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Abstract

We completely settle the existence problem for group divisible designs
with first and second associates in which the block size is 3, and with

m groups each of size n, where n, m > 3.

1 Introduction

According to Raghavarao [15] partially balanced designs with two associa-

tion classes were classified in 1952 by Bose and Shimamoto into five types:
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group divisible designs, simple, triangular, latin square type and cyclic. We
will concentrate here on group divisible designs.

A group divisible design GDD(n, m; k; Ay, A2) is an ordered triple (V, G, B)
where V is a set of varieties or symbols, G is a partition of V into m sets
of size n, each set being called a group, and B is collection of subsets of V/,

called blocks each of size k, such that

(1) each pair of varieties that occur together in the same group, occur

together in exactly A; blocks, and

(2) each pair of varieties that occur together in no group, occur together

in exactly A2 blocks.

Elements occurring together in the same group are called first associates,
and elements occurring in different groups we called second associates. We
say that the GDD is defined on the set V.

In 1952 Bose and Connor further subdivided group divisible designs into

three classes:
Singularif r — A, =0
Semiregular if » — A; > 0 and rk —vA; = 0 and
Regular if » — A\; > 0 and k — vA2 > 0.

For a wealth of information on GDDs see Raghavarao [15). Clatworthy (5]
gives tables for all three classes of GDDs. Hanani [13] considered group
divisible designs with A; = 0. He proved that the elementary necessary
conditions are sufficient for the existence of such GDDs with block size
3 (see Theorem 1.2). Brouwer, Schrijver and Hanani [3] proved that the
necessary conditions are sufficient for the existence of GDDs with k = 4
and A\; = 0.

In this paper, we completely solve the problem of constructing GDDs

with k=3 and n, m > 3.
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To simplify the notation, let a GDD(n,m;3; A1, A2) be denoted by a
GDD(n,m) of indez (A1, \s), and let a block of size 3 be called a triple.
GDDs with m =1 (so A is irrelevant) and k = 3 are the well known triple
systems, so we denote a GDD(n,1;3; A1, A2) by a T'S(n) of index A;. Since
a T'S(n) has only one group, V = G so it can be simply represented by

(V, B). We will use the following famous result.

Theorem 1.1 ([12]) Let n > 3. There exists a TS(n) of index X iff
(a) 2 divides A(n — 1), and
(b) 3 divides An(n — 1).

So the existence of a GDD(n,m) of order (A1, A2) has been completely
settled if m = 1 (and so has been settled if n = 1, and if A; = 0). It has
also been settled if A; = 0 with the following result.

Theorem 1.2 ([13]) There ezists a GDD(n, m) of indez (0, As) iff
(a) 2 divides Ay(m — 1)n,
(b) 3 divides Aam(m — 1)n?, and
(c) m>3.

In this paper we settle the existence problem for a GDD(n, m) of index
(A1,A2) withn >3, m > 3, A; > 1and As > 1 (see Theorem 3.2). The case
where n = 2 or m = 2 is quite complicated and of less statistical interest,
so is solved in another paper [11].

We can immediately obtain some necessary conditions.
Lemma 1.3 If there exists a GDD(n, m) of inder (A1, A2), then
(1) 2 divides A\y(n — 1) + Aa(m — 1)n, and

(2) 3 divides A\ymn(n — 1) + Aam(m — 1)n2.
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Proof: (1) Each block containing a particular symbol s in V' has 2 pairs of
symbols that contain s, so the total number of pairs of symbols containing s
must be divisible by 2; the number of blocks 7 = (A;(n—1)+A2(m—1)n)/2
containing s is called the replication number of the GDD.

(2) Each block contains 3 pairs, so the total number of pairs must be
divisible by 3. So b = (Aymn(n —1)/2 4+ Aam(m — 1)n?/2)/3 is the number
of blocks in the GDD. 0

It turns out that these necessary conditions are sufficient, as is stated
in Theorem 3.2. Proving this is the main result in this paper. Table 1
expands on Theorem 3.2, explicitly listing the values of n and m for each
value of A; and Ay for which there exists a GDD(n,m) of index (A1, A2).

