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ABSTRACT. Given a good drawing of a graph on some ori-
entable surface, there exists a good drawing of the same graph
with one more or one less crossing on an orientable surface
which can be exactly determined. Our methods use a new
combinatorial representation for drawings. These results lead
to bounds related to the Thrackle Conjecture.

1 Introduction

A good drowing of a graph on an orientable surface, informally, will mean
a drawing in which no two adjacent edges cross, no two edges cross more
than once, no more than two edges cross at a point, no edge crosses itself,
no edge intersects a vertex that is not one of its endpoints, and the regions
so created are 2-cell. Two edges are parallel in a good drawing D of a graph
G if they are nonadjacent and do not cross in D. All drawings in this paper
are good and all surfaces are compact orientable 2-manifolds.

As observed by Dyck [1] and by Heffter [2] and formalized by Edmonds
[3], 2 2-cell embedding of a graph G = (V, E) in an orientable surface
can be described by a p-tuple of cyclic permutations of the open neigh-
borhoods of the vertices vy, v,...,vp, in V. The Rotational Embedding
Scheme, discussed in detail by Youngs [4], states that there is a one-to-one
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correspondence between the 2-cell embeddings of a graph G (on all possible
orientable surfaces) and the p-tuples of cyclic permutations.

Using the definition of a good drawing and Rotational Embedding Schemes,
we develop a combinatorial representation of a good drawing, which is the
basis for the cross addition and cross deletion results.

2 Combinatorial Representation for a Good Drawing

In this section we present a formal structure for representing drawings of
graphs on orientable surfaces. This structure has been used to examine
certain drawings on orientable surfaces other than the plane [5].

For the remainder of the paper, a graph G = (V, E) will be a graph with
p vertices and g edges and V = {1,2,...,p}. Given a graph G, for every
pair of distinct, nonadjacent edges associate exactly one new vertex called a
cross vertez associated with that edge pair. Let X(G) be the set of all cross
vertices for a graph G. A neighborhood set of a graph G, N (G), is a unique
p-tuple (n(1),7(2),...,#(p)), where for i =1,2,...,p, 7(¢): N(i) — N(3)
is a cyclic permutation and N (%) is the open neighborhood of the vertex i.
Note that there exist

H (degv — 1)!

veV
distinct neighborhood sets of G, each one corresponding to a 2-cell embed-
ding of G on some surface.

For Y a subset of X(G), we define a cross graph, G;(Y), or G; if the set
Y is understood, for a graph G. For the purposes of this definition, label
the edge between vertices ¢ and j, with ij, where ¢ < j. For each edge 7,
let Y (4,7) be the set of cross vertices from Y associated with edge ij, and
let IJ be the order of this set. For each member, z, of Y (3, 5) associate
uniquely an ordinal from the set {1,2,...,1J}, and call this ordinal ij(z).
We label each cross vertex z with a unique ordered 4-set,

(14, 3 (x), wv, uv(z)),
where z is associated with edges ¢j and uv and 47 is lexicographically smaller
then wv. (That is, ¢ < v and if { = u, then j < v.)

A cross graph G* of G has vertex set V(G*) = VUY, and edge set
defined by the following adjacencies:

(35, r, st,w) is adjacent to (kl,y, mn, z) iff
ij=klandy=r=+1OR
st=mnand z=wx1OR
ij=mnand 2=r+1OR
st=klandy=w+1.
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AND

For i,j in V, i and j are adjacent iff they are adjacent in G and there are
no cross vertices in Y associated with edge ij.

AND

Vertex i in V is adjacent to (mn, 2, st, w) iff exactly one of the following
holds:

i=mand z=1OR
i=nand z= MN OR
i=sandw=10R
i=t%tand w=ST.

