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ABSTRACT. Given a digraph (an undirected graph, resp.) D
and two positive integers f(z),g(z) for every z € V(D), a
subgraph H of D is called a (g, f)-factor if g(z) < dj;(z) =
dy(z) < f(z)(g9(z) < du(z) < f(x), resp.) for every z € V(D).
If f(z) = g(x) = 1 for every z, then a connected (g, f)-factor is
a hamiltonian cycle. The previous research related to the topic
has been carried out either for (g, f)-factors (in general, discon-
nected) or for hamiltonian cycles separately, even though nu-
merous similarities between them have been recently detected.
Here we consider connected (g, f)-factors in digraphs and show
that several results on hamiltonian digraphs, which are gener-
alizations of tournaments, can be extended to connected (g, f)-
factors. Applications of these results to supereulerian digraphs
are also obtained.

1 Introduction and terminology

Given a digraph (an undirected graph, resp.) D and two positive integers
f(z), g(z) for every z € V(D), a subgraph H of D is called a (g, f)-factor
if 9(z) < di(z) = di(z) < flz)(9(z) < du(z) < f(z), resp.) for every
z € V(D). If f(z) = g(z) = 1 for every z, then a connected (g, f)-factor
is a hamiltonian cycle. The previous research related to the topic has been
done for either (g, f)-factors (in general, disconnected) or hamiltonian cy-
cles separately, even though numerous similarities between them have been
recently detected [24] (see e.g. [10, 14, 15, 22, 23] where ideas from hamil-
tonian graph theory were used to discover new results in factor theory).
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In this note we consider connected (g, f)-factors in digraphs and show
that some results on hamiltonian digraphs, which are generalizations of
tournaments, can be extended to connected (g, f)-factors using polynomial
transformations from the hamiltonian cycle problem and the cycle covering
given vertices problem. We investigate connected (g, f)-factors rather then
general (g, f)-factors as the former rather than the latter are of interest in
several applications. In a generalization of the traveling salesman problem,
the vehicle routing problem [13], a route is a connected (g, f)-factor such
that f(z) = g(z) = 1 for all vertices =z but one z, called a depot, and
9(z) =1, f(2) = k, where k is the number of vehicles available.

We believe that many more characterizations and/or sufficient conditions
for directed and undirected graphs to contain connected (g, f)-factors can
be obtained.

A number of sufficient conditions for an undirected graph to be supereu-
lerian (i.e. to contain a spanning eulerian subgraph) were obtained but
no complete characterization is known (see e.g. [11, 12]). We show that
one can verify whether a semicomplete multipartite digraph, locally in-
semicomplete digraph or quasi-transitive digraph is supereulerian in poly-
nomial time.

A semicomplete digraph is a digraph without non-adjacent vertices. Tour-
naments form a proper subclass of semicomplete digraphs. A digraph
D is locally in-semicomplete (locally out-semicomplete, resp.) if the in-
neighbours (out-neighbours, resp.) of every vertex in D induce a semicom-
plete digraph. A digraph which is both locally in-semicomplete and locally
out-semicomplete is locally semicomplete.

A digraph D on p disjoint vertex classes (partite sets) is a semicomplete
p-partite (or, multipartite) digraph if for any two vertices z and y in different
partite sets at least one arc between z and y is in D and there are no arcs
between vertices in a same partite set. Clearly, a semicomplete digraph
with n vertices is a semicomplete n-partite digraph with only one vertex in
every partite set. A digraph D is quasi-transitive if, for any triple z,y, z of
distinct vertices of D such that (z,y) and (y, z) are arcs of D, there is at
least one arc between z and z.

An eztension of a digraph D is a new digraph H obtained from D by
replacing every vertex = € V(D) with a set of independent vertices S,
such that, for every pair of distinct z,y € V(D), an arc (u,v), where
v € Sz, y €Sy, is in H if and only if (z,y) is in D. An extension of a lo-
cally in-semicomplete digraph is called an eztended locally in-semicomplete
digraph. A class of digraphs ® is called eztension-closed if every extension
of a digraph in ® is a digraph in ®. Clearly, the classes of extended locally
in-semicomplete digraphs, semicomplete bipartite digraphs, semicomplete
multipartite digraphs and quasi-transitive digraphs are extension-closed.
Semicomplete digraphs and tournaments are not extension-closed.
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Although study of locally semicomplete digraphs, locally in-semicomplete
digraphs and quasi-transitive digraphs was initiated quite recently, numer-
ous results on the topic have been already obtained (see e.g. [1, 5, 7, 8,
16, 18, 21]). Semicomplete multipartite digraphs have been investigated for
longer time, many results on their path and cycle structure can be found
in [19, 25, 27].

2 Results

In this section, n stands for the number of vertices in a digraph under
consideration.

The proof of our characterization of semicomplete bipartite digraphs and
extended locally in-semicomplete digraphs with connected (g, f)-factors,
Theorem 2.2, is based on the following theorem proved in [17] and, indepen-
dently, in [20] for semicomplete bipartite digraphs, and in [4] for extended
locally in-semicomplete digraphs ([2], a short version of [4], does not con-
tain the result for extended locally in-semicomplete digraphs but it has the
same result for extended locally semicomplete digraphs with practically the
same proof).

