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Abstract

We give new sets of sequences with zero autocorrelation function
and entries from the set {0, +a, +b, *c} where a, b and ¢ are
commuting variables (which may also be set zero). Then we use
these sequences to construct some new orthogonal designs.

We show the known necessary conditions for the existence of an
0OD(28; 31,52, 33) plus the condition that (si,s2,53) # (1, 5,20) are
sufficient conditions for the existence of an OD(28;s1,s2,53). We
also show the known necessary conditions for the existence of an
OD(28; 31, 32, s3) constructed using four circulant matrices are suffi-
cient conditions for the existence of 4-N PAF(s,, s2,s3) of length n
for all lengths n > 7.

We establish asymptotic existence results for OD(4N; sy, s2) for
3 < s1 + 82 < 28. This leaves no cases undecided for 1 < s; +
s2 < 28. We show the known necessary conditions for the exis-
tence of an OD(28;31,s2) with 25 < s; + s2 < 28, constructed
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using four circulant matrices, plus the condition that (s1,82) #
(1,26), (2,25), (7,19), (8,19) or (13,14), are sufficient conditions for
the existence of 4-N PAF(sy, s2) of length = for all lengths n > 7.
Key words and phrases: Autocorrelation, construction, sequence, or-
thogonal design.
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1 Introduction

Throughought this paper we will use the definitions and notation of Kouk-
ouvinos, Mitrouli, Seberry and Karabelas [4]. Parts (i) and (ii) of the next
theorem appear in Geramita and Seberry [2]. Part (iii) appears in Eades

[1].

Theorem 1 (Necessary Conditions) Write (s;,s;), for the Hilberi norm
residue symbol. The following conditions are necessary for the ezistence of
an OD(4n; 5,52, -, 8¢) in orders with n odd:

i) for £ =2, (—1,s152)p(s1,52)p = 1 for all primes p;

i) for £ =3, (51,52)p(51,53)p(52,83)p(—1, 515283)p = 1 for all primes p;
if s14+82+53 = n—1 then sy 5253 is a square and (s1,52)p(51,53)p(52,53)p
=1 for all primes p;

The Goethals-Seidel construction can only be used if

iti) there exists a t x 4 integer matriz P (called the sum-fill matriz), with
all entries of modulus < n which satisfies PPT = diag(sy, 52, 5t),
t<4.

In this paper there are no 2- or 3-tuples which satisfy (i) and (ii) which
do not also satisfy (iii). However in others orders, such as 20, this does
happen. For example the following matrix

1 1 1 0
P=12 -1 -11
0 2 -2 0

is a 3 x4 integer matrix satisfying PPT = diag(3,7,8) and yet an exhaustive
search has not found suitable sequences to construct the 0D(20;3,7,8)
using the Goethals-Seidel array neither is any other 0D(20;3,7,8) known.
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2 New orthogonal designs

2.1 Four variable designs

We note that the OD(28;4,4,9,9) is known but not constructed from cir-
culant matrices. We have carried out a computer search, which we believe
was exhaustive, to find:

Lemma 1 The following orthogonal designs

0D(28;1,4,9,9) OD(28;1,8,8,9) OD(28;2,8,9,9)
0D(28;3,6,8,9) OD(28;4,4,4,9) 0OD(28;4,4,9,9)

cannot be consiructed using four circulant matrices in the Goethals-Seidel
array.

2.2 Three variable designs

In the next theorem the designs for (3,6,16), (3,8,15), (4,6,11), (8,8,9),
and (8,9,9) are not new but giveb in [3]. We quote the sequences to
construct them in Appendix C for completeness. Thus we have

Theorem 2 There ezist orthogonal designs OD(4n;s;,ss,s3) where
(s1,82,53) is one of the 3-tuples

(1,1,17)  (1,3,14)  (1,6,11)  (1,8,11) (1,8
(1,9,16)  (2,5,7)  (2,7,10) (2,7,13) (2,8
(3,4,14)  (3,6,8) (3,6,16) (3,7,11)  (3,8,10)
(3,8,15)  (3,9,14)  (4,4,13) (4,5,14) (4,6
(5,5,13) (5,10,10) (7,8,13)  (8,8,9)  (

for all n > 7, constructed using four circulant matrices in the Goethals-
Seidel array.

