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ABSTRACT: In [8] a graph - representation of the Fibonacci numbers F,, and
Lucas numbers F,; was presented. It is interesting to know that they are the total
numbers of all stable sets of undirected graphs P, and Ch, respectively. In this
paper we discuss a more general concept of stable sets and kernels of graphs. Our
aim is to determine the total numbers of all k-stable sets and (k, k¥ — 1) - kernels
of graphs P, and C,. The results are given by the second-order linear recurrence
relations containing generalized Fibonacci and Lucas numbers. Recent problem
were investigated in [9], [10].
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1.Introduction

For general concepts, we refer the reader to [5]. By a graph G we mean a
finite undirected connected graph without loops and multiple edges. V(G)
and E(G) denote the vertex set and the edge set of G, respectively. The
length of the shortest path joining vertices  and y in G will be denoted by
dg(z,y). Recall that the length of the path is the number of edges in it. If
X C V(G) and z € V(G), then we put dg(z, X) = min{de(z,z’);z’ € X}.
The notation G — X means the graph obtained from G by deleting the
subset X. By P, and C,, for n > 2, we mean graphs with the vertex sets
V(P,) = V(Cpn) = {z1,.-,zn} and the edge sets E(P,) = {[zi,zit1];? =
1,2,..,n— 1} and E(C,) = E(P,) U {[zn, 1]}, respectively. In addition,
C) = P, where P, is a graph consists of only one vertex.

Let k be a fixed integer, & > 2.

A subset J C V(G) is said to be a (£, k — 1)- kernel of G if

(1) for each two distinct vertices z,y € J, dg(z,y) > k and

(2) for each 2’ € V(G) \ J, there exists € J such that dg(z/,z) < k- 1.
In addition, a subset containing only one vertex also is a (k, k — 1)- kernel
of G.
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Note that for k£ = 2 the definition reduces to the definition of a kernel of
the graph G.
In further investigations a subset S C V(G) satisfying the condition in
(1) will be called a k-stable set of G. It has been proved in [6] that every
maximal k-stable set of the graph G is a (k, k — 1)- kernel of G, for & > 2.
The k-stable sets and (k, k — 1)- kernels (also called n - independent domi-
nating sets) and more generalized kernels called (k,!) - kernels, for [ > 1,
were studied in [2),[3],[4]),(6],(7].[9],[10].

Let X = {1,2,..,n},n > 1 and let Y C X such that

(3) |Y| =p, for a fixed p, 0 < p < nand

(4) Y does not contain two consecutive integers, where |Y| denotes the
cardinality of Y.
We add that, if » = 1, then Y = X (and for this case p = n) and note
that Y = 0 (i.e. p = 0) also is to be taken into consideration. By f(n,p) we
denote the number of all subsets Y having exactly p elements and

(5) f(n,p) = ("72).

The number F, = 3 f(n,p) is called the Fibonacci number, see [1]. In

graph terminology, thepnumber F,, for n > 1 is equal to the total number
of subsets S C V(P,) such that each two vertices of S are not adjacent. In
other words, F,, is the total number of all 2-stable sets (short:stable sets)
of the graph P,. We mean Y = 0 as a stable set of a graph so that f(n,0)
has a graph interpretation. It may be interesting to note that Fibonacci
numbers F, are defined by the second-order recurrence relations:
Fp = Fpo-1 + F_3, for n > 2 with initial conditions Fy = 1 and Fy = 2,
where n = 0 corresponds to X = 0, see [1]. For a graph interpretation of
the number Fy we introduce the empty graph Pp having a unique stable
set X = 0.

Let X = {1,2,...,n},n > 1 and let Y* C X such that

(6) |Y*| = p, for a fixed p,0 < p < n and

(7) Y™ does not contain either two consecutive integers or both 1 and
n simultaneously.
The number of all subsets Y* having exactly p elements is denoted by
f*(n,p). Moreover, for n > 3,

®8) f*(n,p)=f(n-3,p—1)+ f(n—1,p) = n"Tp ";"), see [1].
Of course f*(n,p) = f(n,p) forn=0,1,2.
The number F; = 5 f*(n,p) is called the Lucas number, see [1], and in

the graph interpreta’:cion the number F,; is equal to the total number of
stable sets of the graph Cy,, see [8].

