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Abstract

In this paper, we improve the upper bounds for the genus of the
group A = Zy; X Zmy X Zm, (in canonical form) with at least one
even mi, ¢ = 1,2,3. As a special case, our results reproduce the
known results in the cases mz = 3 or both m, and m; are equal to
3.

1 Introduction

We shall mainly use the notations from the book by Gross and Tucker
[5]. A surface is a compact 2-manifold and it is well-known that every closed
connected orientable surface can be obtained by adding some handles to a
sphere in 3-space. We denote the sphere with g handles by Sy and the
number g is called the (orientable) genus of the surface.

By an embedding of a graph G on a surface S (G < S), we mean a
drawing where the edges do not cross but meet only at vertices, and the
components of S — G, which we call faces (or regions) of the embeddings.
The ”(orientable) genus” of a graph G, denoted by (@), is the smallest
number g such that the graph G embeds on the orientable surface S,. If all
of regions are 2-cells (where ”2-cell” can be considered as an 2-dimensional
open disk), then the embedding is said to be a 2-cell embedding. The well
known formula for the sphere by Euler [4] and later extended to the surfaces
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of higher genus by White [11] show that the alternating sum of the number
of vertices, edges and regions of a graph 2-cell embedded in a surface Sy is
an invariant of the embedding surface and does not depend on the graph,
ie.p—qg+r=2-2g.

Let A be a group and X be a generating set for A. The Cayley color
graph C(A, X) has its vertex set the elements of group A and its edges set
the Cartesian product X x A such that the edge (z,a) has its endpoints the
vertices a and az, with its direction from a to az. The designation of a plus
direction and a color for every edge is an intrinsic part of a Cayley color
graph C(A, X). If these designation are suppressed, the result is a graph
C(A, X)?, called the ”Cayley graph” for the group A and the generating
set X. The genus of a group A is given by :

7(A) = min{v(C(4,X)%)}

where the minimum is taken over all generating sets X for A.
Since any finite abelian group A of rank r (the number of elements of
the minimum generating set) has a unique canonical form

Zyy X" X D,

such that m;,, dividesm; fori =1,---,7—1,and m, > 1. It is convenient
to study the genus of a group in canonical form. Here are some of the
well-known results.

Theorem 1.1. (Jungerman and White, [6]) Let the abelian group A be
of the canonical form Zm,, X -+ X Zm, such that r > 1 and m; > 4 for all
i. Then

Al

YA 21+ (r - 2).

n
Theorem 1.2. [9] Let the group Zm, X Zm, be of the canonical form.
Then . P

1 ,if me>2;an
")’(Zml)(Zmz)—'{o ,lf m2=2‘

|
Theorem 1.3. [9] For n > 2, 7((Z2)") =1+ 2" %(n —4).

|
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Theorem 1.4. (Jungerman and White, [6]) Let the abelian group A have
the canonical form Z,,, X - -+ x Zp,,, where r > 1 and every m; > 3, and
such that either every m; is even or r > 3. Then y(4) =1+ L:ﬂ(r -2),
whenever the number on the right-hand side of this equation is an integer.

Theorem 1.5. (Mohar et al.[8], Brin and Squier,[1]) The genus of
the group Z3 x Z3 x Z3 is 7.

2 The main result

First, we derive an upper bound which comes directly from the follow-
ing theorem obtained by Burnside. Also, it is an easy consequence of the
theory of coverings and branched covering theory of surfaces; see Riemann-
Hurwitz equation in [5].

Theorem 2.1. (2] If A is finite and is minimally generated by
{91,92, -+, 9n} and satisfies at least the relation g™ =e=([T;_, 9:)%,
1<i<n, then

[A] 1 K1
st lo-1-g-5 0

Corollary 2.2. Let A have the canonical form Zmy X Dy X Zmg such
that mgz > 3, then

| A| 2 1 1
<1+8@- = _ 2 _ 2y,
7(A) <1+ 5 e ma)
Proof. Obviously, g = (1,0,0), g2 = (0,1,0), and g3 = (0,0,1) form
a minimal generating set such that ¢/ = e, i = 1,2,3. Furthermore,
(919293)™ = e. Therefore y(A) < 1+ (2 - - .