Thus, the edge set of the cross graph could be viewed as consisting of
all those edges in G with which no cross vertices are associated, and every
other edge uv of G replaced by a “path”, P(u,v), whose interior vertices are
cross vertices associated with uv. Note that there are many cross graphs
for a given graph, depending on the choice of ¥ and on the ordinals asso-
ciated with each edge in the above definition. It is convenient to change
notation henceforth in order to describe the edges of these paths, which we
call “segments”. For an edge (u,v) of G, the “ith segment” encountered
when traveling along P(u,v) from u to v in G* is labeled (X} ,, X;h!).
It is considered to be the union of the directed segments [X ,, Xi'] and
[Xit, X3 4], while these directed segments are referred to as mirrors of
each other.

An alternating neighborhood, z — nbhd, of a cross vertex y in a cross
graph G; is a cyclic permutation m-(y) of the neighbors of y such that if y is
associated with the edge pair (4, j) and (u,v), with (a,) and (3, b) in P(3, 5),
and (c, y) and (y, d) in P(u, v), then :(y) = (a, ¢, b,d) or mz(y) = (a,d, b, c).
An alternating neighborhood set, £ — Np(G.), of a cross graph G, is a
neighborhood set Ny(Gz) such that all cross vertices in V(G:) have z —
nbhds. The resultant embedding of G is called an alternating embedding.
In this embedding two directed segments are said to be consecutive on a
region if neither segment’s mirror occurs between the two segments when
using a rotational scheme for “tracing” the boundary of the region. For
notational brevity, edges or parts of edges on the boundary of a region will
be called “in the region”.

Let T be an embedding of a graph H on some surface S with a vertex
v of degree 4 whose cyclic permutation w(v) = (v1,v2,v3,vs) describes the
neighbors of v in counterclockwise order about v in T'. Assume that neither
v1vs nor vyvy are in the edge set of H. To cross lift v, x-lift, from T is to
mark a point v, on S at the location of v in T and then create H* =
(V*, E*), with drawing D*, by V* = V(H)\ {v} and E* = E(H)UQ - P,
where Q = {('01, v3)a (va '04)}1 P= {(U’vl)) (v,v2), (v, ”3)}’ and the edges
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of @ are drawn with a crossing at v;. (One could “tangent liff’ by including
the set {(v1,v2), (vs,4)} in E* making a tangent point in D* at vs, but we
have no use for that here, since it does not create a good drawing.) We will
use the term “lifting” of vertices in this paper to indicate x-lifting. Notice
that the condition on non adjacencies is always satisfied if the vertex of
degree four is a cross vertex in an alternating embedding of a cross graph.

Now, given a drawing of a graph G which has crossings, if we use a
reversal of this lifting process, which we could call “placing”, we have put a
new vertex at each crossing in & drawing and have obtained a new embedded
graph, G*. If one considers each of the new vertices to be cross vertices
in the above definition, and uses as the ordinal correspondence an ordering
of the cross vertices on edge ij, from i to 7, ¢ < j, then G* is a cross
graph of G. By taking a counterclockwise cyclic rotation at each vertex
of G*, an alternating neighborhood set corresponding to the embedding
of G* results. Likewise, when we imagine x-lifting all cross vertices of an
embedded cross graph simultaneously, we can see that there is an easy
correspondence between alternating neighborhood sets of cross graphs and
drawings of the graph.

For a given cross graph derived from a drawing of a graph G, the em-
bedding corresponding to this neighborhood set is called “the embedding
corresponding to the drawing of G”. Thus, an alternating neighborhood set
of a cross graph of G is a combinatorial representation for a good drawing
of G. The alternating neighborhood set structure has been used to show
the following result [5).

Theorem 2.1. Given a connected graph G and an integer k, 0 < k <
©(G), there exists a good drawing of G with k crossings on some surface,
where ©(G) is the order of X(G).

The bound ©(G) in Theorem 2.1 is easily derived [6] and is calculated
by the following sum.

O(G)= Y _ (IE| — degu — degv +1)/2.
uveE

3 The Cross Addition Theorem

We are now ready for the main theorem. It is important to note that this
theorem and Theorem 4.1 are “prescriptive”. That is, although the cases
given are rather technical, when one has an explicit drawing, it is possible
to determine which case is applicable and actually form a new drawing.
Accordingly, all cases are described in detail. In what follows, the compact
orientable surface of genus = is denoted S,,.

