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ABSTRACT. Let D be a connected symmetric digraph, A a finite
abelian group with some specified property and g € A. We
present a characterization for two g-cyclic A-covers of D to be
isomorphic with respect to a group I' of automorphisms of D,
for any g of odd order. Furthermore, we consider the number of
I'-isomorphism classes of g-cycic A-covers of D for an element g
of odd order. We enumerate the number of isomorphism classes
of g-cyclic Zpn-covers of D with respect to the trivial group
of automorphisms of D, for any prime p (> 2), where Zpn is
the cyclic group of order p™. Finally, we count I'-isomorphism
classes of cyclic Fp-covers of D.

1 Imtroduction

Graphs and digraphs treated here are finite and simple.

Let D be a symmetric digraph and A a finite group. A function a: A(D) —
A is called alternating if a(y,z) = a(z,y)~! for each (z,y) € A(D). For
g € A, a g-cyclic A-cover Dy(a) of D is the digraph as follows:

V(Dy(a)) = V(D) x A and ((u, k), (v,k)) € A(Dy(a)) if and only if
(u,v) € A(D) and k~lha(u,v) = g.
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The natural projection m: Dy(a) — D is a function from V(Dg4(a)) onto
V(D) which erases the second coordinates. A digraph D’ is called a cyclic
A-cover of D if D’ is a g-cyclic A-cover of D for some g € A. In the case
that A is abelian, then Dy(a) is called simply a cyclic abelian cover.

Let a and B be two alternating functions from A(D) into A, and let
I be a subgroup of the automorphism group AutD of D, denoted I' <
AutD. Let g,h € A. Then two cyclic A-covers Dy(e) and Dy (B) are called
I-isomorphic, denoted Dy(a) =r Di(fB), if there exist an isomorphism
®: Dy(a) — Dp(B) and a v € T such that 7® = v, i.e., the diagram

Dy(a) > Di(B)
] lx
p L D

commutes. Let I = {1} be the trivial group of antomorphisms.

Cheng and Wells [1] discussed isomorphism classes of cyclic triple covers
(1-cyclic Zz-covers) of a complete symmetric digraph. Furthermore, Mizuno
and Sato [13] gave a formula for the characteristic polynomial of a cyclic
A-cover of a symmetric digraph, for any finite group A. Mizuno and Sato
[12] discussed the number of I'-isomorphism classes of cyclic V-covers of
a connected symmetric digraph for any finite dimensional vector space V
over the finite field GF(p) (p > 2).

A graph H is called a covering of a graph G with projection 7: H — G
if there is a surjection w: V(H) — V(G) such that 7 |y(): N(v') = N(v)
is a bijection for all vertices v € V(G) and v' € m~1(v). The projection
7: H — G is an n-fold covering of G if 7 is n-to-one. A coveringnw: H — G
is said to be regular if there is a subgroup B of the automorphism group
AutH of H acting freely on H such that the quotient graph H/B is iso-
morphic to G.

Let G be a graph and A a finite group. Let D(G) be the arc set of the
symmetric digraph corresponding to G. Then a mapping a: D(G) — A
is called an ordinary voltage assignment if a(v,u) = a(u,v)~! for each
(u,v) € D(G). The (ordinary) derived graph G* derived from an ordinary
voltage assignment « is defined as follows:

V(G*) = V(G) x A, and ((u, k), (v,k)) € D(G*) if and only if (u,v) €
D(G) and k = ha(u,v).

The graph G is called an A-covering of G. The A-covering G* is an
| A]-fold regular covering of G. Every regular covering of G is an A-covering
of G for some group A (see [3]). Furthermore the 1-cyclic A-cover D(«)
of a symmetric digraph D can be considered as the A-covering D= of the
underlying graph D of D.

