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Abstract

Let G = G(V,E) be a graph. A labeling of G is a function
f:V —{0,1,...,n} such that for each edge e = (u,v) € E, f(e) =
[f(2) ~ f(v)|. Such a labeling is said to be k — equitable if it is a
labeling of the vertices with the numbers 0 through k — 1 such that,
if v* is the number of vertices labeled i, and €' is the number of edges
labeled i, then Iv‘ - vjl <1 and lei - ejl <1forall{,j. A graph is
said to be k-equitable if it has a k-equitable labeling. In this paper
we characterize the k-equitability of complete bipartite graphs and
consider the equitability of complete multipartite graphs.

1 Introduction:

The concept of graph labelings was first introduced by Rosa [Ro] in 1967 as
a way of decomposing a complete graph into isomorphic subgraphs. Since
then, the field has expanded greatly, and there are now many different types
of graph labelings being studied.

In 1990, Cahit [C2] proposed distributing the vertex and edge labels of
a labeling as evenly as possible, calling such a labeling a k-equitable label-
ing. k-equitability, as defined by Cahit, has been applied to several classes
of graphs. Cahit [C1] has proved various results concering 3-equitability
of graphs, including wheels, friendship graphs, and Eulerian graphs. He
conjectures that all trees are k-equitable [C3]. Szaniszlo [Sz] has shown
that paths and stars are k-equitable, as well as providing necessary and
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suffcient conditions for a cycle to be k-equitable. There has also been
a significant amount of work done concerning 2-equitable labelings, also
known as cordial labelings.

Labeled graphs scrve as useful models for such fields as coding theory, x-
ray crystallography, astronomy, circuit design, and communication network
design [BG1], [BG2]. For a good summary of known results, see [Gal.

In considering the k-equitability of bipartite and multipartite graphs,
it proves advantageous to define a special labeling called an even labeling.
We can show that for a labeling to be k-equitable, it must be even. The
problem is then reduced to checking the k-equitability of this much simpler
labeling.

2 Complete Bipartite Graphs:

Let K, be a complete bipartite graph with partitions U and V. Unless
otherwise stated, we write m = kg+r and n = ks+t, with0 < 7,1 < kE-1.

It has previously been shown that: Ky, n is 2-equitable, or cordial, for
all m, n [C1]; that K3, is k-equitable for all k [Sz]; that K3 n is k-equitable
when n = 0,1, ..., |§] — 1modk, n = k — 1modk, and n = k| for k odd
[Sz); and that Ky, is graceful, ie. mn + 1-equitable [Go],[Ro]. We will
show that for m > 3 and k > 3, Kin,» is k-equitable if and only if it is
one of the following graphs: K44 for & = 3; K31 for all k; or K, , for
k > mn.

We first introduce a definition:

Definition 1 Even labeling: A labeling of the vertices of a bipartite graph
on groups of vertices U, V is said to be even if |vi - vj| <1 and |ui - uj|
<1 for all 1,7, where v* denotes the number of vertices labeled i in V and
u® denotes the number of vertices labeled i in U.

The idea of the characterization is that an even labeling is the only
labeling for which there are a sufficient number of edges labeled O for the
graph to be equitable. Once we have shown this, then we can easily count
the number of edges labeled k£ — 1, which will almost always prove to be
insufficient in terms of equitability.

We need the following lemma:

Lemma 1 The mazimum number of edges labeled 0 in an even labeling is

5]

Proof. Without loss of generality, welet v =v! =--- =01 =g +1,
Wyl = l=g andw =ul = = ubtl = 5, Wbl =
ub—ttl = =yFl =541,
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We count the number of edges labeled 0. If r» + ¢ < k, we have:
r(g+1)s+ (k—r—t)gs+tg(s+1) =kgs+rs+tq (1)

Since |%2| = [M%MJ =kgs +qt +rs+ |5 > kgs + rs + qt, the
maximum value ¥ can attain is |22|.
If r +t > k, we have:

(k=t)(g+1)s+(r+t—k)(q+1)(s+1)+(k—7)q(s+1) = kgs+rs+tq+r+t—k
2
We would like to show that e < |%2|. Since |B2| = kgs+qt+rs+ [éj),
it is sufficient to show that 7 +t — k < |%|. For any fixed sum r + ¢, we
minimize ¢ by maximizing [t — r|, and thus |%¢| is minimal when ¢ = k—1.
We then have the inequality r — 1 < r + |—%|, and since |-%| > —1, the
maximum value of e° in an evenly labeled graph is |Z2|. W

We can now show that only even labelings can be equitable:

Lemma 2 An equitable labeling of the vertices of the complete bipartite
graph K., produces at most || edges labeled 0, with equality possible
only when K,, , is evenly labeled.

Proof. Let v and u}, be the number of vertices labeled i in parts V, U in
an even labeling of K, ,,. Assign values to the v}’s and ud’s as we did in the
proof of Lemma 1. For any given labeling, let v* and u’ denote the number
of vertlces labeled 7 in parts Vv and U of Km n. We write v* = v§ — a; and
ut = “o + a;, with —uj < a; < v§. Since v’ can take on any value from 0
to v§ + uj, any labeling of Ko, » can be written in this form. Also, since
V= vi=Yvi=Y(v"+a;) = v+ a;, we have 3 a; = 0.

