Isomorphisms of Cyclic Abelian Covers of Symmetric Digraphs

Hirobumi Mizuno

Department of Computer Science and Information Mathematics
University of Electro-Communications
1-5-1, Chofugaoka, Chofu
Tokyo 182
Japan

Iwao Sato

Oyama National College of Technology Oyama Tochigi 323 Japan

ABSTRACT. Let D be a connected symmetric digraph, A a finite abelian group with some specified property and $g \in A$. We present a characterization for two g-cyclic A-covers of D to be isomorphic with respect to a group Γ of automorphisms of D, for any g of odd order. Furthermore, we consider the number of Γ -isomorphism classes of g-cyclic A-covers of D for an element g of odd order. We enumerate the number of isomorphism classes of g-cyclic \mathbb{Z}_{p^n} -covers of D with respect to the trivial group of automorphisms of D, for any prime p (> 2), where \mathbb{Z}_{p^n} is the cyclic group of order p^n . Finally, we count Γ -isomorphism classes of cyclic \mathbb{F}_p -covers of D.

1 Introduction

Graphs and digraphs treated here are finite and simple.

Let D be a symmetric digraph and A a finite group. A function $\alpha: A(D) \to A$ is called alternating if $\alpha(y,x) = \alpha(x,y)^{-1}$ for each $(x,y) \in A(D)$. For $g \in A$, a g-cyclic A-cover $D_g(\alpha)$ of D is the digraph as follows:

 $V(D_g(\alpha))=V(D)\times A$ and $((u,h),(v,k))\in A(D_g(\alpha))$ if and only if $(u,v)\in A(D)$ and $k^{-1}h\alpha(u,v)=g$.

The natural projection $\pi \colon D_g(\alpha) \to D$ is a function from $V(D_g(\alpha))$ onto V(D) which erases the second coordinates. A digraph D' is called a cyclic A-cover of D if D' is a g-cyclic A-cover of D for some $g \in A$. In the case that A is abelian, then $D_g(\alpha)$ is called simply a cyclic abelian cover.

Let α and β be two alternating functions from A(D) into A, and let Γ be a subgroup of the automorphism group $\operatorname{Aut} D$ of D, denoted $\Gamma \leq \operatorname{Aut} D$. Let $g, h \in A$. Then two cyclic A-covers $D_g(\alpha)$ and $D_h(\beta)$ are called Γ -isomorphic, denoted $D_g(\alpha) \cong_{\Gamma} D_h(\beta)$, if there exist an isomorphism $\Phi: D_g(\alpha) \to D_h(\beta)$ and a $\gamma \in \Gamma$ such that $\pi \Phi = \gamma \pi$, i.e., the diagram

$$\begin{array}{ccc} D_g(\alpha) & \xrightarrow{\Phi} & D_h(\beta) \\ \pi \downarrow & & \downarrow \pi \\ D & \xrightarrow{\gamma} & D \end{array}$$

commutes. Let $I = \{1\}$ be the trivial group of antomorphisms.

Cheng and Wells [1] discussed isomorphism classes of cyclic triple covers (1-cyclic \mathbb{Z}_3 -covers) of a complete symmetric digraph. Furthermore, Mizuno and Sato [13] gave a formula for the characteristic polynomial of a cyclic A-cover of a symmetric digraph, for any finite group A. Mizuno and Sato [12] discussed the number of Γ -isomorphism classes of cyclic V-covers of a connected symmetric digraph for any finite dimensional vector space V over the finite field GF(p) (p > 2).

A graph H is called a *covering* of a graph G with projection $\pi\colon H\to G$ if there is a surjection $\pi\colon V(H)\to V(G)$ such that $\pi\mid_{N(v')}\colon N(v')\to N(v)$ is a bijection for all vertices $v\in V(G)$ and $v'\in \pi^{-1}(v)$. The projection $\pi\colon H\to G$ is an *n-fold covering* of G if π is *n*-to-one. A covering $\pi\colon H\to G$ is said to be *regular* if there is a subgroup B of the automorphism group AutH of H acting freely on H such that the quotient graph H/B is isomorphic to G.

Let G be a graph and A a finite group. Let D(G) be the arc set of the symmetric digraph corresponding to G. Then a mapping $\alpha \colon D(G) \to A$ is called an *ordinary voltage assignment* if $\alpha(v,u) = \alpha(u,v)^{-1}$ for each $(u,v) \in D(G)$. The *(ordinary) derived graph* G^{α} derived from an ordinary voltage assignment α is defined as follows:

 $V(G^{\alpha})=V(G)\times A$, and $((u,h),(v,k))\in D(G^{\alpha})$ if and only if $(u,v)\in D(G)$ and $k=h\alpha(u,v)$.

The graph G^{α} is called an A-covering of G. The A-covering G^{α} is an |A|-fold regular covering of G. Every regular covering of G is an A-covering of G for some group A (see [3]). Furthermore the 1-cyclic A-cover $D_1(\alpha)$ of a symmetric digraph D can be considered as the A-covering \tilde{D}^{α} of the underlying graph \tilde{D} of D.

A general theory of graph coverings is developed in [4]. \mathbb{Z}_2 -coverings (double coverings) of graphs were dealed in [5] and [14]. Hofmeister [6] and,

independently, Kwak and Lee [11] enumerated the I-isomorphism classes of n-fold coverings of a graph, for any $n \in N$. Dresbach [2] obtained a formula for the number of strong isomorphism classes of regular coverings of graphs with voltages in finite fields. The I-isomorphism classes of regular coverings of graphs with voltages in finite dimensional vector spaces over finite fields were enumerated by Hofmeister [7]. Hong, Kwak and Lee [9] gave the number of I-isomorphism classes of \mathbb{Z}_n -coverings, $\mathbb{Z}_p \oplus \mathbb{Z}_p$ -coverings and D_n -coverings, n odd, of graphs, respectively.