Theorem 3.1. Given a connected graph G = (V, E) and a good drawing
D of G on Sy, with k crossings, k < ©(G), there exists a good drawing of
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G with k + 1 crossings on S, where n = h, h+1, or h+ 2. Furthermore,
the value of n can be explicitly determined according to cases as given in
the proof.

Proof: Since k < ©(G), there exists a pair of parallel edges in D. For all
cases, we let G be the cross graph associated with the drawing D. Let
(a,b) and (c,d) be those parallel edges with arbitrarily chosen segments
[X: 4, X5y} and [X 3, X7 ], respectively. We construct a new cross graph
G of G, by letting Y ={x*}, wher'e X* is the cross vertex associated with
the edge pair ([XZ ,, X% ], [X7 4, X2 4])- Let z— N (Gz) be the alternating
neighborhood set of G, corresponding to D, giving an embedding £ on a
surface of genus h. Construct an alternating neighborhood set of Gz,  —
N(G%), with embedding £* of genus n, by leaving all cyclic permutations of
the vertices in 2—N,(G_) the same except for mz(X} ;), 7z(X, ,‘;:b), 72(X7 ),

and w,(X;_,’:d), which are changed by,

in w4 (X% ), XL, is replaced by X*,
in m5(X3,), X5 p is replaced by X*,
in w,(XZ‘d), Xz:d is replaced by X*,
in m (X Z:d), Xz'd is replaced by X*,

and then let 7z(X*) = (X} ,, X'c’:d, X;':b, Xl

The regions of £* will be the regions of £ except that those containing
[Xz'b,Xg:b], [X,';"b, X; 4, [Xz'd, X::d], and [Xz:d, Xid] on their boundaries
will be replaced by new region(s) according to several cases. Since £* is
the embedding corresponding to an alternating neighborhood set of a cross
graph of G, we can lift the cross vertices giving a good drawing of G.

There are twenty-four ways in which these two segments and their mirrors
can occur on one, two, three, or four regions in £. These twenty-four cases
can be reduced to the following eight. Each of these cases in turn is proven
in a manner similar to Case 1; thus, the proofs are omitted. (All details
are available on request.)

Case 1. If the segments and their mirrors occur on the same region, the
segments are consecutive on the boundary of that region, and no segment
and its mirror occur consecutively on the region, then n = h.

Let R be the region containing the segments and their mirrors in £. A
schematic of the region R is given in Figure 1. Schematics are used to
represent the cyclic permutations of the neighbors of a vertex; therefore,
geometric regions in a schematic are meaningless. A region in a schematic
and the boundary of that region which is defined by the embedding are
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considered to be the same. When using a schematic, we always proceed
counterclockwise from an edge entering the vertex to the next edge to exit it.

Figure 1.
A Schematic of the Region R Containing the Segments
and their Mirrors from Case 1

Without loss of generality, we can represent R as:

-t

. ’ s
RiX:y—Xiy—wi——w =X =X —n— o~y — X5,

- j' j ‘.
c,b_ul—"'—ue—xcd_xc,d—zl—"'_zf_Xa,b'

Figure 2.
A Schematic of the Replacement of the Region R in Case 1
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As illustrated in Figure 2, the regions of £* will be the regions of £ except
that R will be replaced by the two regions, R; and R, represented as:

Ry: i,,,—X‘—Xg'd—yl-...—ya—Xib—X'—Xz'd—zl—...
-z —Xoy
and
. ! 14
Ro: X, - X* = Xip—w—-—ue—X1 - X' —Xgp—w1—...
_wr—Xg'do

By Euler’s formula, we see that z — Nx(G}) corresponds to a 2-cell embed-
ding of G3 on Sh.

