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Abstract.
We give a constructive and very simple proof of a theorem by Check and
Colbourn [7] stating the existence of a cyclic (4p,4,1)-BIBD (i.e. regular over

zZ 4p) for any prime p = 13 (mod 24). We extend the theorem to primes p = 1

(mod 24) although in this case the construction is not explicit. Anyway, for all
2

these primes p, we explicitly construct a regular (4p,4,1)-BIBD over Z 2 @ Zp.

1. Introduction

A (v, k,1)-BIBD (Steiner 2-design of order v and block-size k) is regular over a
group G, if admits G as an automorphism group acting sharply transitively on
the point-set. When G = Zv the BIBD is said to be cyclic. The problem of

establishing the spectrum C(k) of all the v's for which a cyclic (v, k,1)-BIBD
exists appears to be very difficult. It is completely solved only for k = 3 (cf. [3,
VIIL. 4.6]) while very little is known for k¥ > 3. Maybe, the analogous problem
of establishing the spectrum R (k) of all the v's for which a regular (v, k,1)-

BIBD exists is slightly more easy.
In a recent paper [7] Check and Colbourn, correcting in part a previous

construction by Mathon [9], proved that 4 p € C(4) for any prime p = 13 (mod

24). Here, this result will be proved in a much more easy and constructive way.
Also, combining a recent result by Chen and Zhu [8] with another by the author
[4], we extend the theorem to primes p = 1 (mod 24) although in this case the

construction is not explicit. Anyway, we succeed in explicitly construct a regular

(4p,4,1)-BIBD over zg

For realizing our designs we will use the following standard construction.
or G=23). Let D

® Zp for any prime p = 1 (mod 24).

Let G be an additive group of order 4 (hence G =Z 4

bc a family of 4-subsets of G@Zp whose list of differences covers
G @Zp)—(G @ (0}) exactly once. Then D, which is a (4p,4,1) difference

family (over G® Zp and relative 10 G @ (0}), generates a rcgular (4 p 4,1)-
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BIBD over G@Zp. This BIBD has G@Zp as point-set and block-set

consisting in all the translates of the components of D plus all the translates of

G ® {0}. Note that this BIBD is cyclic when G=Z4 since 24 ezp is

isomorphic to Z 4p°
For a more general definition of difference family one can see {1, 6].

2. Two explicit constructions of regular (4p,4,1)-BIBD's with p a
prime.

In the constructions that follow we set ¢ = d and we denote by @ and € a

primitive element and a primitive 3rd root of unity mod p, respectively.

Theorem 2.1. There exists a cyclic (4 p,4,1)-BIBD for any prime p =13
(mod 24).

Proof. Let define the cyclotomic classes CO’ Cl’ C2, C3 as the cosets of the

4th powers mod p:
C ={o™ 1 0<h<3t},i=0,123.

Given x eZp -{0}, let C be the cyclotomic class containing x. By

i(x)
elementary facts of number theory (see e.g. (2]) we have that:

i-1)=2 i)=1or3 i3)=0o0r2 n
Also, it is easy to see that:

£-1 is a square if and only if i(3) = 2 )

In the case of i(3) = 0, combining a well-known construction by R.C. Bose (see
[3, Theorem VII.5.2]) with [5, Theorem 2.1] we may explicitely construct a
cyclic (4p.4,1)-BIBD via the following (4p,4,1) difference family over

Z4 @Zp:
D = ({(0,0),(0,0%),(0,0***),(0,0***)} 1 0<i<t) U

U ({0,0"),(L,0™*),2,-0),3,—0"*)} | 0<i<3r)
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In the following we assume that i(3) = 2.
Consider the pair (a,b) € Z, X Z, defined by:

(<2,7) ifi(7)=0
(a,b) =4(1/2,9125) ifi(7) = lor3
2.-7 ifi(7) = 2

and consider the subsets Dy, Dy, D3, Dy of Z 492 D defined by:

D; ={(0,0),(0,€),(1,ae"),(3,be")} fori=1,2,3;
D, ={(0,0),(2,2),(2,2¢),(2,2€")}

The list of differences from the sets D, 's is given by

[0} x(<¢ >X0)]u[{1}><(< £ >Xl)]u{{2}><(<8>X2)IU[{3} X(<e€ >X3)]
where the X i's are the following lists:

Xo = (L12(e - 1) Xy=@a-L-b-b+1)
X, = (42,%(a~ b)) X3=-X,

In view of (1) and (2) it is very easy to check that each of the previous lists has
elements lying in pairwise distinct cyclotomic classes. In other words, each X ;

is a system of representatives for the cosets of the 4th powers mod p. Then,
setting § = {w* | 0 <i <t} we have that <e>X;S=Z,-1{0} (fori=0,
1, 2, 3) because < € > S is easily seen to be the group of 4th powers mod p.

It follows that the differences from the family D = (sD ils €S:1£i<4) cover
exactly once (Z 4 (WA p) -(Z 4 ®{0}), i.e. Disa(4p4,1) difference family
over Z 4 ez p The assertion follows. 0

Theorem 2.2. There exists a regular (4p,4,1)-BIBD over 22

2
prime p = 1 (mod 24).
Proof. Here, saying that an integer x is a quadratic residue, we mean that x is a
square mod p. From the assumption we have that -1 and 2 are quadratic residues.
Let g be the first prime which is not a quadratic residue. Then each positive

® Zp for any
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integer smaller than ¢ is a quadratic residue. Consider the ordered triple
(a,b,c) € Zp @Zp ®Zp defined by:

(q+1,9,9) if £ - 1 is a quadratic residue
(a,b,0)= )
(q,-q,1) otherwise

. . 2 .
Consider the following subsets Dy, Dy, D3, Dy of Z2 ®Zp:

D, ={(0,,0),(0,,€),(15,a€"),(0,,b€")} fori=1,2,3;
D, ={(0,,0),(1,,¢),(1,,c€), (1,,ce™)}.

(It is understood that we write any element (x,y) e Z % as xy ).
The list of differences from the sets D ; 's is given by

(Og)x(x<e>X Uyl x(x<e>X v
u[[Ol}x(i<£>X2)]u[[ll}x(i<e>X3)]

where:

X0=(1,c(8—1)) X1=(a,a—l) X2=(b,b—l) X3=(c,a-b).

In view of the choice of the triple (a,b,c), each X ; has exactly one quadratic

residue and exactly one non-quadratic residue. In fact, g-1 and g+ 1

(=2qT+l) are quadratic residues by assumption on ¢. Then, setting

S={w* | 0<i<t} we have that +<e>X S=Z,-{0} (fori =0, 1, 2,

3) because * < € > S is easily seen to be the set of quadratic residues. It follows
that the differences from the family D = (sD ils € §;1 €i £ 4) cover exactly once

(zg ®Zz,)- (zg ® (0}) ie. D is a (4p4,1) difference family over Z2

2®Zp.

The assertion follows. O

From the above theorems we immediately have:
Corollary 2.3. p € R(4) for any prime p = 1 (mod 12).
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3. Existence of cyclic (4p,4,1)-BIBD's for primes p=1 (mod 12).
Now we extend Theorem 2.1 to primes p = 1 (mod 24) via the following results.

Theorem 3.1. p € C(4) for any prime p = 1 (mod 12).
Theorem 3.2. If p is a prime and p € C(4), then 4p € C(4).

The first of the above theorems is due to Chen and Zhu [8], while the latter is a
consequence of a result by the author [5,Corollary 3.3]. Combining them we get:

Theorem 3.3. 4p € C(4) for any prime p = 1 (mod 12).

In spite of Theorem 3.3 an explicit construction of a cyclic (4p,4,1)-BIBD for all
primes p = 1 (mod 24) is still missing. In fact, Theorem 3.1 does not give a
concret way for constructing a cyclic (4p.4,1)-BIBD for any prime p = 1 (mod

24). Anyway, using previous constructions by the author ([4, Theorem 4.1} and
{5, Theorem 2.1]) we can explicitely get such a cyclic BIBD for all p's such that

-3isnota 2% power (mod p), 2¢ being the largest power of 2 dividing p-1.
Question. What about regular (4p,4,1)-BIBD's for primes p = 7 (mod 12)?
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