Proof. We use the 4-NPAF given in Appendices A and C, as the first
rows of circulant matrices in the Goethals-Seidel array to obtain the re-
quired orthogonal designs. Since these sequences have zero non-periodic
autocorrelation function, the sufficient zeros are added to the end to make

their length n > 7.
O
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Using the design for (4,9, 13) which is given in Koukouvinos [3] we find:

Theorem 3 There ezist orthogonal designs O D(28; s1, s2,53), constructed
using four circulant matrices in the Goethals-Seidel array, where (51, 83,83)
is one of the 3-tuples

1,1,17)  (1,3,14) (1,6,11)  (1,8,11)  (1,8,16)
(1,8,17)  (1,9,16) (2,4,22) (2,57  (2,7,10)
(2,7,13)  (2,8,18) (2,9,11)  (2,9,17)  (3,4,14)
(3,6,8)  (3,6,16) (3,6,17)  (3,7,11)  (3,7,15)
(3,8,10)  (3,8,15) (3,9,14)  (3,10,15) (4,4,13)
(4,5,14)  (4,6,11) (4,9,13)  (4,10,11) (5,5,13)
(5,5,18)  (5,9,14) (5,10,10) (6,7,8)  (6,9,11)
(7,8,10)  (7,8,13) (8,8,9) (8,9,9) (8,9,11)
(9,9,10).

Proof. We use the sequences given in Appendices A, B and C, which have
zero periodic and non-periodic autocorrelation function, as the first rows of
the corresponding circulant matrices in the Goethals-Seidel array to obtain
the required orthogonal designs.
a
We have carried out a computer search, which we believe was exhaus-
tive, to find:

Lemma 2 OD(28;1,5,20) and OD(20;3,7,8) cannot be constructed using
four circulant matrices in the Goethals-Seidel array.

Theorem 4 There are no orthogonal designs OD(4n;sy,s2,53), for any
odd n > 7, constructed using four circulant matrices in the Goethals-Seidel
array, where (sy,s2,s3) is one of the 3-tuples

(1,3,22) (1,5,19) (2,5,15) (2,6,11) (2,6,17)
(2,11,11) (2,11,13) (2,11,15) (3,7,10) (3,11,14)
(4,5,19) (5,6,14) (5,6,15) (5,7,10) (5,7,14)
(6,8,11) (7,10,11),
Proof. There is no integer sum-fill matrix P as described in Theorem
1(iii). o
An exhaustive computer search showed that the the following 3-tuples
do not correspond to 4-NPAF.

Theorem 5 There are no 4-NPAF(sy,s2,53) or 4-NPAF(sy,52, 53, 54)
of length 5 for the following 3- and 4-tuples

(1,3,14)  (1,4,13)  (1,5,200 (3,7.8) (1,3,6,8) (1,4,4,9)
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Proof.

The existence of 4-NPAF(1,3,6,8) of length 5, after equating the last
two variables would prove the existence of 4-NPAF(1,3,14) of length 5;
hence the nonexistence of 4-NPAF(1,3,14) of length 5 gives the nonexis-
tence of -NPAF(1,3,6,8).

Also, the existence of 4-NPAF(1,4,4,9), after equating the last two
variables would prove the existence of 4-NPAF(1,4,13) of length 5: the
nonexistence of 4-NPAF(1,4,13) of length 5 gives the nonexistence of 4-
NPAF(1,4,4,9). o

We have carried out a computer search, which we believe was exhaus-
tive, to find:

Lemma 3 The necessary condilions given by Theorem 1 plus the condilion
that (s1, s2,83) # (1,5,20) are sufficient conditions for the existence of an
0OD(28;s,, 52, 53)-

Proof. See Table 1. (]

Theorem 6 There are no 4-NPAF (51, 52,53) of length 7 for the following
3-tuples

(1,1,25)  (1,1,26)  (1,2,25) (1,8,17)  (1,8,18)  (1,8,19)
(1,9,13) (1,10,14) (1,13,13) (1,13,14) (2,4,22)  (2,7,19)
(2,9,17)  (2,13,13) (3,6,17)  (3,7,15)  (3,10,15) (4,4,18)
(4,9,13)  (4,10,11) (5,5,18)  (5,9,9) (5,9,14)  (6,7,8)
(6,9,11) (7,8,10)  (8,9,11)  (9,9,9) (9,9, 10).