Now we consider A = Z, X Zm, X Zm, with my, m, even and ms odd,
and A in canonical form. Mainly, we shall use a different way of selecting
a generating set to improve the upper bound obtained in Corollary 2.2.
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Proposition 2.3. Let A=2Zm X Zmy X Zmg be in canonical form ‘where
my =250, m; = 2%2n, m3 =ng, ki, k2 2 1, and n; i odd for
i=1,2,3. Then "
1

7(A) <1+ 2 (1+ nl).
Proof. Since Zyri n, X Zovzny X Zny 1S isomorphic t0 Zary ny X Zowzp, X Znys
we shall consider the Cayley graph C(Zaeiny X Zaran, X Znys {(1,0,0),
(0,1,0), (0,0,1)}). It is not difficult to see that we can embed the Cayley
graph H = C(Zauzny X Zny» {(1,0), (0,1)}) quadrilaterally on torus. Figure
9.1 shows the embedding of H. By a "surgery technique” illustrated in
[5], corresponding to the bipartition of V(Caein,) We obtain 21 ~ng copies
of H which are embedded minimally on torus(S) and 2%1-1p, copies of
H on torus(S’) with reverse orientation. Now we are ready to make two
joins for each copy of H on S and then correspondingly on S’ with reverse
orientation. Since n; is odd, there is no way that we can find two sets
of mutually disjoint regions(4-cycles) each contain |V (H)| vertices(edges).
Therefore, we obtain two sets of regions each covers all the vertices of H,
but with as less common vertices as possible. They are designated by "0O”
and "X" respectively in Figure 2.1.

k

2 %n,
-
ol X X _ X
o) X - X
n, . . . . . . ..
0, X,0,X "0 X
0l X|o[X - olx

Figure 2.1.

We shall make a tube(handle) for each region to connect the copies.
First, consider those regions with common edge. There are 6 edges to
connect two regions with a common edge. The new regions are depicted
in Figure 2.2. Thus we have a region which is an 8-cycle and the other
regions are 4-cycles. Now we are ready to use Euler’s formula to figure out

184



the genus of the surface obtained.

Figure 2.2.

Since, there are 2¥2nyn; — 2+ [252~2n2(n; + 1)] regions left on each copy
of H after the surgery process, and we create 2¥2n,n; new regions for each
join. Hence

|F]

2"‘n3[2’°=ngn1 -2 2"""'2n2(n1 +1)+ ‘2"3n2n1]
2’°‘+k"1n3n2(3n1 -1).

Since |V'| = 2k1+*2n3n,n, and |E| = 3 2%1+*2n30,n,, by Euler’s for-
mula, we have

2k‘+"2n3n2n1 -3 2k‘+k’n3n2n1 + 2"‘+k"ln3ng(3n1 ot 1) =2- 29.
Thus *

g = 1+25Fp5n0n, — 251782=2000.(30, — 1)
2k1+kapanan,
4

Al 1
1+ 0+~

1
= 1+ (4—3+E)

).

This completes the proof.

Proposition 2.4. Let the abelain group A have the canonical form
Zmy X Zma X Zmy, wheremy =2, ma =ny, my =n3, k> 1 and n; is
odd for all . Then

| A} 1 3

1
~ < L § —_ = - .
7(A) <1+ 1 (1+n1+n2 —
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Since the proof is similar to Proposition 2.3, instead of going through
the details again we use an example to illustrate the theorem.

Let A = Zax1s X Zs x Zs. Clearly A is isomorphic to the group Zyg X
Zs x Zi5. And then we consider the quadrilateral embedding of C(Z5 x
Z1s,{(1,0),(0,1)}) on the torus. For convenience, let H denote the Cayley
graph C(Zs x Zis,{(1,0),(0,1)}). Figure 2.3 shows that the quadrilateral
embedding on the torus and there exists two disjoint sets each containing
&5_:_15-_3 = 23 regions such that both sets containing all vertices.

X | TT 17 o
o|Xjo|X|o|X|o|X|Oo|X|O|X|O|X '
X O
ojlX|olX|o|X|oix|o|X|lo|X|o]|X

l olX|ol X|lo|X|Oo|X|o|X|O|X|o|X

N N - P I N O O

Figure 2.3. H is embedded on the torus and the number of the regions
designated "O” and "X" are both 23.

Figure 2.4.

Now partition the 10 copies of H such that the 5 copies of H embed on
the torus(S) and the other 5 copies of H on the torus(S’). Make two joins
of each copy in order to construct the embedding of the whole graph. Each
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join contains 23 tubes and observe that some tubes are not carrying exactly
4 edges because of the fact that they may pass common vertices between
them. See Figure 2.4. Note that no matter how many edges a tube carries,
it always creates the same number of new regions, i.e. the number of new
regions in each join is fixed and it is equal to |V(H)| = 75. Then we can
compute the genus of this new surface.

Clearly, |V| = 750, |E| = 2250 and |F| = 10(75 -2+ 75) = 10 x 104 =
1040.

