E_3 -Cordial Graphs

I. Cahit and R. Yilmaz

Department of Mathematics and Computer Science

Eastern Mediterranean University

G. Magosa, North Cyprus

ABSTRACT. In this paper generalization of edge-cordial labellings are introduced and studied for special classes of trees and graphs.

1 Introduction

Edge-graceful graphs have been attracting the attention of graph theorists for the last decade, a number of conjectures have been proposed, and many problems related to the topic remain unsolved [9]. A graph G(V, E) is said to be edge-graceful if there exists a bijection $f: E \longrightarrow \{1, 2, ..., |E|\}$ so that the induced mapping $f^+: V \longrightarrow \{0, 1, ..., |V|-1\}$ given by $f^+(x) = \Sigma\{f(xy)|xy \in E\} \pmod{|V|}$ is a bijection [9], [10]

One of the well known conjectures came from Lee in 1989 [6]:

Conjecture (Lee). Every tree with an odd number of vertices is edge-graceful.

He showed that every tree with an odd number of vertices and with at most one vertex with degree 2 is edge-graceful, and he also gave several classes of trees for which the conjecture holds. For further results on edge-graceful regular graphs and trees see Cabaniss et.al. [7]. However Lee's conjecture has not been proved yet.

In [8] the authors have adopted cordial labelling of graphs [1], [5] to edge-cordial graphs. In this paper we generalize edge-cordial (simply e-cordial) labellings to E_k -cordial labellings of graphs. We focus our attention on the case k=3. We hope that a study of E_k -cordial labellings of graphs may give us a better understanding of edge-graceful graphs. This expectation is reasonable for at least two reasons. Firstly the case for k=3 is the least difficult case if we would compare with the cases k>3 and secondly the study of simplest case other than k=2 e.g., edge-cordial labelling may relieve further clue for the general edge-graceful labelling of graphs [8].

Note that the notion of edge-cordial and its generalization developed here is different than the labellings [2],[3] although they also rely on the cordial labellings of graphs [1]. For the undefined terms the reader is reffered to [2].

Definition 1. Let f be an edge labelling of graph $G = \{V, E\}$, such that $f: E(G) \longrightarrow \{0, 1, 2, ..., k-1\}$, and the induced vertex labelling is given as $f(v) = \sum_{\forall u} f(u, v)$ (mod k), where $v \in V$ and $\{u, v\} \in E$. f is called an E_k -cordial labelling of G, if the following conditions are satisfied for $i, j = 0, 1, ..., k-1, i \not\models j$.

1)
$$|e_f(i) - e_f(j)| \le 1$$
,

2)
$$|v_f(i) - v_f(j)| \le 1$$
;

where $e_f(i)$, $e_f(j)$ denote the number of edges, and $v_f(i)$, $v_f(j)$ denote the number of vertices labelled with i's and j's respectively.

The graph G is called E_k -cordial if it admits an E_k -cordial labelling.

The case k = 2 is the *E-cordial* case which was introduced and discussed in detail in [8]. In this paper, we investigate the E_3 -cordiality of some special classes of graphs.

2 E_3 -Cordial Graphs

Theorem 1. Every path P_n , $n \ge 2$, is E_3 -cordial, where n is the number of edges in P_n .

Proof: Label P_n as follows:

(i) If $n \equiv 0 \pmod{3}$ label the edges in the following order:

such a labelling will result in $e_f(0) = e_f(1) = e_f(2) = \frac{n}{3}$, and $v_f(0) = \frac{n}{3} + 1$, $v_f(1) = v_f(2) = \frac{n}{3}$.

(ii) If $n \equiv 1 \pmod{3}$ label the edges in the following order:

such a labelling will result in $e_f(0) = \frac{n-1}{3} + 1$, $e_f(1) = e_f(2) = \frac{n-1}{3}$, and $v_f(0) = \frac{n-1}{3}$, $v_f(1) = v_f(2) = \frac{n-1}{3} + 1$.

(iii) If $n \equiv 2 \pmod{3}$ label the edges in the following order:

such a labelling will result in $e_f(0) = \frac{n+1}{3-1}$, $e_f(1) = e_f(2) = \frac{n+1}{3}$, and $v_f(0) = v_f(1) = v_f(2) = \frac{n+1}{3}$.

Hence P_n is always E_3 -cordial.

Theorem 2. A star S_n , $n \ge 2$, is E_3 -cordial iff $n \not\equiv 1 \pmod{3}$.

