193-216.

{T3] B. D. Thatte, More applications of a general Nash-Williams’ lemma,
manuscript, (1992).

[VY1] A.Vince and Y. Yong Zhi, Complement edge reconstruction, Preprint,
(1992).

[VY1] A. Vince and Y. Yong Zhi, Edge reconstruction of graphs with suffi-
ciently large center, Preprint, (1992).

299