For Lucas numbers there is the well- known formula F; = Fj;_; + F,_,,
for n > 2, with initial conditions F§ = 1 and Fy = 2, see [1]. Note that the
initial conditions correspond to graphs Co = Pp and C), mentioned earlier.
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2. Generalizations

In this section we present some relevant features of generalized Fibo-
nacci and Lucas numbers.

Let k£ > 2 be an integer and let X = {1,2,...,n},n > 1. In addition, we
put n =0 for X = 0.
We say that two distinct integers ¢,j € X are k - distance consecutive if
|t —jl < k.
Let Y C X such that

(9) |Y|=p for afixed p, 0<p<nand

(10) 7,7 € Y if they are not k - distance consecutive.
By f(k,n,p) we denote the number of all such subsets Y having exactly p
elements and further let F(k,n) = Y f(k,n,p). It is easy to see that for

P
k = 2 the condition in (10) is equivalent to the condition in (4). Therefore,
f(2,ﬂ,P) = f('n,P) and F(2:n) = Fﬂ

Proposition 1.Let k,n,p be integers, k > 2,n>0,0<p< n.

Then we have the formula
f(k,n,p) = ("—P"(P—pl)(k—2)+1).

Proof: For k = 2 we have f(2,n,p) = f(n,p) and by (5) the result follows.
Let £ > 3. Our intent is to calculate the number of all subsets of X (con-
sidering also X = 0) having exactly p elements and not containing two k
- distance consecutive elements. Suppose that S is one of such subsets of
X. For convenience, instead of the subset S we can consider a sequence
a = (ay, ...,an) whose elements «; satisfy the following conditions:

(11)

o = { 1 if i€S
! 0 otherwise

and
(12) Z a; = p and

(13) 1f a,,a, =1, then | — j| > k.

To calculate the number of all such sequences we start with a sequence 8 =

(81, ..., Bn=p), where §; = 0, for each i = 1, ...,n—p. Next, we choose from 8

asubsequence f' = (81, Bax—2, - ey Bp—1)k=(p~1)) Bp—1)k =(p=1)41> -+» Bn=p)

on (n —p) — (p — 1)(k — 2) elements. This follows by observing that for the

building of sequence « it suffices to extend the subsequence g by p ’s in

such a way that no two 1’s are consecutive. The total number of all possible

sequences « is equal to the number (""’ (p"l)(k 2)'“) which shows that
('C n p) _ (n—p (p— l)(k 2)+l)

Let Y* C X such that
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(14) |[Y*| = p, for a fixed p, 0 < p < n and
(15) 7,5 € Y* if 4, j are not k - distance consecutive and |i — j| < n—k.
Further we denote by f*(k, n, p) the number of all subsets Y* on p elements
and we put F*(k,n) =3 f*(k,n,p).
P

Remark. From the condition in (15) it follows that if ¢, € Y™, then & <
|i — j| € n — k. Therefore, if n < 2k, then p=0o0r p=1.

Proposition 2.Let k > 2 and 0 < p < n. Ifn > 2k and p > 2, then we
have the formula

£ (k,,p) = (k = D f(k,n — (2k = 1),p 1) f(k,n — (k= 1),p).
Ifn>0, then f*(k,n,1)=n, f*(k,n,0)=1.

Proof: For p = 0,1 the result follows immediately. Using Remark, it
remains to consider the case that n > 2k and p > 2. Let Y* C X. We
recall that Y* has exactly p elements, such that for each i, € Y*, i # j,
|i —j| > k and |i — j| < n — k. Let i be a fixed integer, 1 < i< k —1. To
calculate the number of all subsets Y*, we first calculate the number of all
subsets containing the fixed integer i. Assume that j € Y* and j # ¢. Then
j > i and the condition k < |[¢—j| < n—k isequivalent to k < j—i < n—k.
Therefore, i+ & < j < n—k+:i. This means that the others (p—1) integers
(different from i) from Y* must be chosen amongn—k+i—(i+k)+1=
n —(2k — 1) integers from X. Then by Proposition 1 the number of all such
possible choices is equal to f(k,n—(2k—1),p—1). Since the integer i can be
any of the integers 1, ...,k — 1, the total number of all subsets Y* containing
the integer 4, 1 < i < k— 1, is equal to (k — 1)f(k,n — (2k — 1),p— 1),
p>2

Now, we calculate the number of sets Y* not containing the integer 3.
LetigY* ie,i=1,..,k—1¢Y*, and moreover for each [,j € X \ {i:
i=1,..,k =1}, [l = j| £ n— k. Thus, we can conclude from this that to
form subset Y* on p integers we can choose these p integers from n—(k—1)
integers of X. If [, j € Y*, then the condition |{ — j| > & must be fulfilled. It
follows by Proposition 1 that the number of all subsets Y* not containing
the integer 7 is equal to f(k,n — (k — 1), p).