Throughout the rest of this paper we assume that AM2LA2>1,n2>3,
m>3and k=3. Let Z, ={0,1,...,z - 1}.

2 Preliminary Results
The following lemmas will be extremely useful in fulfilling our task.

Lemma 2.1 Let m > 3. If there exists a TS(n) of index Ay, and if con-
ditions (1) and (2) of Lemma 1.3 hold, then there ezists a GDD(n,m) of
indez (A1, A2).

Proof: Since there exists a T'S(n) of index A, conditions (a) and (b) of
Theorem 1.1 hold. Since we also know that conditions (1) and (2) of Lemma
1.3 hold, we have that conditions (a), (b) and (c) of Theorem 1.2 hold.
Therefore there exists a GDD(n,m) of index (0,Az). So putting this to-
gether with m copies of the T'S(n) of index A, (one copy is defined on each
group), produces a GDD(n,m) of index (A1, Az). a

Lemma 2.2 Let m > 3 and Ay < Xo. If there exists a TS(nm) of index
A1, and if conditions (1) and (2) of Lemma 1.3 hold, then there exists a
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GDD(n,m) of indez (A1, A2).

Proof: From Theorem 1.1 we have that 2 divides A;(mn — 1) and that 3
divides Aymn(mn —1). Adding conditions (1) and (2) of Lemma 1.3 means
that conditions (a), (b) and (c) for the existence of a GDD(n,m) of index
(0, A2 — A;) are satisfied. This GDD together with the postulated TS(mn)
of index A1, produce a GDD(n, m) of index (A1, A). 0

Lemma 2.3 If A < Ay, if there erists a TS(n) of index A, and if there
ezists a GDD(n, m) of indez (A1 — A, A2), then there exists a GDD(n, m)
of index (A1, A2).

Proof: Add m copies of the T'S(n) of index A, one defined on each of the
groups of the GDD(n, m), to the GDD(n,m) of index (A; — A, Ag). 0

Lemma 2.4 If A < min{);, As}, if there ezists a TS(mn) of index A, and
if there ezists a GDD(n,m) of index (A1 — A, Aa — A), then there ezists a
GDD(n,m) of indez (A1, Az).

Proof: Add the T'S(mn) to the GDD(n,m) of index (A; — A, Az — A) to
produce a GDD(n,m) of index (A}, Az). 0
The following G D Ds will be of use in Section 2, as well as being impor-

tant in Section 3.

Lemma 2.5 If m = 0 (mod 3) then there ezists a GDD(2,m) of index
(2,1).

Proof: This is also known as a minimum covering of a T'S(2m) of index 1,
and is constructed in [10]. 0

A TS(n) (V,B) or a GDD(n,m) (V,G, B) is said to be resolvable if B
can be partitioned into sets of |V|/3 edge-disjoint triples; each set in this
partition of B is known as a parallel class. The following is well known

2, 4, 12, 17).
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Lemma 2.6 For all m = 3 (mod 6) there exists a resolvable TS(m) of
indez 1 (also known as a Kirkman triple system). For allm =0 (mod 6)
with m > 12, there ezists a resolvable GDD(2,m/[2) of index (0,1) (also

known as a nearly Kirkman triple system).

At various stages it will be helpful to consider a graph theoretic descrip-
tion of a T'S(v), or some related structure. It is easy to see (and well known)
that a T'S(v) of index 1 (that is, a Steiner triple system) is equivalent to an
edge-disjoint decomposition of K,, the complete graph on v vertices, into
copies of K3. A 2-factor of K, is a subgraph of K, in which each vertex has
degree 2. The following result shows that if m = 5 (mod 6), so Theorem
1.1 shows that no Steiner triple system exists, we can find a useful related

structure.