In Section 2, we give a necessary and sufficient condition for two cyclic A-covers of a connected symmetric digraph D to be Γ -isomorphic for any finite abelian group A with the isomorphism extension property. Let the order of an element g of A be odd, and h be any element of the orbit containing g under the automorphism group AutA. Then we show that the number of Γ -isomorphism classes of g-cyclic A-covers of D is equal to that of Γ -isomorphism classes of h-cyclic A-covers of D which h belongs to the orbit on A containing a fixed element with odd order. In Section 4, we enumerate the number of I-isomorphism classes of g-cyclic \mathbf{Z}_{p^n} -covers of D for any prime p (> 2). In Section 5, we count Γ -isomorphism classes of cyclic \mathbf{F}_p -covers of D.

2 Isomorphisms of cyclic abelian covers

Let D be a symmetric digraph and A a finite group. The group Γ of automorphisms of D acts on the set C(D) of alternating functions from A(D) into A as follows.

$$\alpha^{\gamma}(x,y) = \alpha(\gamma(x),\gamma(y))$$
 for all $(x,y) \in A(D)$,

where $\alpha \in C(D)$ and $\gamma \in \Gamma$. Any voltage $g \in A$ determines a permutation $\rho(g)$ of the symmetric group S_A on A which is given by $\rho(g)(h) = hg$, $h \in A$.

Mizuno and Sato [12] gave a characterization for two cyclic A-covers of D to be Γ -isomorphic.

Theorem 1. (12, Theorem 3.1) Let D be a symmetric digraph, A a finite group, $g,h \in A$, $\alpha,\beta \in C(D)$ and $\Gamma \leq AutD$. Then the following are equivalent:

- 1. $D_g(\alpha) \cong_{\Gamma} D_h(\beta)$
- 2. There exist a family $(\pi_u)_{u\in V(D)}\in S_A^{V(D)}$ and $\gamma\in\Gamma$ such that

$$\rho(\beta^{\gamma}(u,v)h^{-1})=\pi_v\rho(\alpha(u,v)g^{-1})\pi_u^{-1} \text{ for each } (u,v)\in A(D),$$

where the multiplication of permutations is carried out from right to left.

From now on, assume that D is connected and A is abelian. Let G be the underlying graph, T a spanning tree of G and w a root of T. For any $\alpha \in C(D)$ and any walk W in G, the net α -voltage of W, denoted $\alpha(W)$, is the sum of the voltages of the edges of W. Then the T-voltages α_T of α is defined as follows:

$$\alpha_T(u,v) = \alpha(P_u) + \alpha(u,v) - \alpha(P_v)$$
 for each $(u,v) \in D(G) = A(D)$,

where P_u and P_v denote the unique walk from w to u and v in T, respectively. For a function $f: C(D) \to A$, the net f-values f(W) of any walk W is defined as the net α -voltage of W.

Corollary 1. Let D be a connected symmetric digraph, G its underlying graph, T a spanning tree of G. and $\alpha \in C(D)$. Furthermore, let A be a finite abelian group and $g \in A$. Then

$$D_g(\alpha) \cong_I D_g(\alpha_T).$$

Moreover, there exists a function $s: V(D) \to A$ such that

$$\alpha_T(u,v) = -s(v) + \alpha(u,v) + s(u)$$
 for each $(u,v) \in D(G) = A(D)$.

Proof: Let $s(v) = \rho(\alpha(P_v))$ for $v \in V(D)$. Then by Theorem 1, the result follows.

For a function $f: C(D) \to A$, let $A_f = A_f(v)$ denote the subgroup of A generated by all net f-values of the closed walk based at $v \in V(D)$. Let ord(g) be the order of $g \in A$.

Theorem 2. Let D be a connected symmetric digraph, A a finite abelian group, $g,h\in A$ and $\alpha,\beta\in C(D)$. Furthermore, let G be the underlying graph of D, T a spanning tree of G and $\Gamma\leq AutG$. Assume that the orders of g and h are equal and odd. Then the following are equivalent:

- 1. $D_{a}(\alpha) \cong_{\Gamma} D_{h}(\beta)$.
- 2. There exist $\gamma \in \Gamma$ and an isomorphism $\sigma: A_{\alpha T-g}(w) \to A_{\beta_{\gamma} T-h}(\gamma(w))$ such that

$$\beta_{\gamma T}^{\gamma}(u,v) - h = \sigma(\alpha_T(u,v) - g)$$
 for each $(u,v) \in A(D)$,

where $(\alpha_T - g)(u, v) = \alpha_T(u, v) - g$, $(u, v) \in A(D)$ and $w \in V(D)$.

Proof: At first, suppose that $D_g(\alpha) \cong_{\Gamma} D_h(\beta)$. By Corollary 1, we have $D_g(\alpha_T) \cong_{\Gamma} D_g(\beta_T)$. By Theorem 1, there exist a family $(\pi_u)_{u \in V(D)} \in S_A^{V(D)}$ and $\gamma \in \Gamma$ such that

$$\rho(\beta_{\gamma T}^{\gamma}(u,v)-h)=\pi_{v}\rho(\alpha_{T}(u,v)-g)\pi_{u}^{-1} \text{ for each } (u,v)\in A(D).$$

Let $(u,v) \in D(T)$. Then we have $\beta_{\gamma T}^{\gamma}(u,v) = \alpha_T(u,v) = 0$. Thus $\rho(-h) = \pi_v \rho(-g) \pi_v^{-1}$. Since $(u,v) \in D(T)$ we have $\rho(-h) = \pi_u \rho(-g) \pi_v^{-1}$. Therefore it follows that

$$\pi_v = \rho(h)\pi_u\rho(-g)$$
 and $\pi_u = \rho(2h)\pi_u\rho(-2g)$,

i.e.,

$$\pi_v(k+g) = \pi_u(k) + h$$
 and $\pi_u(k+2g) = \pi_u(k) + 2h$ for $k \in A$.