Finally f*(n,k,p) = (k—1)f(k,n— (2k—1),p— 1)+ f(k,n—(k—1),p),
this completes the proof.

From Proposition 2 and the condition in (8) there follows:

Corollary. For k = 2 and n > 0, we have the identity f*(2,n,p) = f*(n,p).
Thus F*(2,n) = F;
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3. The total number of k-stable sets of Py, and Cp

We can observe that the numbers F(k,n) and F*(k,n) are total num-
bers of all k-stable sets of graphs P, and C,, respectively, for a fixed & > 2.

From investigations in section 2 it follows that
n-p—(p-1)(k—-2)+1
F(k,n) = ;( p=(p ;)( M ) and

F*(k,n) =3 f*(k,n,p) where f*(k,n,p) is determined in Proposition

P
2. Now we present numbers F(k, n,p) and F*(k, n,p) by second-order linear
recurrence relations.

Theorem 1.Let k > 2 and n > 0 be inlegers. Then the numbers F(k,n)
satisfy the following recurrence:
F(k,n)=F(k,n—1)+ F(k,n = k), for n > k, with initial conditions
Flkyn)=n+1forn=0,1,...,k— 1.

Proof: Let k,n,p, be as mentioned in the statement of the theorem.

If n = 0, then p = 0 and F(k,0) = 1 since it was mentioned before that
the empty set is meant as a k-stable set of the graph P.

Forn = 1,...,k — 1, each of vertices of V(P,) and also the empty set can
be a k-stable set of P,,. This implies that F(k,n) = n + 1 in this case.
Now suppose that n > k and let S be an arbitrary k-stable set of P, with
the vertex set V(P,) numbered in the natural fashion.

Two cases can occur now:

Case 1.z, ¢ S.

If Sy is the family of all such sets S, then its cardinality |S| is equal to the
total number of k-stable sets of the graph P, — z,, isomorphic to P,_;. In
other words, |S1| = F(k,n—1).

Case 2.z, € S.

Then it is clear that z,_; ¢ S, for each i = 1,...,k — 1. This implies,

that § = S§* U {z,}, where S* is an arbitrary k-stable set of the graph
k-1

P, — |J #n-; which is isomorphic to P,_;. If we denote by S, the family
i=1

of all k-stable sets such that the condition in Case 2 is fulfilled, then |S;| =

F(k,n—k). In consequence, for the numbers F(k, n) we have a second-order

linear recurrence F(k,n) = F(k,n — 1)+ F(k,n — k). This completes the

proof.

Theorem 2.If k > 2, then the numbers F"(k,n) satisfy the following re-
currence

F*(k,n) = (k= 1)F(k,n — (2k — 1)) + F(k,n — (k — 1)), for n > 2k,
with initial conditions F*(k,n)=n+1, forn=0,1,...,2k — 1.
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Proof: If n = 0, then also p = 0 and this implies F*(k,0) = f*(¥,0,0) =
1, by the definition of F*(k,n).

1
Ifn=1,..,2k~1, then p can be 0 or 1. Hence F*(k,n) = }_ f*(k,n,p) =
p=0

f*(k,n,0)+ f*(k,n,1) = n+ 1 by Proposition 2.
If n > 2k, then F*(k,n) = Zf*knp) f‘(kn0)+2((k—l)f(lc n—

(2k-l)p—1)+f(kn—(k—l)p))—1+(k—1) Z flk,n — (2k -
p=1=r>0
1),7)+ Z:f(’c n—(k-1),p).

Since f(lc n — (k—1),0) = 1, using Proposition 2 we can write
F*(k,n) = (Ic—l)zf(lc n—(2lc—1) )+ Y flk,n—(k-1),p)=
p>0
(k= 1)F(k,n— (2k — 1))+ F(k,n — (k — 1)), as required.
Thus, the theorem is proved.

4. The total numbers of (k,k — 1) - kernels of Py and Cp

We say that a k-stable set S of the graph G is maximal if for any
z € V(G)\ S, SU {z} is not k-stable set of G. Additionally, if |V(G)| = 1,
then V(G) will mean a maximal k-stable set of G. It has been noted by the
author of [6] that
Proposition 3[6]. Every mazimal k-stable set of G is a (k,k — 1)- kernel
of G, for any k > 2.

