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Abstract. Each vertex of a graph G = (V, E) is said to dominate every vertex in its
closed neighborhood. A set S C V is a double dominating set for G if each vertex
in V is dominated by at least two vertices in S. The smallest cardinality of a double
dominating set is called the double domination number dd(G). We initiate the study of
double domination in graphs and present bounds and some exact values for dd(G). Also,
relationships between dd(G) and other domination parameters are explored. Then we
extend many results of double dominati- a to multiple domination.

1 Introduction

Let G = (V, E) be a graph with |V| = n and |E| = m. Each vertex of
a graph is said to dominate every vertex in its closed neighborhood. A
set S C V is a dominating set if each vertex in V is dominated by some
vertex of S. The domination number ¥(G) is the minimum cardinality of
dominating set. Many domination related parameters have been defined.
For a comprehensive work on the subject see [7, 8]. Here we introduce
another variant of the domination concept. Set S is a double dominating
set for G if every vertex in V is dominated by at least two vertices in S. The
minimum cardinality of a double dominating set is the double domination
number, denoted dd(G). We refer to a minimum dominating set as a y-set
and a minimum double dominating set as a dd-set. Obviously, every dd-set
is also a dominating set. Note that the concept of double domination can
be extended to multiple domination (h-tuple domination) by requiring that
each vertex in V be dominated at least h times.

Cockayne, Dawes and Hedetniemi [3] defined a similar concept, which
they called “total domination”, described here as “open domination”. A
set S is an open dominating set if each vertex in V has at least one neighbor
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in S. A fortiori every dd-set is an open dominating set. The open (total)
domination number ~;(G) is the minimum cardinality of a open dominating
set.

For examples, consider the graphs in Figure 1. Set {v;,vs} is a ~-set
and set {v1,v2,vs,v4} is a dd-set and a 7;-set for the cube Q3. So the cube
has v(Q3) = 2, and dd(Q3) = 7:(Q3) = 4. For the subdivided star K7 ,, set
S = {w1,ug,...,ux} is a y-set, and SU {w} is a ,-set. However, any dd-set
must include each endvertex »; and its neighbor ;. Thus dd(G) = 2k.
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Figure 1: Graphs Q3 and K7 ;.

Many applications of domination in graphs can be extended to double
domination. For example, if we think of each vertex in a dominating set
as a fileserver for a computer network, then each computer in the network
has direct access to a fileserver. It is sometimes reasonable to assume that
this access be available even when one of the fileservers goes down. A
double dominating set provides the desired fault tolerance for such cases
because each computer has access to at least two fileservers and each of the
fileservers has direct access to at least one backup fileserver.

In general, we follow the notation and terminology of [6]. We use (S)
to denote the subgraph induced by the set of vertices S and N(v) and N[v]
denote the open and closed neighborhoods of a vertex v, respectively. Let
deg(v) be the degree of vertex v and as usual 6(G) the minimum degree
and A(G) the maximum degree.

Results involving dd(G) are presented in Section 2. Then relationships
between dd(G) and other domination parameters are explored in Section
3. Finally, the concept of double domination and many of the results are
extended to multiple domination in Section 4.
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2 Double Domination Number

Obviously, a graph with an isolated vertex cannot have a double domi-
~ nating set. We ask the natural question regarding the existence of double
dominating sets.

Theorem 1 Every graph with no isolated vertices has a double dominating
set and hence a double domination number.

Proof. Without loss of generality, let G = (V, E) be connected. Then V
itself is a double dominating set as each vertex is considered to dominate
itself, and since G has no isolates, G is nontrivial so each vertex v is adjacent
to some other vertex u. Thus both u and v dominate v. Now that we know
G has a double dominating set, we may remove one vertex at a time from
V if and only if the remaining subset of V' is still a double dominating set.
This will give a minimal double dominating set. Among all the minimal
double dominating sets, each of the smallest sets has cardinality dd(G). O

Henceforth we consider only graphs with no isolated vertices. Before
presenting bounds on dd(G), we give examples of double domination in
specific families of graphs. These easily computed values of dd(G) are
stated without proof. Here K, is the complete graph, C, is the cycle, W,
is the wheel with n — 1 spokes, P is the Petersen graph, K is the star,
and K, s is the complete bipartite graph.

Examples:
(1) dd(K,) =2.
(2) dd(Ca) = [%].
(3) dd(W,) =1+ [ﬁ"—;—ll]
(4) dd(P) = 6.
(5) dd(Kym)=m+1=n.
(6) dd(Kr,s) =4 forr > 3,5 > 3.
Next we state straightforward upper and lower bounds for dd(G).