A general theory of graph coverings is developed in [4]. Zg-coverings
(double coverings) of graphs were dealed in [5] and [14]. Hofmeister [6] and,
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independently, Kwak and Lee [11] enumerated the I-isomorphism classes of
n-fold coverings of a graph, for any n € N. Dresbach [2] obtained a formula
for the number of strong isomorphism classes of regular coverings of graphs
with voltages in finite fields. The I-isomorphism classes of regular coverings
of graphs with voltages in finite dimensional vector spaces over finite fields
were enumerated by Hofmeister [7]. Hong, Kwak and Lee [9] gave the
number of I-isomorphism classes of Z,-coverings, Z, ® Zy-coverings and
D,-coverings, n odd, of graphs, respectively.

In Section 2, we give a necessary and sufficient condition for two cyclic
A-covers of a connected symmetric digraph D to be I'-isomorphic for any
finite abelian group A with the isomorphism extension property. Let the
order of an element g of A be odd, and h be any element of the orbit
containing g under the automorphism group AutA. Then we show that
the number of I'-isomorphism classes of g-cyclic A-covers of D is equal to
that of I'-isomorphism classes of h-cyclic A-covers of D. In Section 3, we
consider I'-isomorphism classes of all h-cyclic A-covers of D which h belongs
to the orbit on A containing a fixed element with odd order. In Section 4,
we enumerate the number of I-isomorphism classes of g-cyclic Zp-covers
of D for any prime p (> 2). In Section 5, we count I'-isomorphism classes
of cyclic F-covers of D.

2 Isomorphisms of cyclic abelian covers

Let D be a symmetric digraph and A a finite group. The group I' of
automorphisms of D acts on the set C(D) of alternating functions from
A(D) into A as follows.

a’(z,y) = a(y(z),7(y)) for all (z,y) € A(D),

where a € C(D) and v € I'. Any voltage g € A determines a permutation
p(g) of the symmetric group S4 on A which is given by p(g)(h) = hg,
heA.

Mizuno and Sato [12] gave a characterization for two cyclic A-covers of
D to be I'-isomorphic.

Theorem 1. (12, Theorem 3.1) Let D be a symmetric digraph, A a finite
group, g,h € A, a,f € C(D) and I' £ AutD. Then the following are
equivalent:

1. Dy(e) =r Dn(B)
2. There exist a family (7 )uev(D) € SX(D ) and ~ € I" such that

P(B"(u,v)h™) = mp(aly, v)g~ )y for each (u,v) € A(D),
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where the multiplication of permutations is carried out from right to left.

From now on, assume that D is connected and A is abelian. Let G be
the underlying graph, T a spanning tree of G and w a root of T'. For any
a € C(D) and any walk W in G, the net a-voltage of W, denoted a(W), is
the sum of the voltages of the edges of W. Then the T-voltages ar of a is
defined as follows:

ar(u,v) = oPy) + a(u,v) — a(P,) for each (u,v) € D(G) = A(D),

where P, and P, denote the unique walk from w to u and v in T', respec-
tively. For a function f: C(D) — A, the net fvalues f(W) of any walk W
is defined as the net a-voltage of W.

Corollary 1. Let D be a connected symmetric digraph, G its underlying
graph, T' a spanning tree of G. and a € C(D). Furthermore, let A be a
finite abelian group and g € A. Then

Dy(a) =1 Dy(ar).
Moreover, there exists a function s: V(D) — A such that
ar(u,v) = —s(v) + a(u,v) + s(u) for each (u,v) € D(G) = A(D).

Proof: Let s(v) = p(a(P,)) for v € V(D). Then by Theorem 1, the result
follows. 0

For a function f: C(D) — A, let Ay = Ay(v) denote the subgroup of A
generated by all net f-values of the closed walk based at v € V(D). Let
ord(g) be the order of g € A.

Theorem 2. Let D be a connected symmetric digraph, A a finite abelian
group, g,k € A and a,B € C(D). Furthermore, let G be the underlying
graph of D, T a spanning tree of G and I' < AutG. Assume that the
orders of g and h are equal and odd. Then the following are equivalent:

1. D,(a) = Dn(B).

2. Thereexist v € I and an isomorphism o : Aar—_g(w) — Ag,T—n(v(w))
such that

BYr(u,v) — h = o(ar(u,v) — g) for each (v,v) € A(D),

where (ar — g)(u,v) = ar(u,v) — g, (u,v) € A(D) and w € V(D).