Furthermore, we have

$$\pi_u(k+2mg) = \pi_u(k) + 2mh, \ m \in \mathbf{Z}.$$

Since ord(g) = ord(h) is odd, there exists $t \in \mathbb{Z}$ such that 2tg = g and 2th = h. Then we have

$$\begin{split} \pi_u^{-1} \pi_v(k+g) &= \pi_u^{-1}(\pi_u(k) + h) \\ &= \pi_u^{-1}(\pi_u(k) + 2th) \\ &= \pi_u^{-1}(\pi_u(k+2tg) \\ &= k + 2tg = k + g \text{ for any } k \in A, \end{split}$$

i.e.,

$$\pi_u^{-1}\pi_v=1.$$

Thus $\pi_u = \pi_v$. Since D is connected, π is constant. Set $\pi_u = \zeta \in S_A$ for each $u \in V(D)$. Then we have $\rho(\beta_{\gamma T}^{\gamma}(u,v) - h) = \zeta \rho(\alpha(u,v) - g)\zeta^{-1}$ for each $(u,v) \in A(D)$. Hence there exists an isomorphism $\sigma \colon A_{\alpha T-g}(w) \to A_{\beta,T-h}(\gamma(w))$ such that

$$eta_{\gamma T}^{\gamma}(u,v)-h=\sigma(lpha_T(u,v)-g)$$
 for each $(u,v)\in A(D).$

Conversely, assume that there exist $\gamma \in \Gamma$ and a group isomorphism $\sigma \colon A_{\alpha T-g}(w) \to A_{\beta_{\gamma}T-h}(\gamma(w))$ such that

$$\beta_{\gamma T}^{\gamma}(u,v) - h = \sigma(\alpha_T(u,v) - g)$$
 for each $(u,v) \in A(D)$.

Let $\{a_1 = 0, \ldots, a_m\}$ and $\{b_1 = 0, \ldots, b_m\}$ be the representatives of $A/A_{\alpha T - g}$ and $A/A_{\beta_{\gamma T - h}^{\gamma}}$, respectively. For any $c \in A$, there exist $c_{\alpha} \in A_{\alpha T - g}$ and $i(c) \in \{1, \ldots, m\}$ such that

$$c = c_{\alpha} + a_{i(c)}.$$

For each $v \in V(D)$, we define a mapping $\pi_v : A \to A$ by

$$\pi_v(c) = \sigma(c_\alpha) + b_{i(c)}$$
 for each $c \in A$.

Then π_v is well-defined, and π_v is bijective.

Let $\pi = (\pi_v)_{v \in V(D)} \in S_A^{V(D)}$. Then π is constant and $\pi_v \mid A_{\alpha_{T-g}} = \sigma$ for each $v \in V(D)$. For any $c' \in A_{\alpha T-g}$, we have

$$c' + c = (c' + c)_{\alpha} + a_{i(c'+c)}$$

= $c' + c_{\alpha} + a_{i(c)}$,

Furthermore, we have

$$\pi_v(c'+c) = \pi_v(c'+c_\alpha + a_{i(c)})$$

$$= \sigma(c'+c_\alpha) + b_{i(c)}$$

$$= \sigma(c') + \sigma(c_\alpha) + b_{i(c)}$$

$$= \sigma(c') + \pi_v(c)$$

for each $v \in V(D)$ and $c \in A$. Thus

$$\begin{split} (\pi_{v}\rho(\alpha_{T}(u,v)-g)\pi_{u}^{-1})(c) &= \pi_{v}(\pi_{u}^{-1}(c) + \alpha_{T}(u,v) - g) \\ &= \sigma(\alpha_{T}(u,v) - g) + c \\ &= \rho(\sigma(\alpha_{T}(u,v) - g))(c) \\ &= \rho(\beta_{\gamma T}^{\gamma}(u,v) - h)(c) \end{split}$$

for each $(u, v) \in A(D)$ and $c \in A$. That is, we have

$$\rho(\beta_{\gamma T}^{\gamma}(u,v)-h)=\pi_{v}\rho(\alpha_{T}(u,v)-g)\pi_{u}^{-1} \text{ for each } (u,v)\in A(D).$$

Therefore it follows that $D_g(\alpha_T) \cong_{\Gamma} D_g(\beta_T)$, which completes the proof. \square

Let D be a connected symmetric digraph, G its underlying graph and A a finite abelian group. The set of ordinary voltage assignments of G with voltages in A is denoted by $C^1(G;A)$. Note that $C(D)=C^1(G;A)$. Furthermore, let $C^0(G;A)$ be the set of functions from V(G) into A. We consider $C^0(G;A)$ and $C^1(G;A)$ as additive groups. The homomorphism $\delta\colon C^0(G;A)\to C^1(G;A)$ is defined by $(\delta s)(x,y)=s(x)-s(y)$ for $s\in C^0(G;A)$ and $(x,y)\in A(D)$. For each $\alpha\in C^1(G;A)$, let $[\alpha]$ be the element of $C^1(G;A)/Im\delta$ which contains α .

