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1 Imntroduction

In [6], Liineburg constructed a family of unitals (2—(¢3+1, g+1, 1) designs)
associated with the Ree groups of type G2. His construction is as follows:
the Ree group R(g),q = 3%*~1,s € N has a representation as a 2-transitive
permutation group on ¢*+ 1 symbols. These conditions on ¢ and R(q) hold
throughout the paper. The stabilizer of any two symbols is cyclic of order
g — 1, and therefore admits only one proper involution. It can be shown
that this involution fixes exactly g+ 1 points. Now, our points are the ¢3+1
symbols on which R(q) acts, and our blocks are defined to be the sets of
g+ 1 points fixed by involutions described ahove. That this forms a unital
follows directly from 2-transitivity. Brouwer [3] analyzed the Ree unital of
order 3 quite thoroughly, discussing issues such as its embeddability in a
projective plane of order 9, spreads and resolutions, and some aspects of
its code.

For higher order Ree unitals, there are several known results. The family
of Ree unitals is known to be disjoint from that of the Hermitian unitals,
as the Ree unitals admit O’Nan configurations. (An O’Nan configuration
is a set of four blocks such that each pair of blocks meet in a point, but no
three blocks share a point.) Further, it is known that no Ree unital can be
embedded in any projective plane. As designs, some small arcs have been
constructed in the Ree unitals (see Assmus and Key [1]), and a good deal
is known about the codes associated with them (see Assmus and Key [2]
and Hiss [5]).

In this paper, we wish to generalize some of the results obtained by
Brouwer concerning spreads and resolutions of the Ree unitals. In particu-
lar, we show that these designs are resolvable in at least ¢ + 1 ways.

We begin by recalling some of the classical results about the Ree groups.
We then give a method for constructing spreads of these unitals. After
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analyzing some of the properties of these spreads, including automorphism
groups and orbit structure, we give a construction for resolutions.

2 Some Useful Facts

In this section, we wish to recall some basic facts about the Ree groups. We
present them as a series of lemmas; proofs can be obtained from Liineburg [6].
Our first two results deal with 2-subgroups and involutions in R(q).

Lemma 2.1 The Sylow 2-subgroups of R(q) are elementary Abelian of
order 8. In particular, R(q) has no elements of order 4.

Lemma 2.2 Every involution of R(q) has ezactly q+ 1 fized points, and
there is a one-to-one correspondence between the involutions of R(q) and
the blocks of the associated unital. Purther, all involutions of R(q) are
conjugate.

In light of this result, we can define the following terminology. If B is
a block of the unital, then op will denote the unique involution of R(q)
whose fixed set is B. Similarly, if 7 is an involution in R(q), we will denote
the block fixed pointwise by 7 B;.

Our next lemma deals with the interplay of the involutions and the blocks
with which they are associated.

Lemma 2.3 Let op and o¢ be involutions in R(q), associated with blocks
B and C respectively. Then, the following conditions are equivalent:

1. og and oc commute.
2. op leaves C invariant.

8. o¢ leaves B invariant.

Corollary 2.4 Let op be an involution in R(q). Then, the subgroup of
R(q) which leaves block B invariant is ezactly the centralizer of op in

R(g).
We end with a lemma which describes how the stabilizer of a block acts.

Lemma 2.5 Let B be a block of the Ree unital of order q, and og ils
associated involution. Then C(op) induces a group action G* on B which
i isomorphic to PSL(2, q). The kernel of this action homomorphism is the
subgroup generated by op, and C(op) is isomorphic to the direct product
(o08) x PSL(2,q).
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3 Spreads

In a general design, a spread is a partition of the points into pairwise disjoint
blocks. A necessary condition for this to occur is that the block size divide
the number of points of the design. In the case of unitals, the block size is
g+ 1, while the number of points is ¢ + 1. So in a unital, a spread is a set
of g% — g+ 1 pairwise disjoint blocks.

In his analysis of the Ree unital of order 3, Brouwer [3] found that it
admitted 45 spreads. Using the software package MAGMA [4], we found
that the 45 spreads broke up into two orbits: one of size 9, and the other
of size 36.

As above, a spread of the Ree unital of order 3 is a set of seven pair-
wise disjoint blocks. It turns out that the two types of spreads can be
distinguished by their automorphism groups. Spreads in the orbit of size
36 admit an automorphism group which cyclically permutes the blocks in
the spread while the spreads in the orbit of size 9 do not.

In this section, we seek to generalize this second type of spread to Ree
unitals of all orders. The other type of spread does not seem to generalize,
at least not as a spread admitting a cyclic automorphism group.

Let R(g), with ¢ = 3%°~1, 5 € N be a Ree group, and let U(qg) be the
unital associated with R(g). Pick any block B of U(qg), and let op be its
associated involution. Pick any point P not in B. Then, since two distinct
points determine a unique block, the block containing P and P°2 must be
left invariant by og. We wish to focus on the blocks left invariant by o 5.