Proof: At first, suppose that Dg(a) &r Dp(8). By Corollary 1, we have
Dg(ar) =r Dy(Br). By Theorem 1, there exist a family (mu)uev(p) €

SX(D) and v € I such that
p(BYp(u,v) — h) = myp(ar(u,v) — g)n;?! for each (u,v) € A(D).
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Let (u,v) € D(T). Then we have f7n(u,v) = ar(u,v) = 0. Thus p(—h) =
mup(—g)m L. Since (u,v) € D(T) we have p(—h) = m,p(—g)m; 1. Therefore
it follows that

7y = p(h)mup(—g) and my = p(2h)myp(—2g),
ie.,
mu(k + g) = my(k) + h and wy,(k + 2g) = mu(k) + 2h for k € A.
Furthermore, we have
mu(k + 2mg) = wy(k) +2mh, m € Z.

Since ord(g) = ord(h) is odd, there exists t € Z such that 2tg = g and
2th = h. Then we have
7y Ty (k + g) = . (mu(k) + )
= g Ny (k) + 2th)
= “;l(ﬂ'u(k + 2tg)
=k+2tg=k+ g for any k € A,
ie.,
a;lm =1.

Thus n, = =,. Since D is connected, m is constant. Set w, = { € S4 for
each u € V(D). Then we have p(8)r(u,v) — h) = {p(a(u,v) — g)¢~! for
each (u,v) € A(D). Hence there exists an isomorphism o: Aqy_g(w) —
Ap, T-n(v(w)) such that

Byr(u,v) — h = o(ar(u,v) — g) for each (u,v) € A(D).

Conversely, assume that there exist v € I' and a group isomorphism
o AQT_g(‘w) — A,g.,T_h('y(w)) such that

Br(u,v) — h = o(ar(u,v) — g) for each (u,v) € A(D).

Let {a; =0,...,am}and {b; =0,...,bn} be the representatives of A/Aar—_g
and A/Ap_';r_h, respectively. For any ¢ € A, there exist ¢, € Aar—4 and
i(c) € {1,...,m} such that

c=Cqo+ Qi(c)-
For each v € V(D), we define a mapping m,: A — A by

7y(c) = o(ca) + by(c) for each c€ A.
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Then , is well-defined, and T, is bijective.

Let 7 = (my)vev(D) € SX(D ). Then = is constant and , | Agy_, = o for
each v € V(D). For any ¢ € Aar—g, We have

d +c=(c +c)a+ tic'+e)
=c +ca + ai(c),

Furthermore, we have

mo(c + ) = mo(¢/ + ca + ai(e))
= 0o(c + ca) + bie)
= 0(c') + o(ca) + bi(c)
= o(c) + m(c)

for each v € V(D) and c € A. Thus

(muplor(n,v) — g)rg 1) (e) = my(75 1 (c) + ax(u, v) — g)
=o(ar(u,v) —g)+c
= plo(ar(u,v) — 9))(c)
= P(ﬂ;’T(U,‘U) - h)(c)

for each (u,v) € A(D) and c € A. That is, we have
p(BYr(u,v) — h) = mop(ar(u,v) — g)my ! for each (u,v) € A(D).

Therefore it follows that Dy(ar) = Dy(B8r), which completes the proof. O

Let D be a connected symmetric digraph, G its underlying graph and
A a finite abelian group. The set of ordinary voltage assignments of G
with voltages in A is denoted by C(G; A). Note that C(D) = CY(G; A).
Furthermore, let C°(G; A) be the set of functions from V(G) into A. We
consider C%(G; A) and C'(G; A) as additive groups. The homomorphism
§: C%(G; A) — C'(G; A) is defined by (8s)(z,y) = s(z) — s(y) for s €
C?(G; A) and (z,y) € A(D). For each a € C'(G; A), let [a] be the element
of C1(G; A)/Imé which contains a.