The automorphism group $\operatorname{Aut} A$ acts on $C^0(G;A)$ and $C^1(G;A)$ as follows:

$$(\sigma s)(x) = \sigma(s(x)) \text{ for } x \in V(D),$$

 $(\sigma \alpha)(x,y) = \sigma(\alpha(x,y)) \text{ for } (x,y) \in A(D),$

where $s \in C^0(G; A)$, $\alpha \in C^1(G; A)$ and $\sigma \in \text{Aut } A$. An finite group \mathcal{B} is said to have the *isomorphism extension property (IEP)*, if every isomorphism between any two isomorphic subgroups \mathcal{E}_1 and \mathcal{E}_2 of \mathcal{B} can be extented to an automorphism of \mathcal{B} (see [9]). For example, the cyclic group \mathbf{Z}_n for any

 $n \in N$, the dihedral group D_n for odd $n \geq 3$, and the direct sum of m copies of \mathbb{Z}_p have the IEP.

Corollary 2. Let D be a connected symmetric digraph, G its underlying graph,. A a finite abelian group with the IEP, $\alpha, \beta \in C(D)$, $g, h \in A$ and $\Gamma \leq AutD$. Suppose that the orders of g and h are equal and odd. Then the following are equivalent:

- 1. $D_g(\alpha) \cong_{\Gamma} D_h(\beta)$.
- 2. There exist $\sigma \in AutA$, $\gamma \in \Gamma$ and $s \in C^0(G; A)$ such that

$$\beta = \sigma \alpha^{\gamma} + \delta s$$
 and $\sigma(g) = h$.

Proof: By Theorem 2 and the definition of T-voltages, $D_g(\alpha) \cong_{\Gamma} D_h(\beta)$ if and only if there exist $\sigma \in \operatorname{Aut} A$, $\gamma \in \Gamma$ and $s \in C^0(G; A)$ such that

$$\beta(u,v)-h=\sigma(\alpha^{\gamma}(u,v)-g)+(\delta s)(u,v)$$
 for each $(u,v)\in A(D)$.

But we have $\beta(v,u) - h = \sigma(\alpha^{\gamma}(v,u) - g) + (\delta s)(v,u)$. Thus we have $-2h = -2\sigma(g)$. Since $\sigma rd(g) = \sigma rd(h)$ is odd, it follows that $\sigma(g) = h$. \square

We state a characterization for two g-cyclic A-covers to be Γ -isomorphic, for any finite abelian group A with the IEP, and any $g \in A$ of odd order.

Corollary 3. Let D be a connected symmetric digraph, G its underlying graph, A a finite abelian group, $\alpha, \beta \in C(D)$, $g \in A$ and $\Gamma \leq AutD$. Suppose that ord(g) is odd and A has the IEP. Then the following result holds: $D_g(\alpha) \cong_{\Gamma} D_g(\beta)$ if and only if $\beta = \sigma \alpha^{\gamma} + \delta s$ and $\sigma(g) = g$ for some $\sigma \in AutA$, some $\gamma \in \Gamma$ and some $s \in C^0(G; A)$.

Now we consider the number of Γ -isomorphism classes of cyclic A-covers of a connected symmetric digraph D. Let G be the underlying graph of D, A a finite abelian group with the IEP and $\Pi = \operatorname{Aut} A$. For any $g \in A$, set

$$\Pi_{g} = \{ \sigma \in \Pi \mid \sigma(g) = g \}.$$

Then Π_g is a subgroup of Π .

Let $\Gamma \leq \operatorname{Aut} D$. Set $H^1(G;A) = C^1(G;A)/\operatorname{Im} \delta$. Let $\Pi_g \times \Gamma$ act on $H^1(G;A)$ as follows:

$$(\sigma, \gamma)[\alpha] = [\sigma \alpha^{\gamma}] = {\sigma \alpha^{\gamma} + \delta s \mid s \in C^{0}(G; A)},$$

where $\sigma \in \Pi_g$, $\gamma \in \Gamma$ and $\alpha \in C^1(G;A)$. By Corollary 3, the number of Γ -isomorphism classes of g-cyclic A covers of D is equal to that of $\Pi_g \times \Gamma$ -orbits on $H^1(G;A)$ for any $g \in A$ of odd order. Let $isc(D,A,g,\Gamma)$ be the number of Γ -isomorphism classes of g-cyclic A-covers of D.

Theorem 3. Let D be a connected symmetric digraph, G its underlying graph, A a finite abelian group with the IEP, $g,h \in A$ and $\Gamma \leq AutD$. Assume that the orders of g and h are odd, and $\phi(g) = h$ for some $\phi \in \Pi = AutA$. Then

$$isc(D, A, g, \Gamma) = isc(D, A, h, \Gamma).$$

Proof: By the preceding remark and Burnside's Lemma, we have

$$isc(D,A,g,\Gamma) = \frac{1}{|\Pi_g|\cdot |\Gamma|} \sum_{(\sigma,\gamma)\in\Pi_g\times\Gamma} |H^1(G;A)^{(\sigma,\gamma)}|,$$

where $U^{(\sigma,\gamma)}$ is the set consisting of the elements of U fixed by (σ,γ) .