Theorem 2 Let G be a graph with no isolated vertices. Then 2 < dd(G) <
n and these bounds are sharp.
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Proof. Let G be a graph with no isolated vertices. For a vertex to be
dominated twice, there must be at least two vertices in any dd-set. We
have already seen that V forms a double dominating set, so any dd-set
contains at most n vertices.

These bounds are sharp as can be seen with nontrivial complete graphs
and stars achieving the lower and upper bounds, respectively. O

We now specify all graphs G having V' as a unique dd-set.

Lemma 3.1 If vertex v has degree one, then both v and its neighbor must
be in every double dominating set of G. O

Theorem 3 A graph G has V as its unique dd-set if and only if for each
v € V, there is a vertex with degree one in Nlv].

Proof. If there is a vertex of degree one in N[v] for every v € V, then
Lemma 3.1 implies that V is the unique dd-set of G. Suppose G has V
as its unique dd-set, that there exists v € V with deg(v) > 2 and for all
z € N(v),deg(z) > 2. Then V — {v} is a double dominating set for G with
order less than dd(G), a contradiction. O

Corollary 3.1 If there ezists v € V such that for all x € N[v] deg(zx) > 2,
then dd(G) <n-1. 0O

Considering the lower bound of Theorem 2, we make an observation.

Observation 1 A graph G has dd(G) = 2 if and only if there exist vertices
u,v € V such that deg(u) = deg(v) =n—-1. O

Obviously, 7(G) < dd(G) for all G without isolated vertices. This lower
bound can be improved slightly.

Theorem 4 For any graph G with no isolated vertices, v(G) + 1 < dd(G)
and this bound is sharp.

Proof. Let S be a dd-set of G. Then N[z] C N[S — {z}] forall z € S.
Therefore, S — {z} dominates G and ¥(G) < dd(G) — 1. The complete
bipartite graph K, t > 2, achieves this lower bound with y(K>,:) = 2 and
dd(Kz,) = 3. O

Observation 2 Let G be a graph with no isolated vertices and two veriex
disjoint y-sets. Then

¥(G) +1 < dd(G) < 2¥(G)

and these bounds are sharp.
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Sharpness for both the lower and upper bounds is realized by nontrivial
K. In fact, dd(G) = 2 implies that dd(G) = 2y(G). To see that we need
the condition of vertex disjoint y-sets in our observation, let G be the star
Kim for m > 2. Then G has a unique y-set, 7(G) = 1 and dd(G) = n.
Hence the difference in 7(G) and dd(G) can be made arbitrarily large. The
next result is another lower bound on dd(G).

Theorem 5 Let G be a graph with no isolated vertices. Then

dd(G)24n_2m

and this bound is sharp.

Proof. Let S be a dd-set of G. Then each vertex of V — S is adjacent to
at least two vertices in S. Further, each vertex of S must have at least one
neighbor in S. Thus the number of edges

m > 2|V — 8| + dd(G)/2 = 2n — 2dd(G) + dd(G)/2.
Cycles on 3k vertices realize the sharp lower bound. O

The well known result [9],

+(C) 2 [ﬁ]

relates the domination number to the maximum degree. We establish a
similar result for dd(G).

Theorem 6 If G has no isolated vertices, then

2n

dd(G) 2 m

and this bound is sharp.

Proof. Let G have no isolated vertices and let S be a dd-set for G. Further,
let ¢ denote the number of edges in G having one vertex in S and the other
in V—-8. Since A(G) > deg(v) for all v € S and each vertex in S is adjacent
to at least one member of S, we have

t < (A(G) - 1IS| = (A(G) — 1)(dd(G))-

Also, since each vertex in V — S is adjacent to at least two members of S,
we have
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t> 2V — 8| = 2[n — dd(G)).

Hence
2(n — dd(G)) < A(G)dd(G) — dd(G),

which reduces to the bound of the theorem. Both the 1-regular graphs
mKs and the nontrivial K, achieve the lower bound. O

We now turn our attention to upper bounds on dd(G). The next result
relates dd(G) with the maximum number of independent edges 5:(G).

Theorem 7 If G has §(G) > 2, then dd(G) < 26:(G).

Proof. Let G be a graph with 6(G) > 2 and M be a maximum independent
set of edges in G. Let S be the vertices in the set of edges of M. Since V-8
is an independent set, each ¥ € V — § must have at least two neighbors in
S. Further the vertices of S double dominate themselves, so S is a double
dominating set for G. O

Requiring that G has no endvertices allows us to improve the upper
bound of Corollary 3.1. Our main and final result for this section gives
a best possible upper bound for dd(G) when §(G) > 2. The proof relies
on the result from Ore [11] that a graph G with no isolated vertices has
v(G) < n/2.