Proof:

(i) If $n \equiv 0 \pmod{3}$, label the edges of S_n such that $e_f(0) = e_f(1) = e_f(2) = \frac{n}{3}$ and the resulting vertex labelling will give $v_f(0) = \frac{n}{3+1}$, $v_f(1) = v_f(2) = \frac{n}{3}$.

(ii) Let $n \equiv 1 \pmod{3}$, i.e., $n = 3k + 1, k \geq 1$ and let v_c be the central vertex of S_n . In this case, for any E_3 -cordial labeling f we must have at least k edges labelled with 0's, 1's and 2's. Let e be the unlabeled edge of S_n . Then we have

$$v_f(v_c) = 3k + f(e) + 1 = f(e) + 1 \pmod{3}.$$

If we put f(e) = 0 then $v_f(0) = v_f(i) + 2$, i = 1, 2. If we put f(e) = 1 then $v_f(1) = v_f(i) + 2$, i = 0, 2. Finally if we put f(e) = 2 then $v_f(2) = v_f(i) + 2$, i = 0, 1. Hence there exists no E_3 -cordial labeling of S_n for $n \equiv 1 \pmod{3}$.

(iii) If $n \equiv 2 \pmod{3}$, label the edges of S_n such that $e_f(0) = \frac{n+1}{3-1}$, $e_f(1) = e_f(2) = \frac{n+1}{3}$, and the resulting vertex labelling will give $v_f(0) = v_f(1) = v_f(2) = \frac{n+1}{3}$.

Theorem 3. Every complete graph K_n , $n \geq 3$, is E_3 -cordial.

Proof: We use induction on n. The induction step is given as follows:

(i) Let f be the E_3 -cordial labelling of K_n , when $n \equiv 0 \pmod{3}$, i.e. n = 3k. The weights of vertices and edges are necessarily $v_f(0) = v_f(1) = v_f(2)$, and $e_f(0) = e_f(1) = e_f(2)$. Let

$$f(v_i) = \begin{cases} 0 & i = 1, 2, \dots, \frac{n}{3} \\ 1 & i = \frac{n}{3} + 1, \dots, \frac{2n}{3} \\ 2 & i = \frac{2n}{3} + 1, \dots, n \end{cases}$$

Add a new vertex v_{n+1} , adjacent to each vertex of K_n , thus obtaining K_{n+1} . Let f' be a labelling of K_{n+1} , such that:

$$f'(v_i, v_{n+1}) = \begin{cases} 0 & i = 1, 2, \dots, \frac{n}{3} \\ 1 & i = \frac{n}{3} + 1, \dots, \frac{2n}{3} \\ 2 & i = \frac{2n}{3} + 1, \dots, n \end{cases}$$

and

$$f'(v_i) = \begin{cases} 0 & i = 1, 2, \dots, \frac{n}{3} \\ 2 & i = \frac{n}{3} + 1, \dots, \frac{2n}{3} \\ 1 & i = \frac{2n}{3} + 1, \dots, n \end{cases}$$

and it follows that f'(n+1) = 0, and $v_{f'}(0) = \frac{n}{3+1}$, $v_{f'}(1) = v_{f'}(2) = \frac{n}{3}$, and $e_{f'}(0) = e_{f'}(1) = e_{f'}(2) = \frac{n(n+1)}{6}$. Therefore f_r is an E_3 -cordial labelling of K_{n+1} where $n+1 \equiv 1 \pmod{3}$.

(ii) Let f be the E_3 -cordial labelling of K_n , when $n \equiv 1 \pmod 3$, i.e. n = 3k+1. From the previous step we have $v_f(1) = v_f(2) = v_f(0)-1$, and $e_f(0) = e_f(1) = e_f(2)$. Let

$$f(v_i) = \begin{cases} 0 & i = 1, 2, \dots, \frac{n+2}{3} \\ 1 & i = \frac{n+2}{3} + 1, \dots, \frac{2(n+2)}{3} - 1 \\ 2 & i = \frac{2(n+2)}{3}, \dots, n \end{cases}$$