The remaining seven cases are given below and describe exactly the sur-
face upon which the drawing is created.
Case 2. If the segments and their mirrors occur on the same region and
each segment and its mirror are consecutive on the boundary of that region,
then n=h.
Case 3. If the segments and one of their mirrors occur on the same region,
then n = h.
Case 4. If the segments occur on one region and the mirrors occur on
another (same) region, then n = h.
Case 5. If the segments occur on one region and the mirrors occur on two
different regions, then n =h + 1.
Case 6. If each segment and its mirror occur on the same region and these
two regions are different, then n=h + 1.
Case 7. If one segment and its mirror occur on the same region and the
other segment and its mirror occur on two different regions, then n = h+1.

Case 8. If the segments and their mirrors occur on four distinct regions,
thenn=h+2. (]

4 The Cross Deletion Theorem

The method used to add a crossing to an existing drawing can be reversed
to delete a crossing from a drawing. However, since the crossing is added
using exactly one of the two possible x-nbhds for its associated cross vertex,
not all cases in the Cross Deletion Theorem are reversals of cases in the
Cross Addition Theorem. All case reversals will be given along with one
non-reversal case.

Theorem 4.1. Given a connected graph G = (V, E) and a good drawing
D of G on Sy with k crossings, k > 0, there exists a good drawing of G
with k — 1 crossings on S, where n=h —2, h—1, h, or h+ 1. (It follows
from the theory of rotation schemes that the first two cases do not occur
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unless h > 2, or h > 1,'respective1y.) Furthermore, the value of n can be
explicitly determined according to cases as given in the proof.

Proof: Let G, be the cross graph associated with the drawing D and
z — Nz(G.) be the alternating neighborhood set of G corresponding to D,
giving an embedding £. Since there is a crossing in D, then there is a cross
vertex, say X*, in V(Gz). Using our earlier notation for segments, suppose
X* is the cross vertex associated with the edge pair (a,b) and (¢, d) and
the cyclic permutation of the neighbors of X* in z — N,(G.) is given by
T2 (X*) = (X3 4 c,d,X 'd) Then, locally, X* can be thought of as
the cross vertex: assocla.ted with the crossing of the segments (X ,, X} b)
and (X? e Xz, a) Construct a new graph G; by V(G:) =V(G:)\{X*} and
E( 2) = E(G)\{(X 3 X (X X0, (X5 0, X*), (X0 XM U{(XE,

,,), (xg @ d)} Construct an alternating neighborhood set of G,

z - N, (G‘), w1th embedding £*, by leaving all cyclic permutatmns of
the vertices in % — N(G:) the same except mz(X*), mz(X} ;) m=(X b),

7z (X, d), and 7rx( d) in € are changed by the following:

in m2(XZ ), X* is replaced by X ,,
in mz(X%,), X" is replaced by X ,,
in mz(X3 ), X* is replaced by X7,
in (X Z:d), X* is replaced by XZ,.,;,
and delete w.(X*).

The regions of £* will be the regions of £ except that those regions which
contain the four segments and their four mirrors with X* as one endpoint
will be replaced by new region(s) according to the cases which follow in the
proof.

For brevity of notatlon, let the path X7 e X5 X, ; » be called the segment

path, path X7 74 X*, X%, be called the mirror path, path X¢ ,, X*, xJ

be called the segment-mzrror path and, lastly, the path X; b X * Xg d be
called the mirror-segment path. The paths are illustrated in Fxgure 3. Two
of these four paths are said to be consecutive on a region if neither of the
two remaining paths occurs between them on the boundary of that region,
when following the rotation scheme to trace the boundary.

There are twenty-four possibilities for which these four paths can occur
on one, two, three, or four regions in £ which reduce to nine cases. In the
first we’ll illustrate a case which reduces to one from the Cross Addition
Theorem.
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®x ab

segment-mirror segment
path path
1
; :
Xea @— £ Xy
mirror mirror-segment
path path
"I
® X,
Figure 3.