Lemma 2.7 For all m = 3 or 5 (mod 6), m > 5, there ezists an edge
disjoint decomposition of K, into two 2-factors and m(m —5)/6 copies of
Ks, and in the case m = 3 (mod 6), each component of each 2-factor is a

Ks.

Proof: If m = 3 (mod 6) then by Lemma 2.6 there exists a resolvable
TS(m) of index 1. Use two parallel classes to form the two 2-factors and
the result follows.

If m = 5 (mod 6) then let Z,, be the vertex set and let m = 6z + 5.
We use the result of Davies [8] and Skolem [19] (see also Simpson [18] for a
generalization) who showed that the integers in {z+1,2+2,...,3z+1}\{s},
where s € {3z,3z + 1}, can be partitioned into pairs (@i, b;) with b; > a;
such that if & — a; = ¢; then {¢;|]l < i < z} = {1,2,...,2}. The two
9-factors are formed by the edges {j,j + s} and {j,j + 3z + 2} for each
j € Zy. The remaining edges can be partitioned by the following triples:
{j,ai + j,bi + j} for each j € Zy, and for 1 <7 < x. 0
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The following turns out to be one of the more difficult cases in our quest
to prove Theorem 3.2. Since it will be used in Sections 2 (where we assume

n > 2) and 3, we will present it here.

Lemma 2.8 Letm =0 or2 (mod 8) withm > 3. There exists a GDD(2,m)
of index (4,1).

Proof: Suppose that we have an edge-disjoint decomposition of K, with
vertex set Zp, into a graph H together with a set T of copies of K3. Sup-
pose further that the edges of H can be directed so that each vertex has
out-degree 2. Then we can construct a GDD(2,m) of index (4, 1) with
(V,G,B) = (Zm x Z3,{i x Z3 | i € Zm}, B) by defining B as follows.

(a) Foreach directed edge (a,b) in H, let {{(a,0), (a, 1), (5,0)},{(e,0), (a, 1),
(6,1)}} € B, and

(b) for each copy of K3 on the vertex set {a, b, c} in T, let {(a,0), (b,0), (c,0)},

{(a,1), (6, 1), (c,0)}, {(2,1),(5,0), (¢, 1)}, {(a,0),(,1),(c,1)}} C B
(this is just a GDD(2,3) of index (0, 1)).

Since each vertex a € Z,, has out degree 2, the pair {(a,0), (a,1)} occurs
in Ay = 4 triples defined in (a). Since each edge {a,b} is in H or in exactly
one copy of K3, the pair {(a, ), (b, 7)} (with a # b, {a, b} C Zm, {1,j} C Zs)
occurs in exactly one triple defined in (a) or (b) respectively.

So it remains to find the edge-disjoint decomposition H and T of K,,
for all m = 0 or 2 (mod 3) with m > 3.

If m =3 or 5 (mod 6) then by Lemma 2.7 there exists an edge-disjoint
decomposition of K,, into two 2-factors and copies of K3. By orienting
each cycle in each component of each 2-factor to form a directed cycle, we
form the required graph H in which each vertex has out-degree 2.

If m = 0 (mod 6) then for all m # 12, partition the vertices into m/6

sets of size 6. For each such vertex set, say {ao,a1,a2,0a3,a4, a5}, let H
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contain the directed edges (a;,a;41) for i € Zg, (ai,ai42) for i € {0,2,4}
and (a;,ai43) for i € {1,3,5}, so each vertex has outdegree 2. The only
edges not covered in this copy of K¢ form a copy of K3 on the vertex
set {a1,as,as}. Finally, the edges joining different copies of K can be
partitioned into copies of K3, since this is equivalent to a GDD(6,m/6)
of index (0,1), which exists by Theorem 1.2 since mf6 # 2. For m = 12,
let K,, have vertex set Zn, let H contain the directed edges (i, + 4) for
i € {0,1,4,5,8,9}, (i,i + 6) for i € {2,3,6,7,10,11}, and (i, + 5) for
i € Zyz; so every vertex has outdegree 2. The remaining edges can be
partitioned into copies of Kg: {i,i+1,i+ 3} for i € Zy2, and {i,i+4,i+8}
for i € {2,3}.