Lemma 3.1 Let B be a block of U(q), and let op be its associated invo-
lution. Let C be a block which is left invariant by og. Then, BNC = 0.

Proof: By way of contradiction, suppose BN C # §. Then, since two
points determine a unique block, there exists a unique point z such that
z € BNC. Consider the action of op on the block C. Since B is the fixed
set of op, the only fixed point of o on C is z. Further, since op is an
involution which leaves C' invariant, the remaining ¢ points of C must be
split up into orbits of size 2 under og. But ¢ is odd, which leads us to the
desired contradiction. ]

So, any block other than B left invariant by o g is necessarily disjoint
from B. We now wish to show that any two blocks left invariant by o are
disjoint.

Lemma 3.2 Let B be a block of U(q), and let o be its associated invo-
lution. Let C and D be two distinct blocks left invariant by og. Then,
cCnD=4.
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Proof: By Lemma 3.1, the result is true if one of our blocks is B. So,
assume neither C nor D is the block B. Again using Lemma 3.1, we know
that CNnB=DNB=0.

By way of contradiction, suppose CN D # @. Then, there exists a unique
point z such that z € CND. Now, since C and D are both left invariant by
0B, their intersection must also be left invariant. In particular, this implies
z is fixed by op. But, since £ € C, z cannot be an element of B. This
is the desired contradiction, since the points fixed by op are exactly those
points in B. Therefore, C and D must be disjoint. ]

With these two lemmas, we can now prove the existence of a spread in
all Ree unitals.

Theorem 3.3 The Ree unital of order ¢ admits a spread.

Proof: Let B be any block of the unital, and let o g be its associated invo-
lution. Let S be the set of all blocks left invariant by og. By Lemmas 3.1
and 3.2, S is a set of pairwise disjoint blocks. To show that they form a
spread, we need to show that these blocks cover the unital. Equivalently,
we need to show that [S]| = ¢ — ¢+ 1.

To do this, we count the number of blocks left invariant by op. As
mentioned above, the block containing the points P and P?8 is left invariant
by op for every P not in B. Clearly, any block left invariant by oz will
have this form. One can easily count that there are 93}“ distinct pairs of
points of the form { P, P75}, each of which determines a block left invariant
by op. By Lemma 3.1, any such block is disjoint from B. So, each block
left invariant by o, except B, contains 9%1- such pairs. Therefore, exactly
g% — g blocks, other than B, are left invariant by o5. Together with B, this
means |S| = ¢% — ¢ + 1, and the theorem is proven. o

We will call the spread obtained in this manner Sp. In this construction,
the block B seems to play a special role, as it is the only block of the spread
fixed pointwise by o g. It turns out that in the order 3 case, there is nothing
special about the line with which you start. Indeed for a given spread S
of this form, any block in S will generate the spread. This yields the 9
spreads of one orbit. However, this turns out to be misleading. We would
like to show that if ¢ > 3 and Sp is a spread generated by block B, there
is no other block of the unital which will generate Sg in this manner. We
begin with a technical lemma which deals with the elements of R(g) which
induce involutions on a block B.

Lemma 3.4 Let B be a block of U(q). If 7 € R(q) is an element which
induces an involution on B, then T is an involution in R(q).

Proof: Let 7 be any element which induces an involution on B. Then, 72
fixes B pointwise, which means either 72 =1 or 72 = o, as these are the
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only two elements of R(q) ﬁxnng B pointwise (See Liineburg [6]). If 72 =1,
then 7 is an involution. If 72 = o, then 74 = 1, which forces T to have
order 4. This contradicts Lemma 2.1, so no such 7 can exist. Therefore, 7
must be an involution of R(q), and we are finished. (m]

Theorem 3.5 Let o be an involution in R(q),q > 3 which fixes block B,
pointwise. Then, there exists no involution T € R(q) which fizes the same
set of blocks as o.

Proof: By way of contradiction, suppose 7 is an involution which fixes
the same set of blocks as o. In particular, this means T fixes B,, so by
Lemma 2.3, o and 7 commute. Let {B,, B‘,,, .} be the blocks
left invariant by both o and +, where the y;’s are the mvolutlons associated
with these blocks. Again using Lemma 2.3, we have that z; commutes with
o, and also commutes with 7 for all i € {1,... ,¢% — g}. Further, since no
other block can be left invariant by o, and therefore 7, these are the only
involutions which commute with o, and therefore 7. (It should be noted
that one of the u;’s is 7, as B, is left invariant by o.)