The automorphism group AutA acts on C°(G; A) and C!(G; A) as fol-
lows:

(os)(z) = o(s(z)) for z € V(D),
(o‘a)(z, y) = a(a(a:, y)) for (a"’ y) € A(D)s

where s € C°(G; A), a € C'(G; A) and ¢ € AutA. An finite group B is said
to have the isomorphism extension property (IEP), if every isomorphism
between any two isomorphic subgroups £; and & of B can be extented to
an automorphism of B (see [9]). For example, the cyclic group Z, for any
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n € N, the dihedral group D, for odd » > 3, and the direct sum of m
copies of Z, have the IEP.

Corollary 2. Let D be a connected symmetric digraph, G its underlying
graph,. A a finite abelian group with the IEP, a,B € C(D), g,h € A and
I’ < AutD. Suppose that the orders of g and h are equal and odd. Then
the following are equivalent:

1. Dy(a) =r Dr(B).
2. There exist o € AutA, v € I" and s € C%(G; A) such that

B =oa" + 6s and o(g) = h.

Proof: By Theorem 2 and the definition of T-voltages, Dy(a) = Dn(B)
if and only if there exist o € AutA,y€eT and s € C?(G; A) such that

B(u,v) — h = o(a”(u,v) — g) + (63)(u,v) for each (u,v) € A(D).

But we have B(v,u) — h = o(a?(v,u) — g) + (6s)(v,u). Thus we have
—2h = —20(g). Since ord(g) = ord(h) is odd, it follows that o(g) =h. O

We state a characterization for two g-cyclic A-covers to be I'-isomorphic,
for any finite abelian group A with the IEP, and any g € A of odd order.

Corollary 3. Let D be a connected symmetric digraph, G its underlying
graph, A a finite abelian group, o, € C(D), g € A and T < AutD.
Suppose that ord(g) is odd and A has the IEP. Then the following result
holds: Dgy(cx) =r Dy(B) if and only if B = oa” + s and o(g) = g for some
o € AutA, some v € T and some s € C°(G; A).

Now we consider the number of I'-isomorphism classes of cyclic A-covers
of a connected symmetric digraph D. Let G be the underlying graph of D,
A a finite abelian group with the IEP and IT = AutA. For any g € A, set

I, = {o €IT| o(g) = g}-

Then I, is a subgroup of II.

Let ' < AutD. Set H!(G;A) = C!(G; A)/Imé. Let II; x T act on
HY(G; A) as follows:

(0, 7)la] = [pa?] = {oa” + 85 | s € C°(G; A)},

where o € Iy, vy € T and a € C'(G; A). By Corollary 3, the number of
I'-isomorphism classes of g-cyclic A covers of D is equal to that of II; x I-
orbits on H!(G; A) for any g € A of odd order. Let isc(D, A, g,T) be the
number of I'-isomorphism classes of g-cyclic A-covers of D.
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Theorem 3. Let D be a connected symmetric digraph, G its underlying
graph, A a finite abelian group with the IEP, g,h € A and T' < AutD.
Assume that the orders of g and h are odd, and ¢(g) = h for some ¢ €
II = AutA. Then

isc(D, A, g,T') = ise(D, A, h,T).
Proof: By the preceding remark and Burnside’s Lemma, we have

isc(D, A, g,T) = =——— HY(G; A)lom),
'I.SC( g ) Inyl X IP' (aﬂ)ezngxrl ( ) I

where U(?) is the set consisting of the elements of U fixed by (g, 7).
Let ¢ be an automorphism of A such that ¢(g) = h. Then we have

I, = ¢ll,¢ . Let (0,7) € I, x I'. Then [o] € H(G; A)(®" if and only
if 0o = a + 85 for some s € C%(G; A). But, 0o = a + 65 if and only if
$o¢™ (¢a7) = pa + 6(¢s).