The Paths Surrounding the Cross Vertex X*

Case 1. If X* is on the boundary of one region, the segment path and the
mirror path are not consecutive on the region and the segment-mirror path
and the mirror path are consecutive on the boundary of that region, then
n=h-1.

Let R be the region containing X* in E. Without loss of generality, we
can represent R as:

Iy o o ’
RiXiy—X* =X mgr— =g = XTy— X — Xy —wy = —
— X=X =Xl —m— e m = XD - X - Xy —u - e
- X3 p

In this case, the alternating neighborhood set which we have created is
the resulting alternating neighborhood set in Case 6 of the Cross Addition
Theorem (CAT), Theorem 3.1. Thus, we have that the regions of £* will
be the regions of £ except that R will be replaced by the two regions R?
and R* represented as:

i. yt i i {1 1
R: Xop—Xop—w1—- - —wr— X5 p — Xgp—u1— -+ —ue — ab
and
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3 : - 7 : o
R“:Xz,d_X:,d—yl—"'_ya_Xz,d—Xg,d_zl—"'—zf-Xg,d'

By Euler’s formula, we see that £* is an embedding on Sj,_;.
Case 2. If X* is on the boundary of one region and the segment path and
the mirror path are consecutive on that region, then n = h — 1.

(This case is not a “reversal” of a cross addition case because the region
described is not obtained as a result of any case there.) Let R be the region
containing X* in E. Without loss of generality, we can represent R as:

: i1 Y -
RXi,— X' —X]g—y1——ys — ap— X' =Xig—n—...
) .y .
oty = X X = X ey = X X
- Xap—ur— - —ue —Xg .

The regions of £* will be the regions of £ except that R will be replaced
by the two regions R* and R represented as:

. . .y . -7
R':X;'b—X;',,—wl—---—w,.—-Xg’d—Xf_.'d—yl—...
” . .
— U= Xy = Xip—u1 = —u = Xy
and
i, yi’ ] J
Rt .Xc,d—Xc,d—ZI—"'—Zf—Xc,d.

By Euler’s formula, we see that £* is an embedding on Sj—;.

The proofs to Cases 3-8 are all similar to Case 1.
Case 3. If X* is on the boundary of one region, the segment path and the
mirror path are not consecutive on the region and the segment-mirror path
and the segment path are consecutive on the boundary of that region, then
n=h-2.
Case 4. Suppose X* is on the boundary of two regions and one region
contains three of the four paths. If on that region the paths which occur
are in the order: the segment path, the segment-mirror path, the mirror
path, the mirror-segment path, then n = h.
Case 5. Suppose X* is on the boundary of two regions. If one region
contains three of the four paths and on that region the paths which occur
are not in the order: the segment path, the segment-mirror path, the mirror
path, the mirror-segment path; or, if each of the two regions contains two
paths and the segment path and the mirror path do not occur on the same
region, then n =h — 1.
Case 6. If X* is on the boundary of two regions, each region contains two
paths, and the segment path and the mirror path occur on the same region,
then n = h.
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Case 7. If X* is on the boundary of three regions and either the segment
path or the mirror path (but not both) occur on the region containing two
paths, then n = h.

Case 8. If X* is on the boundary of three regions and either the segment
path and the mirror path occur on the same region or the segment-mirror
path and the mirror-segment path occur on the same region, then n = k.

Case 9. If X* is on the boundary of four regions, then n = h + 1.
This case is not a reversal of a case of the cross addition theorem and
proceeds like Case 2. m]

5 Upper Bounds on the Thrackle Genus

The theoretical use of these results can be illustrated by applying them
to the well studied “thrackle” conjecture. Conway, quoted by Woodall,
defined a thrackle of a graph to be a good drawing D on the plane in which
all pairs of nonadjacent edges cross, i.e. D contains no parallel edges [7). If
a thrackle of G exists, then G is said to be thrackleable. But not all graphs
are thrackleable on the plane. (The “thrackle conjecture” asserts that only
a graph whose number of edges does not exceed its number of vertices can
be so drawn [7].) However, in [5] we show that every graph can be thrackled
on some orientable surface. Hence, one could define the thrackle genus of
G, 77(G), to be the minimum among all genera of surfaces on which G is
thrackleable.