Case 1: 7+t < k.

For any given graph, the number of edges labeled 0 is:

k—t—1

Z(q+1—a,)(s+a,)+ Z (g —ai)(s+a;) +

=0 i=r
k-1

> (@—a)(s+1+a;)

i=k—t
= rig+ s+ (k—r—t)gs+tg(s+1)+

k-1 k—1 r—1 k-1 k-1
ani —SZai-i'Zai - Z a; — z(ai)2

i=0 =0 i=0 i=k—t 1=0
r—1 k-1 k-1
= kgs+rs+itqg+ Zai - Z a; — Z:(ai)2
=0 i=k-—t i=0
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We want to show that this expression is less than or equal to (1), which
is equivalent to proving;:

kgs+rs+tq+ Z a; — Z a; — Z(a,)2 < kgs+rs+iq
=0 i=k—t i=0
r—1 k-1 k-1
Doai= y e < ) (a)
=0 i=k—t =0

Since 22 > z for all integers x, this inequality holds. Moreover, equality
holds if and only if: a; =0orlfor0<i<r—1,a;=0forr <i<k-t-1,
anda; =0or —1fork—t<i<k-1 Butfor0<i<r-1, we have
vo—l—q+1—1—qandu0+1—s+1 andfork—t<i<k—-1we
have v — (-1) =¢+1 and uj —1 = s+ 1—1=s. Thus, any values of a;
for which equality holds correspond to an even labeling.

Case 2: r+t> k.

We now have:

k—t-1 r—1
Z (g+1—aj)(s+a;)+ E (g+1-aj)(s+1+ai)+
i=0 i=k—t

k-1

> (g—ai)(s+1+as)

1=r

= kgs+rs+tg+r+t—Fk+

k-1 k-1 r=1 k-1 k=1
qzai —sza,- +Za,- - Z ai — z(ai)‘2

i=0 i=0 i=0 i=h—t i=0
= kqs+'rs+tq+r+t—k+2a, Za, Z(a,
=0 t=hk—t

Comparing to (2), we get the inequality:

r—1 k-1 k-1
2
doa— Dy a < ) (a)
1=0 i=k—t i=0
k—t—1 r—1 r—1 k-1 k-1
oot D a— Y a—ya < ) (a)
i=0 i=k—t i=k=t i=r =0
k—t-1 k-1 k-1
> ai-a < D (@)
i=0 i=r =0
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This inequality holds as above, with equality holding only when we have
a rearrangement of an even labeling.

Thus, for any Ko », €% < | 22|, with equality only when K,, », is labeled
evenly. I

Theorem 3 Any labeling which is not even is not k-equitable.

Proof. From Lemma 2, a graph which is not labeled evenly has fewer than
l_%] edges labeled 0. However, for a labeling to be k-equitable, it must
have at least [%J of each edge label. Thus, if a labeling is not even, then
it is not k-equitable. B

Now consider the number of edges labeled ¥ — 1 in an even labeling,

again writing m =kg+r and n = ks + ¢.

Proposition 4 For q,s > 0 and k > 3, the only complete bipartite graph
which is equitable is K44 for k = 3.

Proof. We consider various values of 7 and ¢.

Casel: r=t=0

The maximum number of edges labeled k—1is 2¢s. If | 22| = [Lﬂ%ﬁlj =
kqs is greater than 2gs, then the graph is not k-equitable; kgs > 2¢s for
k>3

Case 2: r=0,t>0

We have at most 2¢(s + 1) = 2gs + 2g edges labeled k — 1. We need
|%2] = kgs + qt edges of each type, but kgs + gt > 2gs + 2q¢ for k > 3,
t>22. Ifr=0and t =1, we have at most gs + g(s + 1) edges labeled k-1,
but need ]_%J =kqgs+q; kqs+q > 2gs + q for k > 3.

Case 3: r,t >0

If r +t < k, we have at most (¢ + 1)(s + 1) + gs edges labeled k — 1,
and |B2| = kgs + qt +rs + |%]|. For k > 4 and r,¢ > 0, the inequality
kgs + gt +rs + || > 2gs + g+ s holds. For k = 3 the inequality holds
unless ¢ = s = r =t = 1. In this case, we have the graph K, 4 with k = 3,
which can be labeled equitably: m = {0,0,1,2}, n = {0,1,2,2}.

If r+t > k, we have at most 2(g + 1)(s + 1) edges labeled & — 1,
with |22| = kgs + qt + s + |7¢|. This implies that if the inequality
2 < (k—2)gs+ (t — 2)g + (r — 2)s + || holds, then the specified graph
is not k-equitable. Since r +¢ > k and 7,t < k, both r and t are at

Tt

least 2, which means that ¢ — 2 and r — 2 are non-negative. Also, lTJ >
lgﬁk——llj = 2+ |—%], which is at least one for ¥ > 2. Thus, we have
(k=2)gs+(t-2)g+(r—2)s+ |%¥| > k-2+1 > 2, which holds for
k>4 If k=3 wehavegs+ (t—2)g+ (r—2)s+ [%J > 2, which is true
unless ¢ = s =1 and ¢t = r = 2. This gives us the graph K55 with k£ = 3.
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However, for this graph we have at most (g +1)(s +1) +g(s+ 1) = 6 edges
labeled k — 1, and |%2| = 8.