If m = 8 then let H contain the directed edges (7,0), (7,1), (2,7), (3,7),
4,7), (5,7), (6,7), (0,6), (1,6), (2,6), (3,6), (4,6), (6,5), (0,3), (1,4), and
(5,2). The remaining edges occur in the triples {3,4,5}, {1,2, 3}, {0,2,4}
and {0,1,5}.

If m = 2 (mod 6) and m > 8, we will use a T'S(m — 1) (Zm-1, B) that
has a set P of (m — 2)/3 vertex-disjoint triples. If m = 14 then let B =
{{5,i+1,i+4}, {i,i+2,i+8} | i € Z13}, and let P = {{0,1,4}, {3,5,11},
{6,7,10}, {8,9,12}}. If m > 14 then B can be obtained from the resolvable
GDD(2,m/2 ~1)(Zm-2, B') of index (0,1) in Lemma 2.6 by adding a new
symbol m — 2 to each group; then choose P to be any parallel class in the
resolvable GDD. In any case, let p be in no triple in P, and let {p,a,b} be
a triple in B. To form H, orient the edges in P to form directed cycles and
add to them the directed edges (p, @), (a,b), (b,p), (m—1,a),(m—1,b) and
(i,m — 1) for each i € Zm-1\{a,b}. Then T = B\P U {{p,a,b}}. 0

Since m = 3 is an exception to Lemma 1.11, it will be necessary to
obtain some GDDs directly. Before we construct these GDDs, we need

some notation.
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A quasigroup (L, o) (or simply L) of order v on the symbols {1,...,v} is
a vxwv array in which each cell contains exactly one symbol, and each symbol
occurs exactly once in each row of L, and exactly once in each column of L.
The symbol in cell (7, j) of L is denoted by ioj. L is idempotent if ioi =i
for 1 <i<w. Lis symmetricifioj=joiforalll<i, j<w.

Lemma 2.9 For all v > 1 there ezists a quasigroup of order v. For all
v # 2 there exists an idempotent quasigroup of order v. For all odd v there
exists a symmetric idempotent quasigroup of order v. For all v > 8 there

exists a quasigroup of order v that contains a subquasigroup of order 4.

Proof: The last result follows from the embeddings of latin squares ob-
tained by Evans [9]. The other results are easy to obtain and are well

known. 1]

Lemma 2.10 ([20]) Let n = 2 (mod 6) and n > 2. Let F be a pair of
independent edges in K,. Then there ezxists an edge-disjoint decomposition
of 4K, into copies of K3 together with one 4-cycle, and into copies of K3
together with one copy of 2F.

Lemma 2.11 There ezists a GDD(n,3) of inder (4,1) forn =2 (mod 6)

and n > 2.

Proof: For each i € Zy, let (Z,,x{}, B;) be an edge disjoint decomposition
of 4K, into copies of K3 together with the 4-cycle ((0, i), (1,4), (2, 1), (3, 7))
(see Lemma 2.10). Let (Z, x {2}, B2) be an edge-disjoint decomposi-
tion of K, into copies of K3 and two copies of the edges {(0,2),(2,2)}
and {(1,2),(3,2)} (see Lemma 2.10). Let (Z,,0) be a quasigroup that
contains a subquasigroup (Z4,0) (see Lemma 2.9) of order 4. Let B’ =
{{(5,0), (. 1), (05, 2)} | i, j € Zn, {i,5} € Za},and B” = {{(4,0), (5, 1), (5,2)}
{(7,0), (G+1,1),(+2,2)},{(4,0), (G +1,0), (i +3, 1)}, {(5, 1), G+1,1), (G +
3,2)} {(5,2),(G+2,2),(+1,0)} | 0 < j < 3}. Finally,let B= By U B, U
B; U B'UB". Then (Zn x Z3, B) is a GDD(n, 3) of index (4, 1). 0
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3 Constructing GDDs: n>3 and m > 3

Throughout this section, we assume that n > 3 and m > 3. Clearly we
still have many cases to consider! We will approach this by considering
each of the possible congruence classes of A\; (modulo 6). In fact, the
following observation allows us to simply consider the cases where A1, A2 €

{1,2,3,4,5,6}.