Again, by Euler’s formula, we have

g =231.
So v(Z30 x Z5 x Z5) < 231.

In case that m3 = 3, or m2 and m3 are equal to 3, then we can apply
the idea in [1] to reproduce good lower bounds which are known, see [9).

Proposition 2.5. Let A = Zyu,, X Zezy, X Z3 be in canonical form and
ki,k2 2 1, and n; is odd for i = 1,2,3. Then

5
7(A) 2 1+ 5214
Proof. Let X be a minimal generating set for A. The Cayley graph

H = C(A, X) contains at most 3|V| triangles since each triangle must
consist of three order-3 edges. Then

21E] 2 3fs+4(|F| - f3)
= 4|F|- fs.
Hence

fs 2 4|F|-2|E|
= 42-29-|V|+|E|) -2|E|
= 8-8g+2|V|.

By the fact that f3 < J%l, we conclude
5
g 2 1+ ’22|-4|-

By a special embedding of C(Z3 x Z3,{(1,0),(0,1)}). We can im-
prove the upper bound obtained in Proposition 2.4 in case that A4 =
Zarn X Z3 X Z3, and obtain a similar lower bound as in Proposition 2.5.
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Proposition 2.6. Let the group A = Zaun X 23 X 23 be in canonical form
and k > 1. Then

L4 24 € % 20 x 20 S 14 AL
Proof. First, we consider a special embedding for the Cayley graph H =

C(Zs x Z3,{(1,0),(0,1)}) on the torus and this embedding was first used
in [8] for showing that y(Z3 x Z3 x Z3), illustrated as Figure 2.5.

10

oy

02 12 20

20 21 01 02 12 10 20

Figure 2.5. A toroidal embedding of C3 x Cj.

By observation we can select two disjoint sets of regions such that one
set consists of 3 mutually vertex-disjoint triangles and the other set consists
of two hexagons. The same construction will require to make the two joins
for 2*m copies of H. The construction of one join is attaching one end
of a tube in the interiors of each regions in the above selected set which
consists of 3 mutually vertex-disjoint triangles for this copy. So the first
join consists of 3 tubes each containing 3 new 4-cycles. The construction
of the other join is attaching one end of a tube to the regions of the second
selected set which contains two hexagons, and then the second join consists
of 2 tubes one of which contains 6 4-cycles and the other one contains 3
hexagons. Now we are ready to compute the genus of the new surface.

Clearly, |V'| = 9-2%n, |E| = 27-2%n and |F| = 2*n-(9-5+9) = 13-2*n.

From Euler’s formula, we have

1 .
g = 5@=IVI+IEI-IF)

= -;—(2—9~2’°n+‘27-2kn—13-2kn)
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1+ (=9+27-13)2%1p

)
1+ -iglAl

Since the number of order-3 edges is 2|E|, ie. f3 < 2|V], 1+ 4] <
7(A) can be obtained by a similar counting.
This completes the proof.

By way of the idea used in Proposition 2.3 and 2.4, we also have the
following result by using the technique in [9].

Proposition 2.7. Let the group A= Zpn, X Zpm, X Zm, be in canonical
form where m; is odd fori =1,2,3. Then
A, 1 1 1 1 1 3 5
+

HA) <1+—(1+—+—+—— - - .
4 m; M2 M3z MMz MMz MaM3  MMaM3

Proof. In Theorem 1 of [9] Case (3b) take G = Cp,, X Cmg, H = Ciyy,
s=2,e =e = :;—(ml -1, =r= ;}(mzma +ma +m3 —3),e = 1.
Then

g = LHIVEIA -1+ Y e+ sa(V(E)|+1)

i=1

1
= 1l4er +ers+ EeO(IV(G)I + 1)

my—1 moms+mg+m3—3 maomsz + 1
= 1]y : )+ T2
(my — 1)(mam3 + ma +m3 — 3)  2(mamz + 1)
= 14 +
4 4
1
= 1+ Z(mlmgms + mymg + mims — 3m; + mams — my — m3 +5)
A 1 1 1 1 1 3 5
SR 1L S SO WS S SN TV SN
4 my m2 M3 MMz MMz MMz MIMaMm3

To conclude this note, we also observe that the asymptotics of the genus
Of A= Zmy X Zny X Zng, 7(A) = 1+ J%L, provided that one of the following
conditions holds:
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(1) all m; are even,
(2) two of the m;’s are even and m; — 00,
(8) one m; is even and mg — 00,

(4) all three m;’s are odd and m3 — c0.
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