Thus, for k > 3, ¢,§ > 0, the only complete bipartite graph which is
k-equitable is K44 for £ =3. 1

Now suppose that at least one of g,s equals 0, say q. We then have
m =r and m < k. We assume that m,n > 3.

Proposition 5 K, is not k-equitable if m +n < k < mn.

Proof. If kK > m + n, then there are no repeated vertex labels, and thus
no edges labeled 0. If k < mn, then there must be at least one of each edge
label. This gives us a contradiction for m +n < k < mn. |

Proposition 6 If0 <t <k—-m, and s =0, then Ko n 1s not k-equitable.

Proof. As we showed above, V must be labeled evenly for an equitable
labeling. This means that there is at most one vertex labeled 0 and one
vertex labeled k—1in V. Since m+n < k(s+1), this implies that there are
exactly 0, s, s+1, 2s—1, 25 — 2, or 2s edges labeled k& — 1. The inequalities
2s < ms, s +1 < ms, and 0 < ms hold for m > 3 and s =0, and Ky, 5 is
not k-equitable. W

Proposition 7 If0 <t < k- m, and s = 0, then K, is k-equitable if
and only if k > mn.

Proof. We have n + m < (ks + k —m) +m = k(s + 1) = k vertices, so if
k < mn then we have m+n < k < mn, which means that K, » is not k-
equitable by Proposition 4. If k > mn, then we label v =1{012,..,m—1}
and U = {m,2m, ..., nm}(when k = mn +1, this is the graceful labeling as
given in [Ro] and (Go]). B

Proposition 8 Ifk-m+1<t < k-1, then K, 5 is k-equitable if and
onlyifm=3andn=~k—1.

Proof. Write t = k — p, where 1 < p < m — 1. Then there are a total of
m(ks +k—p) edges, and at least ms+m+ | —72 | of each edge label. Since
k > m, we have |—%2| > —p, and so we have at least ms +m —p of each
edge label. We also have ks +k—p+m total vertices, which implies that
we have m — p vertex labels appearing s +2 times. As above, we know that
the vertex labels in V are distinct. This means that the number of edges
labeled k — 1is 0,s,s + 1,2s,25 + 1, or 25 + 2. Thus, if

2s+2<ms+m—p (3)

then K, , is not k-equitable.
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Case 1: s=90

When s =0, (3) becomes2<m—-porp<m-—2.

Case 1.I: f p=m — 2, we have n = k — m + 2. We then have k + 2
vertices and (kK — m + 2)m edges, or m + [LZ'—TMJ of each edge label. This
implies that in an even labeling there are at most 2 edges labeled 0 and 2
edges labeled k—1. If m = k—1, we haven = 3; if m = 3, we have n = k—1.
This graph, i.e. K3x-1, can be labeled k-equitably: V = {0,k — 2,k — 1}
and U = {0,1,2,...,k — 3,k — 1}. If m and n are less than k — 1, we
have £ > m + 2. In order to show that K, is not k-equitable, we show
that m + [-(2_—’,:’MJ > 2. Since (2 — m) is negative, we minimize the left
hand side by setting k = m + 2. After simplifying, our inequality becomes

4+ [—mL”J > 2, which holds for m > 6. For m = 4 we have the inequality

true except when k£ = 6 or 7, and for m = 5 it is true except for k = 7.
These three cases correspond to two graphs: Ky4,4 with £ = 6, and K5
with k = 7. In both cases, in order to get 2 each of the edge labels 0 and
k — 1, we had to make the two duplicate vertex labels 0 and k£ — 1. Since
the labels in U and V are distinct, there is one 0 and one & — 1 in each.
This implies that there are only two edges labeled k —2, since (0, k —2) and
(1,k — 1) are the only two ways to get such an edge label. This means that
for K44 with k£ = 6, there are at least 16 — 6 = 10 edges which must be
labeled with 3 labels, which implies that one of these labels must be used
at least 4 times. Similarly, for K45, k = 7, there are 14 edges labeled with
4 labels, again implying at least 4 of one label. Thus, these graphs are not
k-equitable.

Case 1.22 If p=m —1, then n = k — m + 1, and there are 2k + 1
vertices and (k — m + 1)m edges. Each edge label must appear at least
m+ [ﬁl—_?m | times, and we have at most one edge labeled 0 and one edge
labeled £ — 1. If k = m + 1, then we have n = 2. If k > m + 2, we have
m+ LZ’MJ >3+ _E% >1form>4. Ifm=3, wehaven =k — 2
and 3k — 6 edges. There are then 3k — 8 edges not labeled 0 or k — 1, and
k — 2 labels that are not 0 or k — 1. Since & > m + 2 = 5, the inequality
35=2 > 2 holds, and the graph is not k-equitable.

Case 2: s=1

When s = 1, (3) becomes 4 < 2m—por p < 2m—4. Since p < m—1, we
have m —1 < 2m — 4, which holds for m > 4. If m = 3 then the inequality
holds unless p = 2. If m = 3 and p = 2, then we have n = 2k — 2, giving us
2k + 1 vertices and 6k — 6 edges. Hence, we need [LMT—Q | =k+ |- %J >4
of each edge label for £ > 3. An evenly labeled graph gives us at most three
edges labeled & — 1, so this graph is not k-equitable.