Let ϕ be an automorphism of A such that $\phi(g) = h$. Then we have $\Pi_h = \phi \Pi_g \phi^{-1}$. Let $(\sigma, \gamma) \in \Pi_g \times \Gamma$. Then $[\alpha] \in H^1(G; A)^{(\sigma, \gamma)}$ if and only if $\sigma \alpha^{\gamma} = \alpha + \delta s$ for some $s \in C^0(G; A)$. But, $\sigma \alpha^{\gamma} = \alpha + \delta s$ if and only if

$$\phi\sigma\phi^{-1}(\phi\alpha^{\gamma}) = \phi\alpha + \delta(\phi s).$$

Note that $\phi\sigma\phi^{-1}\in\Pi_h$ and $(\phi\alpha)^{\gamma}=\phi\alpha^{\gamma}$. Thus we have

$$|H^1(G;A)^{(\sigma,\gamma)}| = |H^1(G;A)^{(\phi\sigma\phi^{-1},\gamma)}|$$
 for each $(\sigma,\gamma) \in \Pi_g \times \Gamma$.

Furthermore, we have $|\Pi_q| = |\Pi_h|$. Therefore it follows that

$$isc(D, A, g, \Gamma) = isc(D, A, h, \Gamma).$$

Let D be a connected symmetric digraph, p(>2) prime and $\mathbf{F}_p = GF(p)$ the finite field with p elements. Let \mathbf{F}_p^{τ} be the τ -dimensional vector space over \mathbf{F}_p . Then the additive group \mathbf{F}_p^{τ} has the IEP and the general linear group $GL_{\tau}(\mathbf{F}_p)$ is the automorphism group of \mathbf{F}_p^{τ} . Furthermore, $GL_{\tau}(\mathbf{F}_p)$ acts transitively on $\mathbf{F}_p^{\tau} \setminus \{0\}$.

Corollary 4. Let D be a connected symmetric digraph, $p \ (> 2)$ prime and $\Gamma \le AutD$. Let g, h be any two elements of $\mathbf{F}_p^{\tau} \setminus \{0\}$. Then

$$isc(D, \mathbf{F}_{p}^{\tau}, g, \Gamma) = isc(D, \mathbf{F}_{p}^{\tau}, h, \Gamma).$$

3 Isomorphisms of orbit-cyclic abelian covers

Let D be a connected symmetric digraph, A a finite abelian group with the IEP and $\Pi = \text{Aut}A$. For an element g of A with odd order, the Π -orbit on A containing g is denoted by $\Pi(g)$. A cyclic A-cover $D_h(\alpha)$ of D is

called $\Pi(g)$ -cyclic if $h \in \Pi(g)$. Let \mathcal{D}_k be the set of all k-cyclic A-covers of D for any $k \in A$, and let $\mathcal{D} = \bigcup_{h \in \Pi(g)} \mathcal{D}_h$. Then \mathcal{D} is the set of all $\Pi(g)$ -cyclic A-covers of D. Let $\mathcal{D}/\cong_{\Gamma}$ and $\mathcal{D}_h/\cong_{\Gamma}$ be the set of all Γ -isomorphism classes over \mathcal{D} and \mathcal{D}_h , respectively. The Γ -isomorphism class of \mathcal{D}_h containing $D_h(\alpha)$ is denoted by $[D_h(\alpha)]$.

Theorem 4. Let D be a connected symmetric digraph, A a finite abelian group with the IEP, $\Gamma \leq AutD$ and $\Pi = AutA$. Furthermore, let g be an element of A with odd order. Then

$$|\mathcal{D}/\cong_{\Gamma}|=isc(D,A,h,\Gamma)$$
 for each $h\in\Pi(g)$.

Proof: Let $g \in A$ have odd order. For any $h \neq g \in \Pi(g)$ and any $\tau \in C(D)$, let

$$\beta = \sigma^{-1}(\tau^{\gamma} + \delta s), \ \gamma \in \Gamma, \ s \in C^0(G; A),$$

where σ is an automorphism of A such that $\sigma(g) = h$, and G is the underlying graph of D. By Corollary 2, we have $D_g(\beta) \cong_{\Gamma} D_h(\tau)$.

For each $h \neq g \in \Pi(g)$, we define a map $\Phi_h : \mathcal{D}_g / \cong_{\Gamma} \to \mathcal{D}_h / \cong_{\Gamma}$ by

$$\Phi_h([D_g(\beta)]) = [D_h(\tau)],$$

where $D_g(\beta) \cong_{\Gamma} D_h(\tau)$. Since \cong_{Γ} is an equivalence relation over \mathcal{D} , Φ_h is injective. By Theorem 3, we have

$$|\mathcal{D}_g/\cong_{\Gamma}|=|\mathcal{D}_h/\cong_{\Gamma}|<\infty.$$

Thus Φ_h is a bijection. Therefore it follows that

$$|\mathcal{D}/\cong_{\Gamma}|=isc(D,A,h,\Gamma).$$

Let $A = \mathbf{F}_p^{\tau}$. Then a cyclic \mathbf{F}_p^{τ} -covers $D_g(\alpha)$ is called *nonzero-cyclic* if g is not equal to the unit 0 of \mathbf{F}_p^{τ} . The set \mathcal{D} is the set of all nonzero-cyclic \mathbf{F}_p^{τ} -covers.

Corollary 5. Let D be a connected symmetric digraph, $p \ (> 2)$ prime and $\Gamma \le AutD$. Furthermore, let g be any element of $\mathbf{F}_p^{\tau} \setminus \{0\}$. Then

$$|\mathcal{D}/\cong_{\Gamma}|=isc(D,\mathbf{F}_{p}^{\tau},g,\Gamma).$$

Now, we state the structure of Γ -isomorphism classes of $\Pi(g)$ -cyclic A-covers of D.