Proof. We have carried out a computer search, which we believe was
exhaustive, to find that there are no 4-NPAF(sy, s2) for the following 2-
tuples

(1,26) (2,25) (7,19) (8,19) (13,14).
Hence, there can be no 4-NPAF(s;,s2,s3) of length 7 for the following
3-tuples
(1,1,25)  (1,1,26)  (1,2,25) (1,8,18) (1,8,19) (1,13,13)
(1,13,14) (2,7,19).

A complete computer search has also given that there are no
4-NPAF(sy,s2,s3) of length 7 for the following 3-tuples

101



(1,8,17)  (1,9,13) (1,10,14) (2,4,22) (2,9,17)  (2,13,13)
(3,6,17) (3,7,15) (3,10,15) (4,4,18) (4,9,13)  (4,10,11)
(5,5,18)  (5,9,9)  (5,9,14)  (6,7,8)  (6,9,11) (7,8,10)
(8,9,11)  (9,9,9)  (9,9,10)

O

Remark 1 The 236 3-tuples given in Table 1 are possible types of orthog-
onal designs in order 28 which might be made using four sequences. There
are no cases unresolved. We use

n if they are made from 4-sequences with zero NPAF and length n;

P if they are made from 4-sequences with zero PAF;

X if they do not exist because the integer sum-fill matrix does not exist;

Y as it does not exist by what we believe was an exhaustive computer
search for length 7.

In the Table a design marked by * is known in all orders 4n > 24; a t
indicates the design is known for 4n > 28 from [3]. o

2.3 Two variable designs

Lemma 4 The ezistence of an OD(28;s1,s2) plus condition (iii) from
Theorem 1 is equivalent to the existence of 4-N PAF(sy,s2), with the pos-
sible ezception of (s1,s2) = (1,26), (2,25), (7,19), (8,19), and (13,14).

Proof. The theoretical necessary conditions of Theorem 1 are used
to prove the following 2-tuples (s;,s2) do not give orthogonal designs

0D(28;s1,82):

(L7 35 47 (512 (7,9 (9,15 (12,13)
(1,15) (3,13) (4,15) (5,19) (7,16) (10,17) (12,15)
(1,23) (3,20) (4,23) (5,22) (7,17) (11,13)
(2,14) (3,21) (5,11) (6,10) (8,14) (11,16).

The specific cases mentioned in the enunciation have been eliminated
by exhaustive computer search.

The 4-N PAF(s1,s2) can easiy by used in the Goethals-Seidel construc-
tion to form OD(28;s1, s2) giving the sufficiency. a

3 Asymptotic Results
Tables 2, 3 and 4 indicate the smallest known length, ¢, such that 4-

NPAF(48;s1,52), with 0 = 51 + s2 < 28 exist for every length > ¢.
Every case for 1 < o < 28 is resolved.
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All the results not given in this paper may be found in Geramita and
Seberry (2, p168)] and [4, 5].