Case 3: s> 2

When s > 2, (3) becomes p < (s+ 1)(m —2). Since p < m —1 and
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(s+1)(m—2) > 3(m—2), the (3) holds when m—1 < 3(m-2)orm<3. 1
Combining the preceding, we get:

Theorem 9 For the bipartite graph Kumn, m,n > 3, k > 3, the only graphs
which are k-equitable are K44 for k = 3; K3 k1 for all k; and K,y ,, for
k > mn.

Proof. Theorem 9 immediately follow from Propositions 4 through 8. | |

3 Complete Multipartite Graphs

Let G be the complete multipartite graph with vertex set V = {(iuvau
..UV,}, where |Vi| = m; = kq; +7i. We will consider multipartite graphs
in much the same way we considered bipartite graphs: we will first provide
a necessary condition for these graphs to be equitable and then count the
number of edges labeled k — 1. It has been shown that a complete multi-
partite graph is 2-equitable if and only if the number of parts of odd size
is at most three [LLC]. We will show that, when k is less than or equal
to the number of edges in our graph, & > 3, the only equitable complete
multipartite graphs are Kin+k-1,2,1 and Kpnik—1,1,1. In order to do this,
we generalize the definition of an even labeling:

Definition 2 An n-partite graph is said to be labeled evenly if v — v¥| <1
for all a,b, and i, where v denotes the number of vertices with label a in
part V;.

When we attempt to generalize the previous proof for n = 2, we find
that counting the number of edges labeled 0 becomes very difficult. Thus,
we will use a different approach.

Again, as in the definition of even labeling, let v{ denote the number of
vertices labeled a in part V;. Then, the number of edges in our graph is

2 (&) &)

the number of each edge label required is

S (Zem0t) (Ze=i9))

k

and the number of edges labeled 0 is

> (’f vgvg) .

i<j \a=0

72



Also, we know that 3" v? = p or p+ 1 for some p (i.e. our graph
has an equitable labeling on the vertices). We first want to show that the
maximum possible number of 0 edge labels is the minimum required. For
n = 2 this is equivalent to showing that

(E) (2)| 42,

This should look familiar; it is simply Chebyshev’s inequality with a
floor function surrounding the left side. However, the right side is always
an integer, so it is enough to prove the inequality holds without the floor.

The statement of Chebyshev s mequahty requires that the v$’s be arranged
so that if vQ > v} > ... > vF! then v§ < v} < ... < v5 L. We will show
that this condition is implied by v§ + v§ = por p + 1. Without loss of
generality, we can assume that the v$’s are in non-decreasmg order. We
want to show that if v¢ < v} then v§ > v. Suppose v§ < v and v§ < v3.
Then v§ +1 < % and v§ +1 < $ 1mply v§ +v§ +2 < v} + 1. But this is
a contradiction since the vertices are labeled equitably.

Note that this approach is somewhat more elegant than the counting
method used above. Moreover, we can use this idea to generalize our result.
We now wish to show a natural generalization of Chebyshev’s inequality:

Zig ((2577) (Z=))| 5 (kz) @

i<j \a=0

with "7, v¢ = p or p+ 1 for some p.

Proof of (4). As before, we can ignore the floor function since the right
side is always an integer. In order to prove this inequality, we rearrange
the right hand side:

1 n k—1
>(Zs) =33 (2 (w2
i<j \a=0 i=1 \ae=0 j=t

Also,

k—1 k—1 1 n k-1 [k—1 ]
(5 E) - (59 (55
i<j a=0 a=0 i=1 a= j=ti La=0 ]

L& k-1 k=1 1
-2 ((B) (Z]m
i=1 a=0 a=0 -j::i i
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We can now break the larger inequality down into n smaller inequalities,
each of the form

(hoer) (24
k

=i k-l
(2-1)) 2> | S

a=0 j=i

We know that )7 v¢ =porp+lorvf+3 ., vj =porp+1. Now, each
of these smaller inequalities is equivalent to the statement of Chebyshev’s
inequality with v§ = v¢ and v§ = 3 ,_;v§. Thus, (4) also holds. ||

We have shown that the maximum number of 0 edge labels possible is
equal to the minimum required. For n = 2, we counted the number of 0
edges and compared that number to the number of 0 edge labels in an even
labeling. This becomes very messy for large n, so we again turn to a slightly
different approach.

Suppose that the vertices of a complete n-partite graph are labeled
equitably but not evenly. We show that for any such labeling, there is
another labeling with the same number of each vertex label but more edges
labeled 0.

Lemma 10 Suppose v§ — 'uf > 2 for some a,b, and i. Then there is some
J for which v§ < vg.