Lemma 3.1 Let n, m > 3. If conditions (1) and (2) of Lemma 1.3 are
sufficient for the ezxistence of a GDD(n,m) of index (M}, \5) when 1 < XY,
M, < 6, then they are sufficient for all Ay, A2 2> 1.

Proof: Let n, m, A; and ), satisfying conditions (1) and (2) of Lemma 1.3.
Let A\; = 6z+A} and A2 = 6y+X5, where 1 < A}, Xy < 6. Then n,m, A] and

, also satisfy conditions (1) and (2) of Lemma 1.3, so by assumption there
exists a GDD(n,m) (Zp X Zy{Zn x {i} | i € Zm}, B') of index (A}, A3).
By Theorem 1.1, for each i € Z,, there exists a T'S(n) (Zn x {i}, B;) of
index 6z. By Theorem 1.2 there exists a GDD(n,m) (Zn X Zm, {Zn x {3} |
i € Zm}, B") of index (0, 6y). Let B = B'UB" U(Uiez,,B;). Then clearly
(Zp X Ly {Zn x {3} | i € Zn}, B) is a GDD(n,m) of index (A1, Az).

Theorem 3.2 Let n, m > 3 and A, A2 > 1. There exists a GDD(n, m)
of index (A1, A2) iff

(1) 2 divides A(n — 1) + Az2(m — 1)n, and

(2) 3 divides \ymn(n — 1) + Aam(m — 1)n®.
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A2 (1} 1 2 3 4 5
Ay
0 (any;any) (0;any) (0,3;any) {even;any) (0,3;any) (0;any)
(1,5:1,3) | (1.24,5:0,1,34) | (oddiodd) | (1,2,4,5:0,1,34) | (1.5:1.3)
(2,4;0,1,3,4) (2:4:0,1,3,4)
(3:0dd) (350dd)
(1,3;any) (1;1,3) (1;0,1,3,4) (ti0dd) (1;0,1,3,4) (1;1,3)
1 (5;0,3) (3:0dd) (3;any) (3;0dd) (3sany) (3i0dd)
(5:3,5) (5:0.3) {5:3) (5:0,2,3,5) (5:3)
{0,3;any) (0:any) (0,3;any) (0,4;any) (0,3;any) (0sany)
2 (1.4;any) (1;1,3) (1,4;0,1,3,4) (1.3;0dd) (1,4;0,1,3,4) (1;1,3)
(2,50,3) (2:0,3) (2,5:0,2,3,5) (2:0,3) (2,5:0,3) (2:0,2,3,5)
(3:0dd) (5:3) (3;0dd)
(4;0,1,3,4) {4;0,1,3,4)
(5:3) (5:3,5)
(1;any) (1;1.3) (1,5:0,1,3,4) {odd;odd) (1,5:0,1,3,4) (1,5:1,3)
3 (3;any) (3;0dd) (3;any) (3;any) (3;0dd)
(S;any) (5:1,3)
(0,1,3,4;any) (0;any) (0,3;any) (0,4;any) (0.3;any) (0;any)
1 (2,5:0,3) (1;1.3) (1.4:0.1,3,4) (1,3:0dd) (1,4:0,1,3,4) (1:1,3)
(210,2.3.5) (2.5:0,3) (2:0,3) (2,5;0,2,3,5) (2:0,3)
(3:0dd) (5:3) (3;0dd)
(4:0,1.3.4) (4,0,1,3,4)
(5:3.5) (5:3)
(1.3:any) (1:1.3) (1:0,1,3.4) (1,3;0dd) (1:0,1,3,4) (1:1,3)
5 (5;0,3) (3;0dd) (3:any) (5;3) (3;any) (3i0dd)
(5:3) (5:0.2.3.5) (5;0.3) (5:3.5)
Table 1