(1,1,1) 1 (1,5,168) 7 (2,4,9) 5 (3,4,18) 7 (4,9,100 7
(1,1,2) 1 (1,519) X (2,4,11) 5 (3,6,6) 5 (4,913t 7
(1,1,4) 2 (1,5,20) Y (2,4,12) 7 (3,6,8) 5 (4,10,10) 7
(1,1,5) 3 (1,6,8) 5 (2,4,16) 7 (3,6,9) 5 (4,10,11) P
(1,1,8) 3 (1,6,11) 5 (2,4,17) 7 (3,6,11) 5 (4,10,14) 7
(1,1,9) 7 (1,6,12) 7 (2,418 7 (3,6,12) 7 (5,5,5) 7
(1,1,10) 3 (1,6,14) 7 (2,4,19) 7 (36,16t 7 (55,8) 7
(1,1,13) 5 (1,6,18) 7 (2,4,22) P (3,6,17) P (5,5,9) 5
(1,1,16) 7 (1,6,21) 7 (2,5,5) 3 (3,6,18) 7 (55,100 5
(1,1,17)» P (1,8,8) 7 (2,5,7) 5 (36,199 7 (55,13) P
(1,1,18) 6 (1,8,9) 5 (2,5,8) 5 (3,7,8) 6 (55,16) 7
(1,1,200 6 (1,8,11) 5 (2,5,13) 6 (3,7,10) X (5,5,18) P
(1,1,25) P (1,8,12) 7 (2,5,15) X (3,7,11) T (5,6,9) 7
(1,1,26) P (1,8,16) 7 (2,5,18) 7 (3,7,15) P (56,14) X
(1,2,2) 2 (1,8,17) P (2,6,7) 5 (3,7,18) 7 (56,15) X
(1,2,3) 2 (1,8,18) P (2,6,9) 5 (3,8,9) 7 (5,7,8) 7
(1,2,4) 2 (1,8,19) P (2,6,11) X (3,810« P (57,100 X
(1,2,86) 3 (1,9,9) 7 (26,12) 6 (3,815t 7 (57,14) X
(1,2,8) 3 (1,9,10) 5 (26,13) 7 (3,9,14) 7 (58,8) 7
(1,2,9) 3 (1,9,13)» P (2,6,16) 7 (3,10,15) P (58,13) 7
(1,2,11) 5 (1,9,16) 7 (2,6,17) X (3,11,14) X (5,9,9)x P
(1,2,12) 5 (1,9,18) 7 (2,7,10) 7 (4,4,4) 3 (5910« P
(1,2,16¢) 7 (1,10,10) 7 (2,7,12) 7 (4,4,5) 5 (5914) P
(1,2,17) 5 (1,10,11) 7 (2,7,13) 7 (4,4,8) 7 (5,10,10) 7
(1,2,18) 6 (1,10,14) P (2,7,19) P (4,4,9) 5 (6,6,6) 7
(1,2,19) 6 (1,13,13) P (2,8,8) 5 (44,100 5 (6,6,12) 7
(1,2,22) 7 (1,13,14) P (2,8,9) 5 (4,4,13) 7 (6,7,8) P
(1,2,25) P (2,2,2) 2 (2,810) 5 (4,4,16) 7 (6,8,9) 7
(1,3,6) 3 (2,2,4) 2 (2,813 7 (4,4,17) 7 (6,8,11) X
(1,3,8) 3 (2,2,5) 3 (2,8,18) 7 (4,4,18) P (6,8,12) P
(1,3,14) 6 (2,2,8) 3 (2,818 7 (4,4,200 7 (6,911) P
(1,3,18) 6 (2,2,9) 5 (2,9,9) 5 (4,5,5) 5 (7,7,7) 7
(1,3,22) X (2,2,10) 5 (2,9,11) 6 (4,5,6) 5 (7,7,14) 7
(1,3,24) 7 (2,2,13) 5 (2,9,12) 7 (4,5,9) 5 (7,8,10)0 P
(1,4,4) 5 (2,2,16) 7 (2,9,17) P (4,5,14)« P (7,8,13) 7
(1,4,5) 5 (2,2,17) 7 (2,10,10) 6 (4,5,16) 7 (7,10,11) X
(1,4,8) 5 (2,2,18) 6 (2,10,12) 6 (4,5,19) X (8,8,8) 7
(1,4,9) 5 (2,2,20) 7 (2,11,11) X (4,6,8) 5 (889t 7
(1,4,10) 5 (2,3,4) 3 (2,11,13) X (4,6,11)f 7 (8,8,10) 7
(1,4,13) 7 (2,3,6) 3 (2,11,15) X (4,6,12) 7 (89,9t 7
(1,4,16) 7 (2,3,7) 3 (2,13,13) P (4,6,14) 7 (8,9,11) P
(1,4,17) 7 (2,3,9) 5 (3,3,3) 3 (46,18) 7 (8,10,10) 7
(1,4,18) 7 (2,3,10) 7 (3,3,6) 3 (4,8,8) 7 (9,9.9) P
(1,4,200 7 (2,3,15) 7 (3,3,12) 7 (4,8,9) 7 (9,9,10) P
(1,5,5) 3 (2,3,16) 7 (3,3,15) 7 (4,8,11) 7