Proof. Suppose v§ — v? > 2 for some i and v¢ > % for all j. Then,
adding the inequalities over j =i, we get > ,_ovf > Y, v + 2, which
contradicts with the requirement that the vertices are labeled equitably. B

We now construct a new labeling by "switching” one vertex labeled a
in V; with one vertex labeled b in V;. We want to show that such a switch
increases the number of edges labeled 0. We first notice that a switch
only affects edges between V; and V;. Thus, what we wish to show is the
inequality (v —1)(v2 + 1)+ (v} +1)(v? — 1) —vfv? — v?v? > 0. This reduces
to vf — v? + 0% — v > 2, which holds since v¢ — v? > 2 and v} < v?, and
thus each switch increases the number of edges labeled 0. Furthermore, if a
and b are chosen so that v§ and vf are maximal and minimal, respectively,
within V;, then the radius of V;, i.e. the difference between the maximum
and minimum value of v¢ and v® over all a and b, is non-increasing. Finally,
if the radius of V; is at least 2, then the radius can be decreased after a finite
number of steps by repeatedly picking v¢ and v? to be extremal within V;.
Thus, after a finite number of steps, we can make the radius of each V; at
most 1, which means that we have obtained an even labeling. Since at each
step we increased the number of edges labeled 0, our original labeling has
fewer than the required number of zeros, and thus such a labeling cannot
be k-equitable.
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Notice that this argument provides another way of showing that k-
equitable bipartite labelings must be even.
We have shown:

Theorem 11 If a labeling of a complete n-partite graph is equitable, then
it s also even.

Now that we are restricted to even labelings, we can easily count the
number of edges labeled & — 1.
The number of each edge label required is

Z kqig; + Z gt + \.%Ttr]‘l

i=j i=j

Consider all the r; labels in V; that appear more times than the others, i.e.
p+ 1 times. Let R; C V; denote a collection of vertices with these vertex
labels, each label represented by one vertex (|R;| =7;). Let r; = z; + u;,
where z; is the number of vertices in R; labeled either 0 or & — 1. Also, let
p=Y ., x; (note that p < 2n), and let P be the number of edges labeled
k — 1 among edges connecting vertices among the R;’s. Then the number
of edges labeled k — 1 is 3°,_.2gig; + >_;_; q:%; + P, . Thus, if we show
that

(k=2)> agi+ ) av;+ l = ’T’J >P (5)

i=j i=j

then we have shown that the corresponding graph is not equitable.

First, we make a few easy observations:

Fact 1: Suppose p is odd. Then there must be at least ( ) groups”
of k vertices plus one additional vertex, giving us Y0, r; > (B5H)k + 1.
Similarly, for p even, >0 7 > (B —1) k + 2.

Fact 2: For p > 5 and k& > 3, we may assume that all of the r;’s are non-
zero. In fact, for p > 5 and k > 3, adding an r; = 0 increases the number
of edges labeled 1 by at least 2 more than it increases the number of edges
labeled 0, and since the number of edges labeled 0 is always minimal, this
means that our new graph is not equitable.

We will consider the cases when k£ = 2 and p < 4 separately; elsewhere
we will assume that the r;’s are non-zero.

We now show that, without loss of generality, we may assume that
p 2 n. Suppose that p < n. Then there are at least n — p R;’s which do
not have a vertex labeled either 0 or £ — 1. Also, since we can assume that
in the collection of vertices {R; U Ra U ... U R,} the only "extra” vertex
labels are 0 and/or k— 1, then there are at most (25%)k+1or (& — 1) k+2
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vertices, or at most p(k — 1) vertices for £ > 2. This implies that we can
redistribute the vertices of the n — p R;’s containing neither aOnora k—1
so that |R;] = 0 for each of these parts. In doing so, we lose edges but do
not lose any edges labeled 0 or k — 1. Thus, if we can show that our new
graph with p parts is not equitable, then we have shown that our original
graph with n > p parts is not equitable. For the rest of the paper, we will
assume that p > n.

Case 1: podd, p>5,k>3

For k = 3, we will show that there are too many edges labeled 1. For
k > 4, we will show that there are too few edges labeled k£ — 1.

Casel.1: k=3

We will show that there are too many edges labeled 1 for the graphs un-

der consideration to be 3-equitable. The idea is to show that ;—:-,fi

I, where I is the minimum number of edges labeled 1.
Suppose p is odd. Then there are either 1”;—1 or 2-5—1 vertices labeled 1.
If there are (251) vertices labeled 1, we have I > (232) (p — 1) since
each 1 vertex label has edges connecting it to at least p—1 vertices labeled 0

.. TiTj ..
or 2. In order to maximize + , we maximize the number of edges.
We haveg%-l- vertices, and thus the upper bound for our fraction is

[(;‘)(ﬁ';,:—‘)z] _ [(n—lxsp—nj

3 24n

since the number of edges is maximized when the parts have the same size.
In order to analyze the inequality

[(n - 1)Bp— 1)2'| =12

24n 2
we recognize that the right hand side is maximized when n is large. But
n is at most §ktl(since each r; is at least 1), so we have the inequality
[(3P _3%‘(13” _1)] < (p_21)2, which holds for p > 5.