Add a new vertex v_{n+1} , adjacent to each vertex of K_n , thus obtaining K_{n+1} . Let f' be a labelling of K_{n+1} , such that:

$$f'(v_i, v_{n+1}) = \begin{cases} 0 & i = 1, 2, \dots, \frac{n-1}{3} \\ 1 & i = \frac{n+2}{3}, \dots, \frac{2(n-1)}{3} \\ 2 & i = \frac{2n+1}{3}, \dots, n \end{cases}$$

and

$$f'(v_i) = \begin{cases} 0 & i = 1, 2, \dots, \frac{n-1}{3}; i = \frac{2n+1}{3} \\ 1 & i = \frac{n+2}{3}; i = \frac{2(n+2)}{3}, \dots, \\ 2 & i = \frac{n+5}{3} + 1, \dots, \frac{2(n-1)}{3} \end{cases}$$

and it follows that f'(n+1) = 2, and $v_{f'}(0) = v_{f'}(1) = v_{f'}(2) + 1$, and $e_{f'}(0) = e_{f'}(1) = e_{f'}(2) - 1$. Therefore f, is an E_3 -cordial labelling of K_{n+1} where $n+1 \equiv 2 \pmod{3}$.

(iii) Let f be the E_3 -cordial labelling of K_n , when $n \equiv 2 \pmod{3}$, i.e. n = 3k+2. From the previous step we have $v_f(0) = v_f(1) = v_f(2)+1$, and $e_f(0) = e_f(1) = e_f(2) - 1$. Let

$$f(v_i) = \begin{cases} 0 & i = 1, 2, \dots, \frac{n+1}{3} \\ 1 & i = \frac{n+1}{3} + 1, \dots, \frac{2(n+1)}{3} \\ 2 & i = \frac{2(n+1)}{3} + 1, \dots, n \end{cases}$$

Add a new vertex v_{n+1} , adjacent to each vertex of K_n , thus obtaining K_{n+1} . Let f' be a labelling of K_{n+1} , such that:

$$f'(v_i, v_{n+1}) = \begin{cases} 0 & i = 1, 2, \dots, \frac{n+1}{3} \\ 1 & i = \frac{n+1}{3} + 1, \dots, \frac{2(n+1)}{3} \\ 2 & i = \frac{2(n+1)}{3} + 1, \dots, n \end{cases}$$

and

$$f'(v_i) = \begin{cases} 0 & i = 1, 2, \dots, \frac{n+1}{3} \\ 2 & i = \frac{n+1}{3} + 1, \dots, \frac{2(n+1)}{3} \\ 1 & i = \frac{2(n+1)}{3} + 1, \dots, n \end{cases}$$

and it follows that f'(n+1) = 1, and $v_{f'}(0) = v_{f'}(1) = v_{f'}(2)$, and $e_{f'}(0) = e_{f'}(1) = e_{f'}(2)$. Therefore f, is an E_3 -coordial labelling of K_{n+1} where $n+1 \equiv 1 \pmod{3}$.

This completes the induction step and thus the proof.

Theorem 4. Every cycle C_n , $n \geq 3$, is E_3 -cordial.

Proof: The following labelling procedure results in E_3 -cordial C_n :

(i) If $n \equiv 0 \pmod{3}$ label the edges as:

$$f(e_i) = \begin{cases} 0 & i = 1, 2, \dots, \frac{n}{3} \\ 1 & i = \frac{n}{3} + 1, \dots, \frac{2n}{3} \\ 2 & i = \frac{2n}{3} + 1, \dots, n \end{cases}$$

This will result in $e_f(0) = e_f(1) = e_f(2) = \frac{n}{3}$, and $v_f(0) = v_f(1) = v_f(2) = \frac{n}{3}$.

(ii) If $n \equiv 1 \pmod{3}$ label the edges as:

$$f(e_i) = \begin{cases} 0 & i = 1, 2, \dots, \frac{n+2}{3} \\ 1 & i = \frac{n+2}{3} + 1, \dots, \frac{2(n-1)}{3} + 1 \\ 2 & i = \frac{2(n-1)}{3} + 2, \dots, n \end{cases}$$

This will result in $e_f(0) = \frac{n-1}{3+1}$, $e_f(1) = e_f(2) = \frac{n-1}{3}$, and $v_f(0) = \frac{n-1}{3+1}$, $v_f(1) = v_f(2) = \frac{n-1}{3}$.

(iii) If $n \equiv 2 \pmod{3}$ label the edges as:

$$f(e_i) = \begin{cases} 0 & i = 1, 2, \dots, \frac{n+1}{3} - 1 \\ 1 & i = \frac{n+1}{3}, \dots, \frac{2(n+1)}{3} - 1 \\ 2 & i = \frac{2(n+1)}{3}, \dots, n \end{cases}$$

This will result in $e_f(0) = \frac{n+1}{3-1}$, $e_f(1) = e_f(2) = \frac{n+1}{3}$, and $v_f(0) = \frac{n+1}{3-1}$, $v_f(1) = v_f(2) = \frac{n+1}{3}$.