Note that ¢go¢~! € I1;, and (¢a)” = ¢a”. Thus we have
|HY(G; A)eM| = |HY(G; A)#°#77)| for each (o,7) € I, x T.
Furthermore, we have |II | = |II5|. Therefore it follows that
isc(D, A, g,T) = isc(D, A, h,T).

o

Let D be a connected symmetric digraph, p (> 2) prime and F, = GF(p)
the finite field with p elements. Let F} be the 7-dimensional vector space
over Fp. Then the additive group Fy has the IEP and the general linear
group GL,(F,) is the automorphism group of F. Furthermore, GL.(Fp)
acts transitively on F7 \ {0}.

Corollary 4. Let D be a connected symmetric digraph, p (> 2) prime and
T < AutD. Let g,h be any two elements of F; \ {0}. Then

isc(D,Fy, 9,T) = isc(D, Fy, h,T).

ﬂ?

8 Isomorphisms of orbit-cyclic abelian covers

Let D be a connected symmetric digraph, A a finite abelian group with the
IEP and II = AutA. For an element g of A with odd order, the H-orbit
on A containing g is denoted by II{g). A cyclic A-cover Dx(a) of D is
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called II(g)-cyclic if h € II(g). Let D be the set of all k-cyclic A-covers
of D for any k € A, and let D = Upeng) Pn- Then D is the set of all
T(g)-cyclic A-covers of D. Let D/ =r and D/ =r be the set of all I-
isomorphism classes over D and Dj, respectively. The I-isomorphism class
of Dy, containing Dy (c) is denoted by [Dr(a)).

Theorem 4. Let D be a connected symmetric digraph, A a finite abelian
group with the IEP, T < AutD and Il = AutA. Furthermore, let g be an
element of A with odd order. Then

|D/ = | = ise(D, A, h,T') for each h € II(g).

Proof: Let g € A have odd order. For any h # g € II(g) and any 7 € C(D),
let
B=0c"Y (1" +86s), yeT, s€C°G;A),

where ¢ is an automorphism of A such that o(g) = h, and G is the under-
lying graph of D. By Corollary 2, we have Dy(8) =r Dx(7).
For each h # g € II(g), we define a map ®,: D,/ =r— Di/ =r by

@u([Dyg(B)]) = [Da (7],

where Dgy(8) =r Dn(7). Since =r is an eqnivalence relation over D, @, is
injective. By Theorem 3, we have

|Dy/ =r | = Dn/ =r | < 0.
Thus &;, is a bijection. Therefore it follows that
|D/ op | = isc(D, A,h, F).

(]

Let A=F7. Then a cyclic F{-covers Dg(a) is called nonzero-cyclic if g
is not equal to the unit 0 of F7. The set D is the set of all nonzero-cyclic
Fp-covers.

Corollary 5. Let D be a connected symmetric digraph, p (> 2) prime and
T < AutD. Furthermore, let g be any element of F7 \ {0}. Then

D/ = | = ise(D, F, g,T).

Now, we state the structure of I-isomorphism classes of II(g)-cyclic A-
covers of D.

Theorem 5. Let D be a connected symmetric digraph, A a finite abelian
group with the IEP, T' < AutD and I1 = AutA. Suppose that g € A has
odd order. Let o}, be a fixed automorphism of A such that ox(g) = h for
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h € II(g). Then any T-isomorphism class of Il(g)-cyclic A-covers of D is
of the form

U {Du(onB) | B=0a" + 65,0 € Iy, 7 €T,5 € C°(G; A)},
hell(g)

where a € C(D) and G is the underlying graph of D.

Proof: Let v € C(D), h # g € II(g) and [[Dx(7)]] the I'-isomorphism class
of D containing Dy (7). By the first half of the proof of Theorem 4, there
exists a g-cyclic A-cover Dy(a) such that [[Dx(7)]] = [[Dg(a)]].