Theorem 2.1 Let D be a semicomplete bipartite digraph or an extended
locally in-semi-complete digraph. Then D is hamiltonian if and only if D
is strongly connected and contains a (1,1)-factor.

Theorem 2.2 and Corollary 2.3 are stated for semicomplete bipartite di-
graphs and extended locally in-semicomplete digraphs only, but they are
certainly true for extended locally out-semicomplete digraphs as well since
every extended locally out-semicomplete digraph can be obtained from an
extended locally in-semicomplete digraph by reversing the arcs.

Theorem 2.2 Let D be a semicomplete bipartite digraph or an extended
locally in-semicomplete digraph. Then D has a connected (g, f)-factor if
and only if D is sirongly connected and contains a (g, f)-factor. One can
check whether D has a connected (g, f)-factor in O(n®) time.

Proof: Clearly, every digraph containing a connected (g, f)-factor is strongly
connected (g(z) > 1) and has a (g, f)-factor.

Suppose that D is strongly connected and has a (g, f)-factor F. Let
V(D) = {z1,...,zn} and let r(z;) = di(z:) (= dp(zi)), i = 1,..,n.
Form an extension H of D by replacing every vertex z; in D with set
{=}, 2, .. z7"} of independent vertices. As the classes of semicomplete
bipartite digraphs and extended locally in-semicomplete digraphs are extension-
closed, H belongs to one of these classes.
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Let F’ be a component of F. Since F’ is a eulerian digraph, it has
an eulerian circuit T(F’) = y1ys...yxy1. Let y, (1 < g < k) be the j’th
appearance of z; in T(F”). Then, substituting y, with :L;’ , We obtain a cycle
C(F') in H. Clearly, U{C(F’) : F'is a component of F'} is a (1,1)-factor
in H. As D is strongly connected so is H. Thus, by Theorem 2.1, H is
hamiltonian. Clearly, a hamiltonian cycle in H corresponds to a connected

(d}, d})-factor, a connected (g, f)-factor, in D.

To check whether D contains a (g, f)-factor, construct a network N as
follows: The vertex and arcs sets of N are {v~—,v* : v € V(D)} and
{(wt,w™) : (v,w) € E(D)} U {(v™,v*) : v € V(D)}. Assign 0 and 1
as lower and upper bounds to every arc of the form (u*,w™), and g(v) and
f(v) as lower and upper bounds to every arc of the form (v—,v™).

Clearly, D has a (g, f)-factor if and only if N admits a (feasible) flow,
i.e. a circulation. It is well known that the problem of the existence of a
(feasible) flow in a network M with p vertices can be transformed into the
maximum flow problem in an auxiliary network and thus solved in O(p®)
time [9]. It is well known that one can verify whether a digraph is strongly
connected in O(n?) time. m]

Clearly, a digraph H is supereulerian if and only if H has a connected
(1, @*)-factor, where d*(z) = min{d* (z),d(z)} for every z € V(H).

Corollary 2.3 Let D be a semicomplete bipartite digraph or an extended
locally in-semi-complete digraph. D is supereulerian if and only if D is
strongly connected and contains a (1,d*)-factor. One can check whether D
is supereulerian in O(n3) time.

The cycle covering given vertices problem (CCV) is the following: given
a digraph D and a set of its vertices W, check whether D contains a cycle
C such that W C V(C).

Proposition 2.4 The connected (g, f)-factor problem is polynomial re-
ducible to CCV for any eztension-closed class of digraphs.

Proof: Let ® be an extension-closed class of digraphs and D € ®. Replac-
ing every vertex z in D with f(z) independent vertices we obtain a new
digraph H € ®. Let W = U;cy(p)G:, where G, consists of any g(x) ver-
tices in H corresponding to z (in D). Clearly, H has a cycle covering W if
and only if D contains a connected (g, f)-factor. The above transformation
is polynomial as f(z) < n. o
It was recently proved in [3] that CCV is polynomial time solvable for
quasi-transitive digraphs. This result and Proposition 2.4 imply:
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Corollary 2.5 The connected (g, f)-factor problem is polynomial time solv-
able for quasi-transitive digraphs. One can check whether a quasi-transitive
digraph is supereulerian in polynomial time.

Notice that the complexity of CCV for quasi-transitive digraphs obtained
in [3] is O(n®). Thus, by Proposition 2.4, the complexity of the connected
(g, f)-factor problem for quasi-transitive digraphs is O(n!?). Using a simple
modification of the approach to the hamiltonian cycle problem introduced
in [18], one can give a direct proof of Corollary 2.5, which provides a bet-
ter upper bound, O(n?), for the complexity of the connected (g, f)-factor
problem for quasi-transitive digraphs.

A. Yeo [26] has informed us that he had a draft of a proof that CCV
for semicomplete multipartite digraphs is polynomial time solvable. This
result would extend Corollary 2.5 to semicomplete multipartite digraphs
and generalize another recent result [6]: the hamiltonian cycle problem for
semicomplete multipartite digraphs is polynomial time solvable.
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