Summarizing, we have that each of the involutions y;, . .. pg2_, commutes
with each of o and 7. Further, the set of involutions commuting with o is
{o,11,... ,#q2—q}. This set is also the set of involutions commuting with
7. So, we have {o, ju1,... ,pp_¢} C C(o) NC(7).

Now by Lemma 2.5, C(c) induces an action G* on B, which is isomorphic
to PSL(2,q). Let @ be the homomorphism from C(c) onto G*. Since
g > 3, PSL(2, q) is simple, and therefore G* is generated by its involutions.
Using the homomorphism @, we obtain that C(c) is generated by all of the
elements of R(q) which induce involutions on B, together with the kernel of
0. By Lemma 3.4, the only elements of R(gq) which induce involutions on B,
are involutions of R(g) which fix B,, and the kernel of 8 is (¢}, again using
Lemma 2.5. Therefore, C(c) is generated by the set {o, p1, ... , pq2—qg}.

But, C(7) also contains all of these elements, and therefore C(o') C C(7).
o and 7 are involutions of R(g) and are conjugate by Lemma 2.2. Thus,
|C(e)| = |C(7)|, and this forces C(c) = C(7).

In particular, this means 7 commutes with every element of C(c¢), and
thus 7 € Z(C(0)). So, Z(C(0)) has order at least 4, and contains Ker(8).
Therefore, the center of G* is nontrivial. But, G* is isomorphic to PSL(2, q),
which is simple. This is the desired contradiction. So, 7 cannot have the
same set of fixed blocks as o. o

Corollary 3.6 Let Sp be the spread generated as in Theorem 3.3 by block

B, and Sc be the spread generated by block C, C # B. If q¢ > 3, then
Sp # Sc.
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This corollary implies that there is one spread of this form for each block
of the unital, if ¢ > 3. So, the Ree unital associated with R(q), ¢ > 3 admits
at least ¢2(q% — ¢ + 1) distinct spreads. We can compute the subgroup of
R(q) which fixes the spread Sp as follows.

Theorem 3.7 Let B be a block of U(q), q > 3 and let op be its associ-
ated involution. Then, the subgroup of R(q) which leaves the spread Sp
invariant is C(og).

Proof: Let C be any block of the Ree unital, and let o¢ be its associated
involution. If  is any element of R(g), then C7 is a block with associated

involution 7~ locr.

Applying this to our situation, let 7 € R(g) be any group element which
leaves our spread Sp invariant. Recall from Theorem 3.5 that every in-
volution associated with a block of Sg lies in C(og). Since 7 leaves Sp
invariant, the conjugates 7~!x7 must lie in C(og) for all involutions 4 in
C(oB). But, also from the proof of Theorem 3.5, we know C(og) is gener-
ated by its involutions. This implies that 7 must normalize C(og). Clearly,
any element of N(C(og)) will leave our spread invariant, so we have that
the subgroup of R(q) leaving our spread invariant is N(C(og)).

In the proof of Theorem 3.5, we showed that the only involution contained
in the center of C(og) is cg. Let 7 € N(C(csg)). Then, the center of
C(oB) is left invariant under conjugation by 7, so we have 7-logT = 0p.
This forces 7 and op to commute, which implies 7 is actually in C(o3).
Therefore, C(og) is a self-normalizing subgroup, and we have that the
subgroup of R(q) leaving Sp invariant is C(og). o

Finally, we would like to compute the orbit structure of this stabilizer
acting on our spread Sg. Recall that Sp consists of the blocks which are
the fixed sets of involutions in C(cp). From Lemma 2.5, we know that
C(og) is isomorphic to the direct product {(o5) x PSL(2, q). In particular,
this means that C(og) has a subgroup P isomorphic to PSL(2,q). We
wish to partition the involutions in C(og) into three parts:

1. Z, the set of involutions which lie in P,

2. C, the set of involutions which are the product of o5 with some invo-
lution in P, and

3. op itself.
Theorem 3.8 In the Ree unital of order q, with q > 3, let B be a block
with associated involution op. Then, the involutions of C(op) fall into

three orbits under the inner automorphism group of C(og): I, C, and o,
using the notation above.
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Proof: First, we note that op is certainly in its own orbit, since for all
T € C(oB), we have 7-log7T = og. Further, we note that P is a subgroup
of index 2 in C(o g), and is thus normal. Therefore, the inner automorphism
group of C(og) certainly leaves the sets Z and C invariant.

It remains to show that our inner automorphism group is transitive on
these two sets Z and C. However, all involutions in PSL(2, q) are conjugate.
In particular, this implies that Inn(C(og)) is transitive on the involutions
in Z, and so Z is an orbit under Inn(C(og)).