(1,5,6) 3 (2,4,4) 3 (3,4,6) 5 (4,8,12) 7

(1,5,9) 5 (2,4,6) 3 (3,4,8) 5 (4,8,16) 7

(1,5,149) 5 (2,4,8) 5 (3,4,14)x P (4,9,9) 6

Table 1: Census of 3-variable designs in order 28.
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Theorem 7 Suppose sy, sz and N are such that the necessary conditions
of Theorem 1 are satisfied. Then an OD(4N;s),s2) exists for

(i) N>22for2<s1+s52<8;
(31) N24f0r9581+S2S16,'

(i) N > 5 for 17 < sy + s2 < 20 ezcept possibly for the 2-tuples (3,16),
(6,13), (7,11), (7,12) which are the types of orthogonal designs for
orders 4N, N > 6;

(iv) N > 6 for21 < s; +s2 < 24;
(v) N>7 for25 < sy +s2 < 28.

Proof. Every 2-tuple with 2 < s; + 52 < 8 is the type of an OD(8; sy, 52)
from [2, p.368]. This combined with Table 2 gives the result of (i).

For (ii), every 2-tuple with 9 < s;+s2 < 16 is the type of an OD(16; 51, 52)
from [2, p.389). This combined with Table 3 gives the result. Geramita and
Seberry give the existence of OD(24;sy,s2) for (s1,52) = (3,16), (6,13),
(7,11) and (7,12). Hence, using Table 2 these are the types of orthogonal
designs in all orders 4N, N > 6. The remainder of the 2-tuples for which
17 < s1 + s2 < 20 are given in Table 3. This establishes (iii).

All 2-tuples 2 < s; + s2 < 24 are the types of an OD(24;s,,s2) from (2,
p.391]. This combined with Tables 3 and 4 gives the result for (iv).

Table 4 gives the result for all 2-tuples except (1,26), (2,25), (7,19)
(8,19) and (13, 14). Table 1 shows an OD(28; 51, s2) exists for each of these
2-tuples. [2, p.394 and p.395] shows each of these 5 2-tuples is the type of
an orthogonal design in orders 32 and 40. Now (5] gives OD(4m; sy, s2),
for these (s1, s2) with m > 9 and so we have that these designs exist for all
N > 17, giving (v). o

Table 2: The indicated 4-N PAF(s1,32) with 1 <81 +32 <10
exist for every length N > ¢.
The cases marked no have been excluded by Theorem 1.

8,32 o ( 8,92 o 8,52 o s1.52 o (¢ s1,82 o
(L) 2 1 (1,2) 3 1 (14) 5 2 (16) 7 3 (1,8) 9 3
(13) 14 1 (13 6 2 | 7 no | (1,9) 10 3

22y 4 1 23) 5 2 28) 7 3 (27) 9 3

{(24) 6 2 (26) 8 2 (2.8) 10 3

33) 6 2| (34 7 3 (36) 9 3

{3.5) no 3.7 1w 3

(44) 8 2 (45 9 3

(46} 10 3

(55) 10 3
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Table 3: The indicated 4-N PAF(s),82) with 11 < 51 452 < 20
exist for every length N > £.
The cases marked no have been excluded by Theorem 1.