The following observation says that the total number of all (k, k& — 1) -
kernels of P, is equal to the total number of all its maximal k-stable sets.
Let us denote by J(k,n) the number of all (k,k — 1)- kernels of P,. We
determine it recursively.

Theorem 3.Let k > 2,n > 0 be integers. Then
J(k,0)=1 and J(k,n)=n, forn=1,..,k,
J(k,n)=J(k,n—1)+ J(k,n—k)—1, fork+1<n <2k and
J(k,n)=J(k,n— 1)+ J(k,n— k) — J(k,n — 2k), for n > 2k.

Proof: The empty set is a (k, k — 1)- kernel of the empty graph Py, hence
for n = 0 the result follows.

Forn = 1,2,..,k > 2, a (k,k — 1)- kernel J C V(P,) contains exactly
one vertex. Moreover, each of vertices of V(P,) is a (k, & — 1)- kernel. This
implies that J(k,n) = n in this case.

Suppose that n > k.

Let S C V(FP,) be an arbitrary maximal k-stable set of P,. Two cases can
appear.

Case 1. Let z, € S.
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In this case, fori=n—-1,n-2,..,n— (k- 1), z; ¢ S. Furthermore, if S*
k-1
is an arbitrary maximal k-stable set of P, — U Zn—q, then S* U {z,} s a

1=0
k-stable set of P,. We shall show that S* U {zn} is maximal. By an easy
observation it follows that among the vertices of S* there must be z; such
that n—k—(k—1) < j < n—k. Otherwise, we could add the vertex z,_y to
S*, this would contradict the maximality of S*. Consequently, to prove that
$* U {z,} is maximal it suffices to estimate the distance between vertices
zj and 2 in P,. By simple calculations we obtain that dp,(z,,z;) <
n—(n—2k+1) =2k -1 < 2k. This means that it is not possible to add
to S* U {z,} any vertex of the successive vertices L, Tj41, - Tn—k- This
shows that S* U {z,} is maximal and S = S* U {z,}. This implies, that
the total number of maximal k-stable sets, i.e., (k,k — 1)- kernels of P,
containing the vertex z,, is equal to J(k,n — k).
Case 2. z, ¢ S.
Then all maximal k-stable sets of P, — z,, are k-stable sets of P,.
Suppose that S* is a maximal k-stable set of P, — z,,. It should be noted
that, if z,,_; € S*, then S* could not be a (k, k—1)- kernel of P,, since then
dp,(zn,S*) = k. Observe that if z,_; & S*, then there must be a vertex
zj, n—k < j <n—1, which belongs to S* by the maximality of $* in the
graph P, — z,,. Thus, we can conclude that S* is a maximal k-stable set of
P,. This means that to calculate the total number of maximal k-stable sets
of P, not containing the vertex z,, it sufficies to subtract the number of all
subsets S* which contain the vertex z,_j from the number J(k,n—1). Let
r denotes the number of all maximal k-stable sets of P, — Z, containing
the vertex z,_;.
Consider two possibilities:
Subcase 2.1. k+ 1 < n < 2k.
Since n — k < k, there exists exactly one maximal k-stable set S* of the
graph P, — z, containing the vertex z,_x, namely S* = {zn-t}. This
means that 7 = 1. So, in this case the number of all maximal k -stable sets
is equal to J(k,n — k) — 1.
Subcase 2.2. n > 2k. ot

Consider the graph P, — |J zp—; isomorphic to P,_;. Since r denotes

the number of all ma.ximz;] 0Ic-st.a,ble sets containing the vertex z,_j, it
follows from case 1 and preceding observations that r = J(k, (n — k) — k) =
J(k,n — 2k). ,
All this together gives the result that
J(k,n)=J(k,n—1)+ J(k,n—k)—1, for k+ 1< n < 2k and
J(k,n)=J(k,n— 1)+ J(k,n— k) — J(k,n — 2k), for n > 2k.
Thus, the theorem is proved.
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Let us denote by J*(k, n) the number of all (k, k — 1)- kernels of Cy. As
a consequence of Theorems 2 and 3, we have
Theorem 4.Let n > 0,k > 2. Then

J*(k,0) =1 and J*(k,n) =n, forn=0,1,..,2k— 1 and

J*(k,n) < (k= 1)J(k,n— (2k - 1))+ J(k,n— (k= 1)), forn > 2k.
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