In the proof of Theorem 4, the map ®,, is a bijection from D,/ &y into
D)./ &r for any h # g € II(g). Thus there exists a h-cyclic A-cover Dy ()
such that Dg(a) = Di(B) for any h # g € II(g). We define a map
Un: [Dg(a)] — [Dn(B)] by

Uy (Dy(a')) = Dp(one'), o' =oa” +6s,
where o € II(g), ¥ € T, s € C°(G; A) and o (g) = h. It is clear that ¥, is
injective.

Now, let Dy(n) be any element of [Dy(8)]. Then we have Dy(n) =p
Dy(a). By Corollary 2, there exist o’ € I1, v € T and ¢t € C%(G; A) such
that = o’a” + 6t and o’(g) = h. Let p = o}, 'o’a” + 8(0;'t). Then we
have

oy lo’ € Iy and ¥y(Dy(u)) = Da(n).
Therefore ¥, is surjective, i.e., bijective. Hence it follows that

[Dh(B)] = {Dr(one’) | &' =0a” + 8s,0 €Iy, v€T,s € c(G; A},
and so the result follows. ]}

Corollary 6. Let D be a connected symmetric digragh, G its underlying
graph, A a finite abelian group with the IEP, and g € A have odd order.
Then any I-isomorphism class of I1(g)-cyclic A-covers of D is of the form

|J {Dn(onB) | B=0a+ 85,0 €Ty, s € C°(G; A)},
heTi(g)
where o € C(D).
Corollary 7. Let D be a connected symmetric digraph, p (> 2) prime and
L < AutD. Set e = (10...0)* € F}. Furthermore, A, be a fixed element of

GL,(Fp) such that Age = g for each g # 0 € F. Then any I'-isomorphism
class of nonzero-cyclic ¥y -covers of D is of the form

U{Ds(A;8) | B=Ba"+ 85, BEIL, 7€T, s € CG;F})},
9#0

where a € C(D).
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4 Isomorphisms of cyclic Z,-covers

Let Z,, be the cyclic group of order n. Then Z, has the IEP.

Let D be a connected symmetric digraph, G its underlying graph and T
a spanning tree of G. Then, set Cr(D) = CL(G;Z,) = {ar |a € C(D) =
CI(G; Z,)}.
Lemma 1. Let D be a connected symmetric digraph, G the underlying
graph of D, T a spanning tree of G, n odd, o, 8 € C(D) and g € Zy,. then
the following are equivalent.

1. Dy(a) =y Dy(B).
2. There exists a o € AutZ, such that

Br =oar and o(g) =

Proof: By Corollaries 1,3. (]

We shall consider the number of I-isomorphism classes of g-cyclic Zgm-
covers of D, for any g € Zpm. Set Ily = {0 € AutZ,~ | o(g) = g}. By
Lemma, 1, the number of I-isomorphism classes of g-cyclic Z,=-covers of D
is equal to that of IT-orbits on C}H(G; Zpm). Let B(D) = m —n+1 be the
Betti-number of D, where m = |A(D)|/2 and n = |V(D)|.

Theorem 6. Let D be a connected symmetric digraph and n=p™ (p > 2:
prime). Let g € Zpm and ord(g) = p™* the order of g. Set B = B(D).
Then the number of I-isomorphism c]asses of g-cyclic Zym-covers of D is
ise(D,Zpm,9,1) =
prEH 4 pm B (p — 1) (BTN —1)/(p7 7 — 1) ifp#mand B>,

pm—-p-l{(l‘_'_l)p_p,} ify;émandB=l,
(P™B-D*1 _1)/(p- 1)+ @™E D -1)/(p® ' -1) ifp=mand B>1,
m+1 otherwise,

Proof: In the case of y = m, g-cyclic Z,m-covers of D are Z,m-coverings
of the underlying graph of D, and so the result is given in Theorem 7 of [9].

Suppose that x < m. By the above note and Burnside’s Lemma, we have

|n,| Y- lex(Dy?),

o€ll,

ise(D,Zpm, g,1) =

where U? is the set consisting of the elements of U fixed by o. Let F(o) =
{h e Jm | (k) = h}. Then, by Corollary 3 of {9], we have |Cr(D)?| =
|F(e)|BP).