Theorem 5. Let D be a connected symmetric digraph, A a finite abelian group with the IEP, $\Gamma \leq AutD$ and $\Pi = AutA$. Suppose that $g \in A$ has odd order. Let σ_h be a fixed automorphism of A such that $\sigma_h(g) = h$ for

 $h \in \Pi(g).$ Then any Γ -isomorphism class of $\Pi(g)$ -cyclic A-covers of D is of the form

$$\bigcup_{h\in\Pi(g)}\{D_h(\sigma_h\beta)\mid\beta=\sigma\alpha^\gamma+\delta s,\sigma\in\Pi_g,\gamma\in\Gamma,s\in C^0(G;A)\},$$

where $\alpha \in C(D)$ and G is the underlying graph of D.

Proof: Let $\tau \in C(D)$, $h \neq g \in \Pi(g)$ and $[[D_h(\tau)]]$ the Γ -isomorphism class of \mathcal{D} containing $D_h(\tau)$. By the first half of the proof of Theorem 4, there exists a g-cyclic A-cover $D_g(\alpha)$ such that $[[D_h(\tau)]] = [[D_g(\alpha)]]$.

In the proof of Theorem 4, the map Φ_h is a bijection from $\mathcal{D}_g/\cong_{\Gamma}$ into $\mathcal{D}_h/\cong_{\Gamma}$ for any $h\neq g\in \Pi(g)$. Thus there exists a h-cyclic A-cover $D_h(\beta)$ such that $D_g(\alpha)\cong_{\Gamma} D_h(\beta)$ for any $h\neq g\in \Pi(g)$. We define a map $\Psi_h\colon [D_g(\alpha)]\to [D_h(\beta)]$ by

$$\Psi_h(D_q(\alpha')) = D_h(\sigma_h \alpha'), \ \alpha' = \sigma \alpha^{\gamma} + \delta s,$$

where $\sigma \in \Pi(g)$, $\gamma \in \Gamma$, $s \in C^0(G; A)$ and $\sigma_h(g) = h$. It is clear that Ψ_h is injective.

Now, let $D_h(\eta)$ be any element of $[D_h(\beta)]$. Then we have $D_h(\eta) \cong_{\Gamma} D_g(\alpha)$. By Corollary 2, there exist $\sigma' \in \Pi$, $\nu \in \Gamma$ and $t \in C^0(G; A)$ such that $\eta = \sigma' \alpha^{\nu} + \delta t$ and $\sigma'(g) = h$. Let $\mu = \sigma_h^{-1} \sigma' \alpha^{\nu} + \delta(\sigma_h^{-1} t)$. Then we have

$$\sigma_h^{-1}\sigma'\in\Pi_g$$
 and $\Psi_h(D_g(\mu))=D_h(\eta).$

Therefore Ψ_h is surjective, i.e., bijective. Hence it follows that

$$[D_h(\beta)] = \{D_h(\sigma_h \alpha') \mid \alpha' = \sigma \alpha^{\gamma} + \delta s, \sigma \in \Pi_g, \gamma \in \Gamma, s \in C^0(G; A)\},\$$

and so the result follows.

Corollary 6. Let D be a connected symmetric digraph, G its underlying graph, A a finite abelian group with the IEP, and $g \in A$ have odd order. Then any I-isomorphism class of $\Pi(g)$ -cyclic A-covers of D is of the form

$$\bigcup_{h\in\Pi(g)}\{D_h(\sigma_h\beta)\mid\beta=\sigma\alpha+\delta s,\sigma\in\Pi_g,s\in C^0(G;A)\},$$

where $\alpha \in C(D)$.

Corollary 7. Let D be a connected symmetric digraph, p > 2 prime and $\Gamma \leq \operatorname{Aut} D$. Set $e = (10...0)^t \in \mathbf{F}_p^\tau$. Furthermore, \mathbf{A}_g be a fixed element of $GL_\tau(\mathbf{F}_p)$ such that $\mathbf{A}_g e = g$ for each $g \neq 0 \in \mathbf{F}_p^\tau$. Then any Γ -isomorphism class of nonzero-cyclic \mathbf{F}_p^τ -covers of D is of the form

$$\bigcup_{g\neq 0} \{ D_g(\mathbf{A}_g \beta) \mid \beta = \mathbf{B} \alpha^{\gamma} + \delta s, \ \mathbf{B} \in \Pi_e, \ \gamma \in \Gamma, \ s \in C^0(G; \mathbf{F}_p^{\tau}) \},$$

where $\alpha \in C(D)$.

4 Isomorphisms of cyclic \mathbb{Z}_n -covers

Let \mathbf{Z}_n be the cyclic group of order n. Then \mathbf{Z}_n has the IEP.

Let D be a connected symmetric digraph, G its underlying graph and T a spanning tree of G. Then, set $C_T(D) = C_T^1(G; \mathbf{Z}_n) = \{\alpha_T \mid \alpha \in C(D) = C^1(G; \mathbf{Z}_n)\}.$

Lemma 1. Let D be a connected symmetric digraph, G the underlying graph of D, T a spanning tree of G, n odd, $\alpha, \beta \in C(D)$ and $g \in \mathbf{Z}_n$. then the following are equivalent.

- 1. $D_g(\alpha) \cong_I D_g(\beta)$.
- 2. There exists a $\sigma \in Aut \mathbb{Z}_n$ such that

$$\beta_T = \sigma \alpha_T$$
 and $\sigma(g) = g$.

Proof: By Corollaries 1,3.