Theorem 8 Let G be a graph with §(G) > 2. Then

n/2]| +v(G) forn=3 andn=>5
dd(G) < { I[n/2j + z(G) —1 otherwise.

PFurthermore, these bounds are sharp.

Proof. Let G be a graph with §(G) > 2 and S be a minimum dominating
set having the smallest number of isolates in (S) among all y-sets of G. It
is easy to verify the bound of the theorem for n < 6, so assume n > 7.
Construct a double dominating set for G in the following way. For each
isolate in {S), select a neighbor in V' — S. Let X be a smallest set of these
neighbors. Note that |X| < 4(G) and that SU X double dominates itself.
Let W be the set of vertices in V —(SUX) that are not double dominated by
SUX. Since §(G) > 2, v € W implies that [N(v)N(V — (SUX))| > 1. Let
S’ € V—(SUX) be a minimum set which dominates the vertices of W. Since
|W| < |V =(SUX)| and no vertex of W is isolated in the induced subgraph

(V- (SUX)), from Ore’s theorem we have |5’| < ]yj.gu_xl[ Furthermore,
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SUXUS is a double dominating set for G. Hence dd(G) < |S|+|X|+|5|.
We consider the cardinality of X. If | X| < ¥(G) — 2, then

n—2v9(G) + 2J

4(G) £ +(G) +7(6) - 2+ | =L

= [gJ +9(G) - 1.

Further, if two or more vertices in S are adjacent, then |X| < 4(G) - 2.
Thus let S be an independent set and consider the cases |X| = 4(G) and
|X] =+(G) — 1. Let t be the number of vertices in V — (§ U X') which are
double dominated by S U X. In either case if £ > 2, then

dd(G) < 1(G) + |X| + [" utebd tJ <|3]+1@-1
Moreover, if |[X| = ¥(G) — 1 and ¢ = 1, we again have the bound of the
theorem.

Therefore assume that ¢ < 1 and label the vertices of S as y1, 42, . - ., ¥y(c),
the vertices of X as z1,22,...,%)x|, and the vertices of V — (S U X) as
u;, 1 <i <[V - (SUX).

Case 1. Let |X| = v(G). Thent =0ort =1 and each vertex y; € S
has exactly one neighbor z; € X and at least one neighbor, say u; €
V — (SU X). Then minimality of X implies that N(u;) NS = 1. Without
loss of generality, if ¢ = 0, then z; is adjacent to 2o and u; is adjacent to ua.
Then (SUX) — {z1}U{u,1} is a set with the same cardinality as SUX that
double dominates at least the two vertices z; and ug in SUX — {z1}U{u1 }.
Hence the upper bound of the theorem holds in this case.

Ift=1and n > 7, then it can be shown that there exists at least one
pair of adjacent vertices in (V — (SU X)) and we can repeat the above
argument.

Case 2. Let |[X| = v(G) — 1. Then ¢t = 0 and exactly one vertex of X,
say 7, is adjacent to exactly two vertices of S, say ¥ and yo. If ¥(G) > 3,
we can use an argument similar to the one above. Hence assume 4(G) = 2.
Then both %; and g» are adjacent to ;. If S’ can be chosen so that SU S’
is a double dominating set for G, then

(@) < @)+ | "= <20 | 222 < |2 4ve) -1
2 2 2
If not, then S’ cannot dominate both y; and y,. That is, S’ can only be
chosen from neighbors of ¥, say. We may assume that |S’| > 2 since the
theorem holds if |S’) = 1. Observe that any neigbhor (other than z;) of
Y2, Say z, is dominated by some neighbor of y;, say d € §’. Furthermore,
d is necessary in S’ to dominate at least one other vertex in V — (SU X),
say z, else d could be replaced by z in §’, contradicting that S’ does not
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dominate y2. Hence

IS,lgln—'y(G)—l—lJ'

2
Then SU S’ U {z,} is a double dominating set of G and

dd(G) < |SuS'U {z,}|

n—v(G)-2 n—4 n
= A A ol = <|= - 1.
7(G)+[ > +1= 2=l +3< 3] +n@) -1
To see that this bound is sharp, consider a graph G on 3+ 2r vertices for
r > 2, say {y1,¥2, T, U1, U2, ...Ur, V1, V2, ..0r }, With E(G) = {11z, 1oz, y1ui,
Y2vi, u;; | 1 <4 < r}. The graph G has y(G) =2 and dd(G) =r + 2 =
[n/2] +v(G)-1. O

3 Relationships Between Double Domination
Number and Other Domination Parame-
ters

As mentioned in the introduction, there are many different types of domi-
nation. We define a few selected domination invariants and consider rela-
tionships between each of them and dd(G).