Theorem 5. A regular graph of degree 1 on 2n vertices, L(2n), $n \ge 1$, is E_3 -cordial iff $n \equiv 0 \pmod{3}$.

Proof: Proof of this theorem is trivial. Each edge label brings together two vertex labels of the same type. Therefore the number of edges labelled with 0, 1, and 2 have to be equal for E_3 -coordiality of L(2n).

Theorem 6. Every friendship graph F_n , $n \ge 1$, is E_3 -cordial.

Proof: Label the edges of each triangle in F_n , starting from its left edge adjacent to the center, and in clockwise order, as follows: $1, 0, 2, 0, 1, 2, 1, 2, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, \ldots$

Such a labelling will result in an E_3 -cordial F_n .

Theorem 7. Every wheel W_n , $n \geq 3$, is E_3 -cordial.

Proof: The following labelling procedure results in E_3 -cordial W_n :

(i) For $n \equiv 0 \pmod{3}$, label the edges on the outer cycle as:

$$0, 1, 2, 0, 1, 2, 0, 1, 2, \dots$$

and let the spoke edges be labelled with the summation (mod 3) of labels of the adjacent edges. This will result in $e_f(0) = e_f(1) = e_f(2) = \frac{2n}{3}$, and $v_f(0) = \frac{n}{3+1}$, $v_f(1) = v_f(2) = \frac{n}{3}$.

(ii) For $n \equiv 1 \pmod{3}$, we will use W_{n-1} labelled as in (1).

Take two adjacent vertices labelled 0 and 1 in W_{n-1} . Between these, add a new vertex with degree 3. Label the edge incident with the vertex 0 with 2, the edge incident with the vertex 1 with 0, and the edge incident with the center vertex with 1. This will result in $e_f(0) = e_f(1) = \frac{2n+1}{3}$, $e_f(2) = \frac{2n+1}{3-1}$, and $v_f(0) = v_f(2) = \frac{n-1}{3+1}$, $v_f(1) = \frac{n-1}{2}$.

(iii) For $n \equiv 2 \pmod{3}$, we will use W_{n-1} labelled as in (ii).

Take two adjacent vertices labelled 0 in W_{n-1} . Between these, add a new vertex with degree 3. Label the edge incident with the center vertex with 0, and the others with 2. This will result in $e_f(0) = \frac{2n-1}{3+1}$, $e_f(1) = e_f(2) = \frac{2n-1}{3}$, and $v_f(0) = v_f(1) = v_f(2) = \frac{n+1}{3}$.

Theorem 8. Every fan f_n , $n \ge 3$, is E_3 -cordial.

Proof: The following labelling procedure results in E_3 -cordial f_n :

(i) If $n \equiv 0 \pmod{3}$, label the edges on the path as:

$$1, 2, 0, 1, 2, 0, \dots 1, 2$$

and the edges incident with the center vertex as:

$$0, 2, 1, 0, 2, 1, 0, 2, 1, \dots$$

This will result in $e_f(0) = \frac{2n}{3-1}$, $e_f(1) = e_f(2) = \frac{2n}{3}$, and $v_f(0) = \frac{n}{3+1}$, $v_f(1) = v_f(2) = \frac{n}{3}$.

(ii) If $n \equiv 1 \pmod{3}$, label the edges on the path as:

$$1, 2, 2, 0, 1, 2, 0, 1, 2, \dots$$

and the edges incident with the center vertex as:

$$0, 2, 0, 1, 0, 2, 1, 0, 2, 1, \dots$$

This will result in $e_f(0)=e_f(1)=\frac{2(n-1)}{3},\ e_f(2)=\frac{2(n-1)}{3+1}$, and $v_f(0)=v_f(1)=\frac{n-1}{3+1},\ v_f(2)=\frac{n-1}{3}.$

(iii) If $n \equiv 2 \pmod{3}$, label the edges on the path as:

and the edges incident with the center vertex as:

$$0, 2, 1, 0, 2, 1, \dots 0, 2$$

This will result in
$$e_f(0) = e_f(1) = e_f(2) = \frac{2n-1}{3}$$
, and $v_f(0) = v_f(1) = v_f(2) = \frac{n+1}{3}$.