The crossing number of a graph G, v(G), and the mazimum cross-
ing number, vp(G), are the minimum and maximum number of crossings
among all good drawings of G on the plane, respectively. The upper bound
©(G) on the maximum crossing number, introduced in Section 2, is called
the thrackle bound [6).

The Cross Addition Theorem can be applied to build a thrackle drawing
of a graph on some orientable surface. This leads to upper bounds on the
thrackle genus.

Theorem 5.1. Given a good drawing D of a graph G with c crossings on
Sr, 0 < c < O(G), ¥r(G) < h+2[6(G) — (.

Proof: If there are no parallel edges in D, then ¢ = 6(G) and yr(G) < k;
otherwise, ¢ < ©(G) and, as long as there are parallel edges in a given
drawing of G, the Cross Addition Theorem [CAT] can be invoked to create
a new drawing of G with one more crossing. We can continue using the
CAT until we have created a thrackle of G on a surface with at most
h +2[6(G) — c] handles, since we add at most two handles to our surface
with each use. (n}

Since we know that all cycles, except the cycle on four vertices, are
thrackleable on the plane [8], we know that this bound is tight given any
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thrackle drawing of a cycle on the plane. The same is true for any plane
thrackle drawing of a graph; however, determining the plane thrackleability
of a graph is an open problem. Since the thrackle genus is known for so
few graphs, no sophisticated examples can be given of the tightness of the
bound in the theorem. However, the theorem does lead us to more bounds
on the thrackle genus.

Corollary 5.2. Given a graph G, vr(G) < ¥(G) + 2[6(G)] where v(G) is
the genus of G.

Corollary 5.3. Given a planar graph G, vr(G) < 2[6(G)).

Corollary 5.4. If there exists a good drawing of graph G on a surface Sh,
(@) < h+2[6(G) —vx(G)] where vy (G) is the minimum crossing number
of G on Sy. (This minimum means the minimum number of crossings
among all good drawings on the surface.)

Proof: Since there exists a good drawing of G on S, there exists a mini-
mum drawing of G on Sy, i.e. a drawing of G on S, with v,(G) crossings.
Thus, the result follows directly from Theorem 5.1. ]

Corollary 5.5. Given a graph G, v7(G) < 2[6(G) — vm(G))-

Another upper bound for the maximum crossing number is given in (6]
called the subthrackle bound, ©'(G), where ©'(G) =6(G) - N+ M and N
and M are the number of nonidentical Cy’s and Ky's in G, respectively. A
graph is called subthrackleable if it has a good drawing on the plane with
©’(G) crossings.

Corollary 5.6. Given a subthrackleable graph G, yr(G) < 2(N — M)
where N and M are the number of nonidentical C4’s and K4’s in G, re-
spectively.

Proof: By Corollary 5.5, 77(G) < 2[6(G) — ©'(G)] = 2{6(G) - [6(G) —
N+ M)} =2(N - M). o

There is so little known about thrackles that the bounds given in Corol-
laries 5.2 and 5.3 are not known to be tight. However, it is known that the
bound given in Corollary 5.4 is tight for the toroidal thrackle of Cj, as it
would be for any thrackle drawing of a graph G on a surface of genus yr(G).
The bound is tight in Corollary 5.5 given a plane thrackleable graph. Once
again, it is unknown as to whether the bound in Corollary 5.6 is tight.
Final Remarks. The Cross Addition Theorem and the Cross Deletion
Theorem provide methods for moving from one good drawing of a graph
to another. We call this “moving” between drawings derivation. Work on
these derivations is underway and could have implications for finding both
minimum and maximum drawings.
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Software has been developed which builds a thrackle of a graph from a
good drawing and which derives one good drawing from another, using the
methods of this paper [9]. Since they depend on combinatorial representa-
tions, the algorithms are not polynomial.
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