We shall consider the number of I-isomorphism classes of g-cyclic \mathbb{Z}_{p^m} -covers of D, for any $g \in \mathbb{Z}_{p^m}$. Set $\Pi_g = \{\sigma \in \operatorname{Aut}\mathbb{Z}_{p^m} \mid \sigma(g) = g\}$. By Lemma 1, the number of I-isomorphism classes of g-cyclic \mathbb{Z}_{p^m} -covers of D is equal to that of Π_g -orbits on $C_T^1(G;\mathbb{Z}_{p^m})$. Let B(D) = m - n + 1 be the Betti-number of D, where m = |A(D)|/2 and n = |V(D)|.

Theorem 6. Let D be a connected symmetric digraph and $n = p^m$ (p > 2: prime). Let $g \in \mathbb{Z}_{p^m}$ and $ord(g) = p^{m-\mu}$ the order of g. Set B = B(D). Then the number of I-isomorphism classes of g-cyclic \mathbb{Z}_{p^m} -covers of D is

$$isc(D, \mathbf{Z}_{p^m}, g, I) = \begin{cases} p^{mB-\mu} + p^{(m-\mu)B-1}(p-1)(p^{\mu(B-1)} - 1)/(p^{B-1} - 1) & \text{if } \mu \neq m \text{ and } B > 1, \\ p^{m-\mu-1}\{(\mu+1)p - \mu\} & \text{if } \mu \neq m \text{ and } B = 1, \\ (p^{m(B-1)+1} - 1)/(p-1) + (p^{m(B-1)} - 1)/(p^{B-1} - 1) & \text{if } \mu = m \text{ and } B > 1, \\ m+1 & \text{otherwise,} \end{cases}$$

Proof: In the case of $\mu = m$, g-cyclic \mathbb{Z}_{p^m} -covers of D are \mathbb{Z}_{p^m} -coverings of the underlying graph of D, and so the result is given in Theorem 7 of [9]. Suppose that $\mu < m$. By the above note and Burnside's Lemma, we have

$$isc(D,\mathbf{Z}_{p^m},g,I) = \frac{1}{|\Pi_g|} \sum_{\sigma \in \Pi_g} |C_T(D)^\sigma|,$$

where U^{σ} is the set consisting of the elements of U fixed by σ . Let $F(\sigma) = \{h \in \mathbb{Z}_{p^m} \mid \sigma(h) = h\}$. Then, by Corollary 3 of [9], we have $|C_T(D)^{\sigma}| = |F(\sigma)|^{B(D)}$.

But we have

$$\Pi_g = \{ \lambda \in \mathbb{Z}_{p^m} \mid (\lambda, p^m) = 1 \text{ and } \lambda g = g \}.$$

Then

$$\lambda \in \Pi_g \leftrightarrow \lambda g \equiv g \pmod{p^m} \leftrightarrow g(\lambda - 1) \equiv 0 \pmod{p^m} \leftrightarrow \lambda - 1 \in \langle ord(g) \rangle.$$

Thus we have $|\Pi_g| = n/ord(g)$. That is, $|\Pi_g| = p^{\mu}$ if $g \in K_{\mu}(m)$, where $K_{\mu}(m) = \{k \in \mathbb{Z}_{p^m} \mid k \in \langle p^{\mu} \rangle, k \notin \langle p^{\mu+1} \rangle \}$. If ord(g) = 1, then $g = p^m$. Otherwise $\Pi_g = \{p^{m-\mu}\nu + 1 \mid \nu = 0, 1, \dots, p^{\mu} - 1\}$.

By Lemma 3 of [9], $|F(\sigma)| = p^{\mu}$ if $\sigma - 1 \in K_{\mu}(m)$. Thus we have

$$\begin{aligned} |\{\lambda \in \Pi_g \mid |F(\lambda)| = p^{m-\mu+t}\}| &= p^{\mu-t-1}(p-1)(0 \le t \le \mu - 1), \\ |\{\lambda \in \Pi_g \mid |F(\lambda)| = p^m\}| &= 1. \end{aligned}$$

Therefore the result follows.

In Table 1, we give some values of $isc(D, \mathbb{Z}_{3^b}, g, I)$ ($\mu < 6$).

$\overline{\mu \setminus B}$	1	2	3	4	5
1	405	216513	138706101	9647701761	69195236437845
2	189	76545	46589661	32184598401	23067403335549
3	81	26001	15543009	10728553761	7689144011121
4	33	8721	5181489	3576188961	2563048043073
5	13	2913	1727181	1192063041	854349347853

Table 1

5 Isomorphisms of cyclic \mathbf{F}_p -covers

Let p > 2 be prime. Then \mathbf{F}_p has the IEP.

Let D be a connected symmetric digraph, G its underlying graph, $g \in \mathbf{F}_p$ and $\Gamma \leq \mathrm{Aut}D$.

Let $\gamma \in \Gamma$. A $\langle \gamma \rangle$ -orbit σ of length k on E(G) is called *diagonal* if $\sigma = \langle \gamma \rangle \{x, \gamma^k(x)\}$ for some $x \in V(G)$.