If there are (25!) vertices labeled 1, then we have R > (2 (p-1),
and at most

[(’;)@%"- ] _ [(n— 1>(3p+1)2]
3 24n

of each edge label. n is at most 3—511, so we have the inequality

92 -1 p?>-1
[ 24 ]< D)
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which holds for p > 5.
Now suppose that k > 4. We wish to show that (5) holds. To do this, it

. LTt . . e
is sufficient to show that [Lé—'J > P. P is maximized when the z,’s are

distributed as evenly as possible; for p > n this gives us P < # +n-—p

for p odd. In order to minimize [;E,f—rlj-_l, we want to make the r;’s as
uneven as possible. We wish to show that in the most uneven distribution
of r;’s there are enough vertices so that there are either (25%) or (2 —1)
r;’s which are equal to £ — 1. For p odd, this is equivalent to showing
(BHk+1> (B3 (k — 1) + (n — (B52)) which simplifies to p > n. Thus,

we can calculate the lower bound for |<£si— it J:

l(("%—‘)xk ~ 12+ (25Y) (n -

k

- () (o0 - (59) =25

‘We know p > n. To show that our graph is not equitable, we need:

RIGICECOREE S

251) (k- 1) + (*757) J

> p24_1 +n-p
[2k(";—1)((k—2)(?;—3)+n—p)+(n—p+1)2—n—zk—zk(n—m
2k
> -1

% (?—;—1-) ((k 2)( 43>+n p)+(n—p+1)2—n 2% —2k(n—p) > 0

(6)
Case 1.2 k=14
Suppose k = 4. Then there must be at least 4(t) + 1 vertices among
the R;’s, but there can be at most 3n vertices. Thus, we have 2p—2+1 < 3n
orn > gp—'-l- Also, (6) becomes

20-1)(P-3+2n—2p)+(n—p+1)2—n—-8n+8p—8>0

The left hand side i mcreases with n for p > 5. Substituting the minimum
value of n, we get Zp*> — 38p+ 2 > 0 which holds for p > 9.
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If p = 7 then our inequality becomes 151 — 72 + (n — 6)2, which holds
for n > 5, or all possible values of n.

For p = 5, our inequality becomes 7n — 32 + (n — 4)2, which holds for
n > 5.

Thus, we have two cases to check: when n = 4 and p = 5 and when
n=3andp=>5 Whenn =4, p=>5, and k = 4, we have at least 9 vertices
among the R;’s, which implies that there are at least 23 edges. Spreading
the 0’s and 3’s out as evenly as possible, we get 5 edges labeled 3. However,
we know that there can only be 5 edges labeled 0, so there are at least 13
edges labeled either 1 or 2. This implies that at least one of these labels is
used 7 times, and the graph is not equitable.

When n = 3, p = 5, and k = 4, we have exactly 9 vertices and 27 edges.
There are only 4 edges labeled 3, and our graph is not equitable.

Case 1.3: k=35

Suppose k = 5. Then (5) becomes

5(p—1) (n—zg—g) +m-p+1)2-=n-10-10(n—p) >0

The left hand side increases with n for p > 5, so we substitute the
minimum value of n, n = L— and get —p —Tp — 5 > 0 which holds for
p>17. If p=25, then we have the mequahty 9n — 30 + (n — 4)% > 0, which
holds for n > 4. If p = 5 and n = 3, then there are exactly 9 vertices, 27
edges, but only 4 edges labeled 3. Thus, none of these graphs are equitable.

Case 1.4: k> 6

Suppose k > 6. Unless p = 5 and n = 3, (5) increases with k, and so it
is sufficient to show

Zk( )(n N+(n-p+1)2—n—-2k—-2k(n-p) >0

Substituting n = 1”2'—1, we have
1
3(p-1) (- 5)+(p23) ~EXl 1246(p-1)>0
=p>5

If p = 5 and n = 3, then (5) becomes
2k(k—6)—2+2k2>0
which holds for k > 6, and again there are no equitable labelings.

Case 2: peven,p>6, k>3
We will use the same ideas as above.
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Case 2.1: k=3
Suppose k = 3. Then there are § vertices labeled 1, and I > £(p — 1).

There are %E vertices among the , and at most

9] -

of each edge label. n = 922, and so our inequality is

pBp—-2)] _p, _
[ 3 <3l-1)
This inequality holds for p > 62, and we are done.
Suppose k > 4. Then P < E- +n — p. As above, it is easily shown
that there must be at least (& — 1) parts of size k — 1 in the most uneven

riTj

distribution of vertices, giving us a lower bound for [—-—‘-’———

(1) [ (B -1) #n- (3-1)) | 22

Again, we have p > n, which gives us the inequality

2% (- -1) ((k 2) (- —1) +n— p)+(n p+2)? —n—4k—2k(n—p) > 0
(7)
Case 2.2: k=4
Suppose &k = 4. Then n > gp3—_2 must hold. Also, (6) becomes

20p—2)(-p+2n—4)+(n—p+2) -n—-16-8n+8 >0

The left hand side increases with n when n > 6. We substitute the
minimum value of n = —L and get Zp?—p+1L8 > 0, which holds for p >
14. Whenp = 12, we have n>8 and the mequahty 31n—240+(n—10)2 >0
which holds for n > 8; when p = 10, we have n > 6 and the inequality
23n — 160 + (n — 8)2 > 0 which holds for n > 7; when p = 8, we have n. > 5
and the inequality 15n — 96 + (n — 6)% > 0 which holds for » > 7; and when
p =6, we have n > 4 and the inequality 7n — 48 + (n — 4)? which holds for
n > 7. Thus, we need to check the following cases: p = 10, n = 6; p = §,
n=>5or6;and p==6,n=4, 5, or6.