61



But we have
Oy = {\€Zpm | (A\,p™) =1 and Ag = g}.

Then
Aell; o rg=g (modp™)« g(A-1)=0 (modp™) < A-1 € (ord(g)).
Thus we have |II;| = n/ord(g). That is, |II;| = p* if g € K,(m), where
K,(m) = {k € Zom | k € (p#),k & (p**)}. If ord(g) = 1, then g = p™.
Otherwise Il = {p™ #v+1|v=0,1,...,p* — 1}.

By Lemma 3 of [9], |F(0)| = p* if 0 — 1 € K;(m). Thus we have

A e, | [FO) =p™# )} =p* " p-1)(0<t < p—1),
{A eIl | [FQ)[=p"}H =1.

Therefore the result follows. |
In Table 1, we give some values of isc(D, Zgs, g, I) (i < 6).

u\B| 1 2 3 4 5
1 405 216513 138706101 9647701761 69195236437845
2 189 76545 46589661 32184598401 23067403335549
3 81 26001 15543009 10728553761 7689144011121
4 33 8721 5181489 3576188961 2563048043073
5 13 2913 1727181 1192063041 854349347853

Table 1

5 Isomorphisms of cyclic Fy-covers

Let p (> 2) be prime. Then F, has the IEP.

Let D be a connected symmetric digraph, G its underlying graph, g € Fp,
and I’ < AutD.

Let v € T. A (y)-orbit o of length k on E(G) is called diagonal if
o = (7){z,¥*(z)} for some z € V(G).

For v € T, let G, be the graph whose vertices are the {v)-orbits on
V(G), with two vertices adjacent in G, if and only if some two of their
representatives are in G. The kth p-level of G, is the induced subgraph of
Gy on the vertices w such that 6,(|w|) = p*, where 6p(4) is the largest power
of p dividing 4, A p-level component H of G, is a connected component of
some p-level of G., where H is considered as a subset of V(G,). A p-level
component H is called minimal if there exists no vertex o of H which is
adjacent to a vertex w such that 8,(|a|) > 6,(jw|) (see [8, 15])
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Theorem 7. Let D be a connected symmetric digraph, G its underlying
graph, p (> 2) prime, g € F,\ {0} and ' < AutD. For v €T, let ¢(v) and
v(7y) be the number of (v)-orbits on E(G) and V(G), respectively. Fur-
thermore, let £(vy) and p(7y) be the number of minimal p-level components
on G.,, and diagonal (y)-orbits on E(G), respectively. Then the number of
I-isomorphism classes of g-cyclic Fp-covers of D is

is¢(D,Fp,g,T) = 1 Z pEMN—v+EM—p(7),

IPI ~erl

Proof: Let G be the underlying graph and IT = AutF,. For g € F,, \ {0},
let I, = {o € II | o(g) = g}. By the remark before Theorem 3 and
Burnside’s Lemma, we have

ise(D,Fpogl) = i 3o H'(GiFp) ).
Ingl * I | (U,’])EHOXP

But we have
Og={Ae€F,|(\p)=1and A\g=g}.
Then
Aell; o Ag=g (modp) = A=1 (mod p).
Thus we have IIg = {1}. Therefore it follows that

. 1
lSC(D, Fpag’ P) = 'IFI' Z IHI(Gs F?)”Iv

~€r
where |HY(G; Fp)?| = {[a] € H'(G;Fp) | o” = a + 63,5 € C¥G; Fp)}.
Theorem 5 of [8] implies that

|HY(G; Fp)"| = peMN—v(M+HEO)—p(1)

The element of H!(G;F,) is called switching equivalence classes.

Corollary 8. Let D be a connected symmetric digraph, G its underlying
graph, p (> 2) prime, g € Fp\ {0} and I" = AutD. Then the number
of T-isomorphism classes of g-cyclic Fp-covers of D is equal to that of
nonisomorphic switching equivalence classes of G.

Proof: By Theorem 5 of [8]. O
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