Finally, let 0 g1 and opp2 be two involutions in C. Then, there exists 7 €
C(oB) such that uy = 77 1u;7. We can quickly compute that 7~ logu;r =
opT 7 = opuy. Therefore, opu; and opuy are conjugate. Since p,
and pp were arbitrary elements of C, we have that C is an orbit under
Inn(C(oB)). o

Corollary 3.9 The automorphism group of the spread Sp has three orbits
on the Sg:

1. The blocks which are fizxed sets of elements of Z,
2. The blocks which are fized sets of elements of C, and
3. B.

Proof: Let C and D be two blocks of Sg, with associated involutions o¢
and op. Then, there exists an automorphism of Sz which maps C onto D
if an only if there exists an element 7 € C(og) such that op = 77 'o¢T.
The result then follows from Theorem 3.8. a

4 Resolutions

We now move on to the issue of resolvability. We can construct a large
number of spreads by using the procedure in Theorem 3.3. We now would
like to see if we can put some of them together to get a resolution.

Again, Brouwer [3] has fully analyzed the U(3) case. He found that this
unital is resolvable in 10 ways. Nine of these resolutions use the cyclic
spreads which we have not generalized, but the other resolution uses only
spreads of the type we have. It is this idea that we will use.

Theorem 4.1 Let P be a point of the Ree unital of order q. For each of

the q° blocks {Bs,...,Bga} containing P, construct the spread Sp, as in
Theorem 3.3. These q* spreads form a resolution of the Ree unital.

Proof: We abbreviate Sp, to S;. To show that the spreads {S1,...5g2}
form a resolution, it suffices to show that no two of these spreads have a

307



block in common. Clearly, no two of these spreads share a block through
P, by their construction. By way of contradiction, suppose that there is a
block C which is contained in two of these spreads, say S; and S;. Let 7
be the involution of R(q) which fixes C pointwise, and let B; be the block
in S; which contains P, and define B; analogously. Since C is in S;, by
the definition of S;, C is fixed by the involution op, associated with B;.
Therefore, by Lemma 2.3, 7 must leave the block B; invariant. Similarly,
7 must leave B; invariant. So, B; and B; are two blocks left invariant by
7. But by Lemma 3.2 we must have B; N B; = @. This is a contradiction
since both of these blocks contain the point P. Therefore, the spreads
{S1,...,55} are pairwise disjoint, and form a resolution. ]

As mentioned above, there is only one resolution of this type when g = 3.
However if ¢ > 3, one can easily obtain distinct resolutions.

Let P and Q be two distinct points of U(g), ¢ > 3. Let Rp and Rg be
the resolutions of U(g) obtained by using Theorem 4.1 with points P and
Q respectively.

We wish to show that these resolutions have exactly one spread in com-
mon. Indeed, suppose there exists a spread S of U(q) which is contained
in both Rp and Rg. Then, by the construction of Rp, there exists a block
B containing P such that § = Sp, i.e. S is the spread obtained from
Theorem 3.3 by beginning with block B. Similarly, there exists a block C
containing @ such that § = Sc. In particular, this implies Sgp = S¢. By
Corollary 3.6, this forces B = C since ¢ > 3. In other words, a spread can
be contained in the resolutions Rp and Rq if and only if it is generated by
the unique block containing P and Q. Therefore, Rp and Rq have only
one spread in common, and thus cannot be equal. Since there are ¢° + 1
points in U(g), this leads to ¢° + 1 distinct resolutions of U (9).

Consider the resolutions we have constructed in Theorem 4.1 as points
and the spreads constructed in Theorem 3.3 as blocks, with incidence given
by reverse containment. We claim that this structure is a unital of order q.
By the above, we have ¢® + 1 points, and any two distinct points lie on a
unique block.

Let S be any block of this design, i.e. S is a spread. By our construction,
S = Sp for some block B of U(g). This spread will be in a resolution
R if and only if the block B contains the point which generates R as in
Theorem 4.1. Since B contains g 4 1 points, the spread S is contained in
q+1 resolutions of this type. In other words, every block of our new design
contains exactly ¢ + 1 points.

One can quickly check that this new unital is in fact isomorphic to the
unital with which we started. However, it does give a new model for this
U(q), which might be useful.
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5 Conclusion

While we have constructed a large number of spreads and resolutions in
the Ree unitals, one natural question is if these are the only such objects.
Certainly the answer is no in the order 3 case, but the examples there do
not seem to generalize to the general case. This question remains open.

Another interesting question regards the O’Nan configurations contained
in U(q). In the order 3 case, it turns out (see Brouwer [3]) that every O’Nan
configuration can be extended uniquely to a five-fold O’Nan configuration,
i.e. a set of five blocks which pairwise meet in a point, but no three of
which are concurrent. It would be interesting to see if this result extends
to all Ree unitals.

Finally, there are many interesting questions involving the codes of the
Ree unitals which can be asked. Due to the two-transitivity of the groups
involved, these codes can be used to generate new designs which admit the
Ree groups as automorphisms.
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