If p =10, n = 6, and k = 4, then there are exactly 18 vertices and 135
edges. We can get at most 25 edges labeled 3, and we are done. If p = §,
n = 6, and k = 4, there are at least 14 vertices and at least 79 edges. We
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can get at most 14 edges labeled 3, and we are done. If p =8, n = 5, and
k = 4, there are at least 14 vertices and at least 78 edges. We can get at
most 13 edges labeled 3, and we are done. If p = 6, n = 4, and k = 4, there
are at least 10 vertices and at least 36 edges. We can get at most 7 edges
labeled 3, and we are done. If p = 6, n = 5, and k = 4, there are at least
10 vertices and at least 38 edges. We can get at most 8 edges labeled 3,
and we are done. If p = 6, n = 6, and k = 4, there are at least 10 vertices
and at least 39 edges. We can get at most 9 edges labeled 3. We also know
that we can get at most 9 edges labeled 0, which means that there are at
least 11 edges labeled either 1 or 2.

Case 2.3: k=5

(6) becomes

5(p—2)(—§+n~3)+(n—p+2)2—n—20—10(n—p)20

The right hand side increases with n for p > 6, so we substitute n = £
and get 3p? — 15p + 14 > 0, which holds for p > 10. If p = 8, then we have
the inequality 19n — 90 + (n — 6)2 > 0, which holds for n > 5. If p = 6,
then we have the inequality 9n — 50 + (n — 4)2 > 0, which holds for n > 6.

If p =8, n = 4, and k = 4, then we must have 14 vertices but can only
have 12 vertices, a contradiction. If p = 6, n = 3, and k = 4, then we must
have 10 vertices but can only have 9. If p =6, n = 4, and k = 4, then we
must have at least 10 vertices and at least 36 edges. We can have at most
7 edges labeled 3, and we are done. If p =6, n = 5, and k = 4, then we
must have at least 10 vertices and at least 38 edges. We can only have 8
edges labeled 3, and we are done.

Case 2.4: k> 6

Suppose k£ > 6. The left hand side of (6) increases with k unless p = 6
and n =4 or 5, so we have

6(p—-2)(n—4)+(n—-p+22?-n—-24—12n+12p >0

The left hand side increases with n for p > 6. Substituting n = &, we
get:

3(p—2)(p—8)+(§—2)2—’-2’—24—6p+12p20
p=8
If we substitute n = £ + 2, we get:
3(p—2)(p—4)+(§—4)2—-‘-g—26—6p—24+12p20
p=6
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So, we must check the following cases: p=6,n =3 and p=6, n = 4.
Checking k& > 7 with these two cases, we get the inequalities:

(o] - s
()] - e

where the second holds.
If k > 8, the first becomes:

2(0)+[—%J>1+3—6

which holds. This leaves the following cases: p=6,n =3 and k =6 or
7; and p =6, n = 4 with £k = 6.

If p=6, n =3, and k = 6, then there must be at least 14 vertices in the
graph. Thus, the minimum number of edges is (5) (5)+(5) (4)+(5) (4) = 65,
requiring at least 10 of each edge label. But we can only get 6 edges labeled
5, and so this case is done. If p = 6, n = 3, and k = 7, there must be at
least 16 vertices, at least (6) (6) + (6) (4) + (6) (4) = 84 edges, and at least
12 of each type. Again, we can only get 6 edges labeled 6. If p=6,n =4
with & = 6, then there must be at least 14 vertices, at least 68 edges, and
at least 11 of each type. However, we can only have 7 edges labeled 5.

Case 3: k=2

Lee, Lee, and Chang [LLC| have given necessary and sufficient con-
ditions for multipartite graphs being 2-equitable(cordial): A complete n-
partite graph K is cordial if and only if the number of parts with an odd
size is less than or equal to 3.

Case 4: p=3

Let p = 3 and n > 3. Until noted otherwise, assume that each part of
our graph has size less than k.

Case 4.1: Suppose there are at least k + 2 vertices total. Then there
are at least 3k — 1 edges, and since we can only have 2 edges labeled k£ — 1
and 2 edges labeled 0, we are done. If there are more than k + 2 vertices
or there are k + 2 vertices distributed more equally, then there are at least
3k edges, and we are done since there can only be two edges labeled k — 1.

Case 4.2: Suppose there are k+ 1 vertices total. Then there is only one
edge labeled 0, and so we must have the most unequal graph, Ky_;,1,1. This
graph has an equitable labeling: {0,1,...,k—2}, {0}, {k—1}. Assuming that
k > 3, we see that: adding a group to the first part maintains equitability
by adding two of each edge label, and thus Kjy4x—1,1,1 is equitable; adding
a group to the second part adds 2k — 2 edges labeled 1 but only & edges
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labeled 0; that adding a group to the third part produces 2k — 2 edges
labeled 1 but only & edges labeled 0; and that adding a group to make a
fourth part adds 2k — 1 edges labeled 1 but only & + 1 edges labeled 0.

Thus, for p = 3, only graphs of the form Kjn4r—1,1,1 are equitable.

Case 5: p=4

Let p = 4 and n > 3. Again, assume that each part is of size less than
k.

Case 5.1: Suppose that there are at least k + 4 vertices total. Then
there are at least 5k — 1 edges, but at most 4 edges labeled £ — 1 and 4
edges labeled 0. If there are more than k + 4 vertices or the k + 4 vertices
are distributed more equally, then there are at least 5k edges and we are
done.