Each cell (Aq, Ap) in this table lists (ny,...,n;;m;, .. .,m;), where n = n,
(mod 6), m = my, (mod 6), A, and ), satisfy the necessary conditions (1)
and (2) of Lemma 1.3 for the existence of a GDD(n,m) of index (Aq, Ap).

a
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Proof: The necessity is proved in Lemma 1.3, so now we assume that (1)
and (2) hold. To consider the various possibilities we take the congruence
classes of A; (mod 6) in turn.

Case 1: A} = 1. If n =1 or 3 (mod 6) then by Theorem 1.1 there
exists a T'S(n) of index A = 1, so by Lemma 2.1 there exists a GDD(n, m)
of index (A1, A2).

If n =5 (mod 6) and m = 3 or 5 (mod 6) then by Theorem 1.1 there
exists a T'S(nm) of index A;, so by Lemma 2.2 the result follows.

If n =5 (mod 6) and m = 6 then Ap is even (see Table 1). Let T' =
{7, +1,7+3}17€Z6}U{{j,j+2,5+4} | j € Z2}, reducing the sums
modulo 6. Each pair in Zg occurs in two triples in T except for the pairs in
P ={{i,i+1 (mod 6)} | i € Ze} which each occurs once. For each = € Z,,
let ({z} x Zs, B;) be a TS(6) of index 2. Let (Z,,0) be an idempotent
symmetric quasigroup (see Lemma 2.9). Let (Z, x Z¢,{Zn x {i} | i €
Zg}, B') be a GDD (n,6) of index (0, A5 — 2) (see Theorem 1.2). Form a
GDD(n,m) of index (1,A2) (Zn X Zg,{Zn % {i} | i € Zg}, B) as follows.

(i) For each {i,i+ 1} € P, let {{(2,i), (3,9), (z0,i +1)} [0S 2 <y <
n} € B,

(1) for each {a,b,c} € T with a < b < ¢, let {{(z,a),(y,b),(zoy,¢)} |
2,y € Zn,z # y},

(i11) for each z € Z, let B, C B, and
(iv) let B’ C B.

Then: each pair {(z,%),(y,7)} is in one triple defined in (i); each pair
{(z,7), (z,7)} is in two triples defined in (iii) and in A2 — 2 triples defined
in (iv); and each pair {(z,?), (y,j)} with @ # y and 7 # j is in Ap — 2 triples
defined in (iv), is in two triples defined in (ii) if {¢,j} ¢ P, and is in one
triple defined in (i) and one triple defined in (ii) if {7, j} € P.

44



If n =5 (mod 6) and m = 0 (mod 6) with m > 6 then X, is even
(see Table 1). There exists a GDD(3,m/3) of index (0,2) say (Zm, G, B)
by Theorem 1.2. Construct a GDD(n,m) of index (1, X2), say (Zn X Zy,
{Z. x {i} | i € Z,,}, B*) as follows.

(i) For each triple A = {a,b,c} in G or B, let (Z, x A, {Zn, x {i} | i €
A}, B4) be a GDD(n,3) of index (0,1) (see Theorem 1.2) and let
BA c B‘)

(ii) for each triple A = {a,b,c} in G, let (Z, x A, BY) be a TS(3n) of
index 1 (see Theorem 1.1) and let B}, C B*, and

(iii) let (Zn x Z, {Zn x {i} | i € Z;m}, B’) be a GDD(n,m) of index
(0,A2 — 2) and let B' C B*.

Then each pair {(2,7),(y,7)} with £ # y occurs in exactly 1 triple
defined in (ii). Also if ¢ # j then {(z,1),(y,7)}: occurs in A2 — 2 triples
defined in (iii); occurs in 2 triples defined in (i) if i and j are in different
groups in G; and occurs in 1 triple defined in (i) and 1 triple defined in (ii)
if 7 and j are in the same group in G.