For $\gamma \in \Gamma$, let G_{γ} be the graph whose vertices are the $\langle \gamma \rangle$ -orbits on V(G), with two vertices adjacent in G_{γ} if and only if some two of their representatives are in G. The kth p-level of G_{γ} is the induced subgraph of G_{γ} on the vertices ω such that $\theta_p(|\omega|) = p^k$, where $\theta_p(i)$ is the largest power of p dividing i, A p-level component H of G_{γ} is a connected component of some p-level of G_{γ} , where H is considered as a subset of $V(G_{\gamma})$. A p-level component H is called minimal if there exists no vertex σ of H which is adjacent to a vertex ω such that $\theta_p(|\sigma|) > \theta_p(|\omega|)$ (see [8, 15])

Theorem 7. Let D be a connected symmetric digraph, G its underlying graph, p > 2 prime, $g \in \mathbb{F}_p \setminus \{0\}$ and $\Gamma \leq \operatorname{Aut}D$. For $\gamma \in \Gamma$, let $\epsilon(\gamma)$ and $\nu(\gamma)$ be the number of $\langle \gamma \rangle$ -orbits on E(G) and V(G), respectively. Furthermore, let $\xi(\gamma)$ and $\rho(\gamma)$ be the number of minimal p-level components on G_{γ} , and diagonal $\langle \gamma \rangle$ -orbits on E(G), respectively. Then the number of Γ -isomorphism classes of q-cyclic Γ_p -covers of P is

$$isc(D, \mathbf{F}_p, g, \Gamma) = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} p^{\epsilon(\gamma) - \nu(\gamma) + \xi(\gamma) - \rho(\gamma)}.$$

Proof: Let G be the underlying graph and $\Pi = \operatorname{Aut} \mathbf{F}_p$. For $g \in \mathbf{F}_p \setminus \{0\}$, let $\Pi_g = \{\sigma \in \Pi \mid \sigma(g) = g\}$. By the remark before Theorem 3 and Burnside's Lemma, we have

$$isc(D, \mathbf{F}_p, g, \Gamma) = \frac{1}{|\Pi_g| \cdot |\Gamma|} \sum_{(\sigma, \gamma) \in \Pi_g \times \Gamma} |H^1(G; \mathbf{F}_p)^{(\sigma, \gamma)}|.$$

But we have

$$\Pi_q = \{ \lambda \in \mathbb{F}_p \mid (\lambda, p) = 1 \text{ and } \lambda g = g \}.$$

Then

$$\lambda \in \Pi_g \leftrightarrow \lambda g \equiv g \pmod{p} \leftrightarrow \lambda \equiv 1 \pmod{p}.$$

Thus we have $\Pi_g = \{1\}$. Therefore it follows that

$$isc(D, \mathbf{F}_p, g, \Gamma) = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} |H^1(G; \mathbf{F}_p)^{\gamma}|,$$

where $|H^1(G; \mathbf{F}_p)^{\gamma}| = \{ [\alpha] \in H^1(G; \mathbf{F}_p) \mid \alpha^{\gamma} = \alpha + \delta s, s \in C^0(G; \mathbf{F}_p) \}.$ Theorem 5 of [8] implies that

$$|H^1(G; \mathbf{F}_p)^{\gamma}| = p^{\epsilon(\gamma) - \nu(\gamma) + \xi(\gamma) - \rho(\gamma)}.$$

The element of $H^1(G; \mathbf{F}_p)$ is called switching equivalence classes.

Corollary 8. Let D be a connected symmetric digraph, G its underlying graph, p > 2 prime, $g \in \mathbb{F}_p \setminus \{0\}$ and $\Gamma = AutD$. Then the number of Γ -isomorphism classes of g-cyclic \mathbb{F}_p -covers of D is equal to that of nonisomorphic switching equivalence classes of G.

Proof: By Theorem 5 of [8].

Acknowledgement. The authors would like to thank the referee and Professor J. Lee for very helpful comments and useful suggestions.

References

- [1] Y. Cheng and A.L. Wells, Jr., Switching classes of directed graphs, J. Combin. Theory Ser. B 40 (1986), 169-186.
- [2] K. Dresbach, Über die strenge Isomorphie von Graphenüberlagerungen, Diplomarbeit, University of Cologne, 1989.
- [3] J.L. Gross and T.W. Tucker, Generating all graph coverings by permutation voltage assignments, *Discrete Math.* 18 (1977), 273-283.
- [4] J.L. Gross and T.W. Tucker, Topological Graph Theory, Wiley-Interscience, New York, 1987.
- [5] M. Hofmeister, Counting double covers of graphs, J. Graph Theory 12 (1988), 437–444.
- [6] M. Hofmeister, Isomorphisms and automorphisms of graph coverings, Discrete Math. 98 (1991), 175-185.
- [7] M. Hofmeister, Graph covering projections arising from finite vector spaces over finite fields, *Discrete Math.* 143 (1995), 87–97.
- [8] M. Hofmeister, Combinatorial aspects of an exact sequence that is related to a graph, Publ. I.R.M.A. Strasbourg, 1993, S-29, Actes 29^e Séminaire Lotharingien.
- [9] S. Hong, J.H. Kwak and J. Lee, Regular graph coverings whose covering transformation groups have the isomorphism extension property, Discrete Math. 148 (1996), 85-105
- [10] A. Kerber, Algebraic Combinatorics via Finite Group Actions, BI-Wiss. Verl., Mannheim, Wien, Zurich, 1991.
- [11] J.H. Kwak and J. Lee, Isomorphism classes of graph bundles, Canad. J. Math. XLII (1990), 747-761.
- [12] H. Mizuno and I. Sato, Isomorphisms of some covers of symmetric digraphs (in Japanese), Trans. *Japan SIAM*. 5-1 (1995), 27-36.
- [13] H. Mizuno and I. Sato, Characteristic polynomials of some covers of symmetric digraphs, Ars Combinatoria 45 (1997), 3-12.
- [14] D.A. Waller, Double covers of graphs, Bull. Austral. Math. Soc. 14 (1976), 233-248.
- [15] A.L. Wells, Jr., Even signings, signed switching classes, and (1, -1)-matrices, J. Combin. Theory Ser. B 36 (1984), 194-212.