Case 5.2: Suppose there are k + 3 vertices. Then there are at most 3
edges labeled 0. Again, we have 4k—1 edges if the vertices are distributed as
unequally as possible and more edges if they are distributed more equally.
Thus, we consider the graph Ki_1,3,1. There must be exactly 4 of each
edge label other than 0. There are three cases.

Case 5.2.1: Suppose that one part has no vertices labeled either 0 or
k — 1. Then there are at most 2 edges labeled & — 1 and we are done.

Case 5.2.2: Suppose that each part has at least one vertex labeled either
0 or k—1 and that the part which has both a vertex labeled 0 and a vertex
labeled k — 1 is the part with size 3. Then the third vertex in the part of
size 3 connects to one vertex label of each type(since this vertex must have
the third duplicated vertex label). Thus, we have 5 edges labeled 1: 2 from
this special vertex, and 1 from each of the other three vertices in the two
smaller parts.

Case 5.2.3: Suppose that each part has at least one vertex labeled 0 or
k—1 and that the part with two such labels is the part of size k —1. Then,
since one of the labels in the size of part three is a duplicate label which is
not 0 or k — 1, there are again 5 edges labeled 1. (Note that since there is
only one label missing from the part of size & — 1 that the non-duplicate,
non-0 or k — 1 vertex label in the part of size 3 is guaranteed to produce
an edge labeled 1.)

Case 5.3: Suppose there are k+2 vertices, the minimum possible. Then
there are 2 edges labeled 0, and so the only possibility for an equitable graph
is Kj—1,2,1 because this graph has 3k — 1 edges. We know that there must
be 3 of each edge label other than 0, which implies that each part must
have a vertex labeled either 0 or £ — 1. There are now two cases.

Case 5.3.1: Suppose that the part which contains both a vertex labeled
0 and a vertex labeled k — 1 is the part with size k — 1. Without loss
of generality, suppose that the label in the part of size two is a 0. Then
we know that the non-0, non-k — 1 vertex label which appears in the part
of size 2 connects to at least two edges labeled k& — 1. The only way to
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compensate for this is to label the graph so that the vertex labeled 0 in
the part of size 2 connects to no edges labeled 1. The only way to do
this is to put a label of 1 in the part of size 2, which gives us the labeling
{0,2,...,k — 1},{0,1}, {k — 1}, giving us the equitable graph Kj_;,2,. We
check what happens when we add groups: when adding to the first part,
edges labeled 1 increases by 4, edges labeled 0 increases by 3; when adding
to the second part edges labeled 1 increases by 2k — 3, edges labeled 0
increases by k(note that equitability is maintained for & = 3 but that for
k = 3 we have the graph labeled as below); if we add a group to the third
part we increases edges labeled 1 by 2k — 1 and edges labeled 0 by k + 1;
and if we add a group to for a new part we add 2% edges labeled 1 and k+ 2
edges labeled 0.

Case 5.8.2: Suppose that the part with both an vertex labeled 0 and
a vertex labeled & — 1 is the part of size 2. This leads to the labeling
{1,2,...,k—1},{0,k—1}, {0}. Adding a group to the first part, we maintain
equitability by adding 3 of each edge label, giving us the equitable graph
Kinik—1,2,1; adding a group to the second part, we increase edges labeled
1 by 2k — 2 and edges labeled 0 by k; adding a group to the third part,
we increases edges labeled 1 by 2k — 1 and edges labeled 0 by £ + 1; and
adding a group to form a new part, we increase edges labeled 1 by 2k and
edges labeled 0 by &k + 2.

Thus, for p = 4, the only graphs which are equitable are those of the
form Kgnyr-1,2,1-

Case 6: p<2

Without loss of generality, we can assume that there are no duplicate
vertex labels; if there were then we would arrange the labels so p > 2. Thus,
there are no edges labeled 0, and so we have % larger than the number of
edges in our graph.

We note that if we show that a certain graph with & = [ is equitable,
then that same graph will be k-equitable for & > [. However, the problem
of finding this lower bound [ is quite difficult. It can be easily shown that
such an [ exists. However, finding the least ! for which a graph is [-equitable
involves considering a large variety of graphs. For instance, complete graphs
are a subcase: a complete subgraph of size 4, for example, is simply K,1,1,1.
[Go] has shown that the complete graph K, is graceful only for n < 4, but
the question as to the lowest ! such that K, is l-equitable seems quite
difficult. In terms of the more general case, the only results seem to be
that [AM] has shown that the graph K1, » is graceful, and [Gn, p. 25-31]
has shown that K1 m n» and Ko m,n are graceful.

We can now formulate:

Theorem 12 For k > 3, k less than or equal to the number of edges in
our graph, the only k-equitable complete multipartite graphs Ky, n,,...n, are
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Kinti-1,21 and Kgngpr_11,1-

Proof. The theorem follows from the preceding arguments. ll

4 Conclusion:

Complete bipartite and multipartite graphs have enough structure that,
for most cases, it is possible to determine whether they are k-equitable.
However, even given the rigid structure of complete multipartite graphs, the
k-equitability of complete multipartite graphs when & exceeds the number
of edges is as of yet undetermined. The k-equitability of many types of well-
structured graphs, such as wheels, ladders, and other symmetric graphs, is
also unknown; however, the strong structural requirements of these graphs
suggests that the question of their k-equitability may soon be settled.
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