If n =5 (mod 6) and m = 2 (mod 6) then A\, = 4 (see Table 1).
Let (Zm,G1, B1) be a GDD(2,m/2) of index (0,1) (see Theorem 1.2). By
Lemma 2.7, there exists a decomposition of K,, defined on the vertex set
Zy, into a set T of copies of K3 together with two 2-factors; direct the
edges in the two factors so that each component of each 2-factor becomes
a directed cycle and call this directed graph H. Let (Z,,,0) and (Z,, 0,)
be idempotent quasigroups of order m and n respectively, and let (Z,, x)
be a symmetric idempotent quasigroup of order n (see Lemma 2.9). Form
a GDD(n,m) of index (1,4), say (Zn X Zm,{Zn x {i} | i € Z,,},B) as

follows.

(i) For each {i,5} € Gy, let {{(x,),(%,9), (= x v,5)}, {(=,5), (v, 9), (= %
$,9}0<z<y<n-1}CB,
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(ii) for each {i,j, k} € By with i < j < k, let each of the triples {(z,?),
(¥,4),(z on y, k)} with z, y € Zn, z # y be placed twice in B,

(iii) for each directed edge (z,y) in H, let {{(z,1), (z,4), (¥,t0omJ)} | i,5 €
Zm,i# j} C B, and

(iv) for each triple {z,y,2z} € T with £ < y < z, let each of the triples
{(z,i), (9,7), (z,i0m j)} with ¢, j € Zp, i # j be placed twice in B.

Then each pair {(z, 1), (y, {)} occurs in one triple defined in (i), and each pair
{(z,%), (=, )}, occurs in 4 triples defined in (iii) (notice (iii) also includes
the triple {(z,1), (2, ), (¥, jomi)}). Also each pair {(z,7),(y,j)} withz # y
and i # j occurs in 2 triples in (i) if {¢, j} € G, 2 triplesin (ii) if {7, j} ¢ G1,
2 triples in (iii) if (7, j) is a directed edge in H, and 2 triples in (iv) if (2, j)
is not a directed edge in H.

Case 2: \) = 2. If n =0 or 1 (mod 3) then by Theorem 1.1 there
exists a T'S(n) of index A\; = 2, so by Lemma 2.1 the result follows.

If n = 2 (mod 3) and A, € {2,3,4,5,6} then since m = 0 or 2 (mod 3)
(see Table 1) there exists by Theorem 1.1 a T'S(nm) of index A; = 2. So
the result follows by Lemma 2.2 since A; < Ag.

If n =5 (mod 6) and A = 1, then m = 3 (mod 6) (see Table 1). By
Lemma 2.7, there exists an edge disjoint decomposition of K, with vertex
set Zp, into m(m — 5)/3 copies of K3 and two 2-factors F; and F3, each
component in each 2-factor being a K3. Form a GDD(n, m) of index (2, 1),
(Zn X Zmy{Zn % {i} | i € Zm}, B) by defining B as follows.

(i) For each K3 with vertex set A in Fy or Fy, let (Zn, x A, Bja) be a
T'S(3n) of index 1 (see Theorem 1.1), and let B4 C B, and

(ii) for each remaining K3 with vertex set A = {ao,a;,a2}, let (Z, x
A {Z, x {a;} | i € Z3}, Ba) be a GDD(n,3) of index (0,1) and let
Ba C B.
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Each pair {(z,a),(y,a)} occurs in two triples defined in (i) because each
two factor contains a triple containing a. Each pair {(z,a), (y,b)} with
a # b occurs in one triple because the edge {a,b} occurs in exactly one
copy of K3 (possibly in a 2-factor).