The following theorem generalizes Theorem 3.

Theorem 9. A star S_n , $n \geq 2$ is E_k -cordial iff

$$n \not\equiv \begin{cases} 1(\mod k) & \text{for } k \equiv 1(\mod 2) \\ 1(\mod 2k) & \text{for } k \equiv 0(\mod 2)(k \neq 2). \end{cases}$$

Proof: Necessity: Let $n \equiv 0 \pmod{k}$. Then for $k \equiv 1 \pmod{2}$ any E_k -cordial labelling of S_n must satisfy $e_f(0) = e_f(1) = \dots = e_f(k-1) = \frac{n}{k}$ and since $\sum_{i=0}^{k-1} i \equiv 0 \pmod{k}$ for $k \equiv 1 \pmod{2}$ the induce vertex label of v_c is 0 and the resulting vertex labelling will give $v_f(0) = \frac{n}{k+1}, v_f(1) = v_f(2) = \dots = v_f(k-1) = \frac{n}{k}$.

Assume that we add a new vertex to obtain S_n , $n \equiv 1 \pmod{2}$, $k \equiv 1 \pmod{2}$. Now whatever label we give to this new edge, both the new vertex and the center will take the same label and this violate the condition for E_k -cordiality.

Let $n \equiv 0 \pmod{k}$ and $k \equiv 0 \pmod{2}$ and let v_c be the central vertex of S_n . Since $\sum_{i=0}^{k-1} i \equiv \frac{k}{2} \pmod{k}$ the induce vertex label is $f(v_c) = 0$ only if n = 2k. That is for $k \equiv 0 \pmod{2}$

 $2(\sum_{i=0}^{k-1} i) \equiv 0 \pmod{k}$. In other words if $n \equiv 0 \pmod{2k}$ then E_k -cordial labelling of S_n with $f(v_c) = 0$ satisfies

$$v_f(0) = \frac{n}{k+1}, v_f(1) = v_2(2) = \dots = v_f(k-1) = \frac{n}{k}$$

Again assume that we add a new vertex to obtain S_n , $n \equiv 1 \pmod{2}$, $k \equiv 0 \pmod{2}$. Whatever label we give to this new edge both the new vertex and center will take the same label and this violate the condition for E_k -cordiality.

Sufficiency: Let $e_1, e_2, ..., e_n$ be the set of all edges of S_n . Then label these edges as follows:

$$0, 1, 2, ..., k-1, 0, 1, 2, ..., k-1, 0, 1, 2, ..., k-1, ..., 0, 1, 2, ..., i$$
, where $i \le k-1$.

It can easily be verified that as long as the condition of the theorem holds the edge labels induce vertex labelling \bar{f} which satisfies $|v_f(i) - v_f(j)| \le 1, i, j = 0, 1, ..., k-1$. Thus the labelling is E_k -cordial.

 E_k -cordial labelling of other classes of trees such as paths, caterpillars, symmetric trees etc., will be given in a future work.

Acknowledgement. The authors would like to thank the referee for his constructive comments on the paper.

References

- [1] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combinatoria 23 (1987), 201–208.
- [2] F. Harary, Graph Theory, Addison-Wesley, 1972.
- [3] M. Hovey, A-cordial graphs, Discrete Math., 93 (1991), no.2-3, 183– 194.
- [4] K.L. Collins and M. Hovey, Most graphs are edge-cordial, Ars Combinatoria 30 (1990), 289-295.
- [5] I. Cahit, Recent results and open problems on cordial graphs, Contemporary Methods in Graph Theory, R. Bodendrek (Ed.), Wissenschaftsverlag, Mannheim, 1990, pp. 209-230.
- [6] S-M. Lee, A conjecture on edge-graceful trees, Scientia, Series A: Mathematical Sciences 3 (1989), 45-57.
- [7] S. Cabaniss, R. Low, J. Mitchem, On edge-graceful regular graphs and trees, Ars Combinatoria 34 (1992), 129-142.
- [8] R. Yilmaz and I. Cahit, Edge-cordial graphs, Ars Combinatoria 46 (1997), 251-266.

- [9] J.A. Gallian, A dynamic survey of graph labeling, The Electronic J. of Combinatorics 5 (1998), #DS6.
- [10] S. Lo, On edge-graceful labelings of graphs, Congress. Numer. 50 (1985), 231-241.