s,82 0O [ 81,82 O

8,92 © [4 5,8 o [] 31, 82 o £
10y 11 3 ) 13 4 | (04 15 5 (.16) 17 5 i, 19 3
(.1 12 3 (113) 14 5 (1,15) no (1,17 18 5 (1.19) 20 5
299 1 s (211) 13 5 (2,13) 15 5 (2,15) 17 5 (2,17 19 5
(2,10) 12 3 (2,12) 14 5§ (2,!4] no (2,16) 18 5 (2,18) 20 5
(38 11 3 (3,100 13 5 (3.12) 15 5 (3.14) 17 5 (3,16) 19 7
39 12 3 (3.11) 14 5 (3,13) no (3,15) 18 5 (3,17) 20 5
(4,7) no 49 13 5 (4,11) 15 5 (4.13) 17 5 (4, 15) no
(48) 12 3 (4,10) 14 5 (1,12) 16 5 (4,14) 18 5 (4,16) 20 5
(56) 11 3 (58) 13 5 (5,10) 15 5 (5,12) no (5,14) 19 5
67 12 3 (59 14 5 | (511) no | (5.13) 18 5 (5,15) 20 5
(66 12 3 67 13 5 | (69 15 5 (6,11) 17 s (6,13) 19 7
(6,8) 14 5 (6,10) ne | (6,12) 18 5 (6,14) 20 5
(,7) 14 4 (1.8) 15 5 (7,10) 17 5 (1,12) 19 7
(7,9) no | (7,11) 18 5 (1,13) 20 5
(8.8 16 5 (89 17 5 811) 19 5
(8,10) 18 5 (8,12) 20 5
(9,9 18 5 (9,10) 19 5
(9,11) 20 5
(10,10) 20 5
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Table 4: The indicated 4-N PAF(s1,32) with 21 < 81 + 32 < 28
exist for every length N > ¢.
The cases marked no have been excluded by Theorem 1.

31,92 g 51,82

31, 32 g o $1, 82 o
(1,200 21 6 | (122 = 7 | (L24) 2 7 | (1.26) 27 9
(1,21) 22 6 (1,23) wo | (L25) 26 7 (1,21) 28 7T
(2,19) 21 6 (2,21) 23 7 | (2,23) 25 7 2,25) 27 9
(2,200 22 ¢ (2,22) 24 6 (2,2 26 7 (2.26) 28 7
(3.18) 21 6 (3,20 no | (3,22) 25 7 (3.24) 27 71
(3,19) 22 7 (3.21) wo | (3,23) 26 7 (3.25) 28 7
(417) 21 7 (419 23 7 | (w2 25 7 | (4,23) no
(4,18) 22 6 (4200 24 6 | (422) 26 7 | (4,24) 28 7
(5,16) 21 7 (5.18) 23 7 | (5,200 25 7 | (5.22) 1o
(5.17) 22 7 (5.19) no | (5.21) 2% 7 (5,23) 28 7
(6,15) 21 7 6,17y 23 7 (6,19) 5 7 6,21) 21 7
(6,16) 22 6 | (6,18) 24 6 | (6,200 26 7 | (6,22) 28 7
(r,14) 21 7 (7,16) no (7,18) 25 7 (7,20) no
(7,15) 22 7 (7.17) no | (119) 26 9 | (7.21) 28 7
(813 21 7 (8.15) 23 7 (817) 25 71 (8,19) 21 9
(8,14) no | (8,16) 24 6 | (818 26 7 | (8200 28 7
(9.12) 21 7 (9,14) 23 7 (9.16) 25 7 (9,18) 27 7
(0.13) 22 6 (9,15) no | (9,17) 26 7 (9,19) 28 7
(10,11) 21 6 (10,13) 23 7 (10,15) 25 7 (10,17) no
(10,12) 22 6 (10,14) 24 6 (10,16) 26 7 (10,18) 28 7
(1,11) 22 6 (1,12) 23 7 | (1,14) 25 7 | (11,18) no
{11,13) no | (1,15) 26 1 | (1,17) 28 7

(12,12) 24 6 (12,13) no (12,15) no

(12,14) 26 7 (12,16) 28 7

(13.13) 26 7 | (13,14) 27 9

(13,15) 28 7

(14,14) 28 7
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Ortder 20 (Sequences with zero nonperiodic autocorrelation function)

Appendix A
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Appendix B: Order 28 (Sequences with zero periodic autocorrelation function)
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Appendix C: Order 28 {Sequences with zero nonperiodic autocorrelation function)
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