If n = 2 (mod 6) and A = 1 then m = 0 (mod 3) (see Table 1).
Informally, there exists a set of triples that covers all the pairs once, ex-
cept that one set of pairs forming a 1-factor on each group are covered
twice (Lemma 2.5). There also exists a set of triples that covers each
pair in a group once except for the edges forming a 1-factor of the group
which are not covered at all (Theorem 1.2). Together we obtain the de-
sired GDD(n,m) of index (2, 1). More formally, by Lemma 2.5 there exists
a GDD(2,nm/2) of index (2,1), say (Za X Zpjz X Zm,{Z2 x Zi x Zj |
i € Zny2,j € Zn},B). By Theorem 1.2, there exists a GDD(2,n/2)
of index (0,1); for each a € Z,, we define a copy of this GDD(2,n/2)
(Z2 X Znyz x {a},{Z2 x {i} x {a} | i € Zns2}, Bs). Then we can define a
GDD(n,m) of index (2,1) by (Z2 X Zpja X L, {Za X Znj2x {a} | a € Zm},
BU( U BJ)}

G€EZ
Case 3: A; = 3. In every case n is odd. So by Theorem 1.1 there

exists a T'5(n) of index 3, so the result follows from Lemma 2.1.

Case 4: A\; = 4. If n =0 or 1 (mod 3), then by Theorem 1.1 there
exists a T'S(n) of index 4, so the result follows from Lemma 2.1.

If =2 (mod 3) and Ay € {3,4,5,6} then nm = 0 or 1 (mod 3) (see
Table 1) so there exists a T'S(nm) of index A = 2. So the result follows
from Lemma 2.4 and the case A; = 2 considered earlier (see Table 1).

If n =5 (mod 6) and Ay € {1,2} then there exists a 7'S(n) of index
A = 3. So the result follows from Lemma 2.3 and the case A\; = 1 considered
earlier (see Table 1).

If n =2 (mod 6) and A3 = 1 then m =0 or 2 (mod 3) (see Table 1). So
by Lemma 2.8 there exists a GDD(2, m) of index (4, 1) except when m = 3.
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Since 7 = 2 (mod 6), by Theorem 1.2 there exists a GDD(2,n/2) of index
(0,1), say (Zn, G, B). Hence for m > 3 we can construct a GDD(n, m) of
index (4,1) (Zn X Zm,{Zn x {i} | i € Zm}, B*), by defining B* as follows.

(i) For each {a,b} € G, let ({a,b} X Zm, {{a,b} x {i} | i € Zm}, Bya,})
be a GDD(2, m) of index (4, 1) and let B,} C B*,

(i) for each A = {ag,a1,a2} € B, let (A X Zpm, {{as} X Zm | z € Zs}, Ba)
be a GDD(m,3) of index (0, 1) (see Theorem 1.2) and let B4 C B*,

and

(iii) for each i € Z,, and for each {ag,a;,az} € B, let B* contain 3 (more)

copies of the triple {(ao, 1), (a1,%), (a2,7)}.

Each pair {(a, ), (b,7)} occurs in 4 triples defined in (i) if {a,b} € G, and
occurs in 1 triple in (ii) and 3 triples in (iii) if {a,b} ¢ G. Each pair
{(a,4), (b,§)} with i # j occurs in 1 triple in (i) if @ = b or if {a,b} € G,
and occurs in 1 triple in (ii) if a # b and {a,b} ¢ G.

For m = 3, we have a GDD(n, 3) of index (4,1) in Lemma 2.11.

If n = 2 (mod 6) and A2 = 2 then m = 0 (mod 3) (see Table 1), so by
Theorem 1.2 there exists a GDD(n, m) of index (0,1). Also, a GDD(n,m)
of index (4,1) was constructed earlier in this case, so together these two
GDDs produce the required GDD(n,m) of index (4, 2).

Case 5: \; = 5. If n = 1 or 3 (mod 6) then there exists a T'S(n) of
index A, = 5, so the result follows from Lemma 2.1.

If n = 5 (mod 6) then there exists a 7S(n) of index 3 (see Theorem
1.1), and there exists a GDD(n,m) of index (A — 3, A2) = (2,1) (see Table
1 and the case A; = 2), so putting these together produces a GDD(n, m)
of index (5, 1). 0
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