A set E' C E is an edge-edge dominating set if each edge in £ — E’ is
adjacent to an edge in E’. Let 4'(G) denote the size of a minimum cdge
dominating set.

Theorem 9 If §(G) > 2, then dd(G) < 2v/(G).

Proof. Let E' be a minimum edge dominating set for G and let S denote
the set of vertices incident with an edge in E’. Obviously, each vertex in S
is doubly dominated by S. Since §(G) > 2, any vertex v € V — S must be
incident to at least two cdges and these edges must be adjacent to cdges in
E’. Hence S is a dd-set for G. O

Since any dd-set for G is also an open dominating set for G, we have
the next statement.

Observation 3 In a graph G with no isolated vertices, v(G) < 7(G) <
dd(G).
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Allan, Laskar and Hedetniemi [1] established the following inequalities
for a graph G with no isolates:

1(G) £ %(G) £ 2v(G).

The upper bound is not always good for dd(G) as was seen with the
star Ky for m > 2. However, we have found the place for dd(G) in
this sequence of inequalities for the case when G has two vertex disjoint
minimum dominating sets.

Observation 4 If G has no isolates and two vertex disjoint minimum
dominating sets, then

7(G) £ 1(G) £ dd(G) < 29(G).

Sampathkumar and Walikar [12] define a connected dominating set S to
mean (S) is connected. The minimum cardinality taken over all connected
dominating sets is called the connected domination number of G 7.(G).
Obviously,

Y(G) £ 1(G) £ %(G).

However, the following examples show that no particular inequality holds
between dd(G) and ~.(G).

Examples:
(1) dd(Cpn) = [2n/3] <7 — 2 = 7(Cy) for n > 9.
(2) dd(K1m) =m+1=n>1=7(K1m)

(3) dd(Cs) = 4 = 7c(Cs).

4 Multiple Domination

We now gencralize from domination and double domination to multiple
domination. First we consider two equivalent definitions of a dominating
set. A set S C V is a dominating set if each vertex in V — S is adjacent to
a vertex in S. Hence a vertex can be said to dominate itself and all vertices
adjacent to it. The definition of dominating set may also be written as
follows. A set S C V is a dominating set if the union of the closed neigh-
borhoods of the vertices in S is V. These obviously equivalent definitions
lend themselves to different gencralizations.

In [4] Fink and Jacobson introduced multiple domination as a general-
ization of the first definition. A set S C V is an h-dominating set if each
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vertex in V — S is adjacent to at least h vertices in S. The size of a mini-
mum h-dominating set is the h-domination number, denoted by y,(G). In
their definition the vertices of S do not need to be multiply dominated.

We generalize the second definition of a dominating set as follows. A set
S C V is an h-tuple dominating set for G if each vertex in V is dominated by
at least h vertices in S. The h-tuple domination number, denoted yxx(G),
is the smallest number of vertices in an h-tuple dominating set. Here each
vertex in S does need to be multiply dominated. Trivially, ¥(G) = 1 (G) =
x1(G), dd(G) = vx2(G), and 7(G) < W(G) £ 1xn(G). Furthermore,
¥(G) < dd(G) < vxr(G) for h > 2.

Many of the results obtained in Section 2 for double domination are
easily extended to multiple domination. Since the proofs are simple gen-
eralizations of the corresponding proofs for double domination, they are
omitted.

Theorem 10 Every graph with §(G) 2 h — 1 has an h-tuple dominating
set and hence an h-tuple domination number. O

Now that we know that graphs with §(G) > h — 1 have multiple dom-
inating sets, we consider the difficulty of finding the h-tuple domination
number of G.

Observation 5 The decision problemn of determining whether a graph has
an h-tuple dominating set of size t or less is NP-complete.

Proof. Restrict A = 1. The problem is DOMINATING SET [5]. O

Next we give bounds for yxx(G) which are direct generalizations of the
double domination results.

Theorem 11 Let G be a graph with 6(G) > h— 1. Then
h < 'Yxh(G) <n
and these bounds are sharp. O

Both the upper and lower bounds in the above theorem are realized by
the complete graph Kj.

Lemma 12.1 If vertez v has degree h — 1, then N[v] must be in every
h-tuple dominating set of G. O

Theorem 12 A graph G has V as its unique h-tuple dominating set if and
only if for each v € V, there is a vertez of degree h —1 in N(v}. O
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Any (h—1)-regular graph will have V as its unique h-tuple dominating
set.

Corollary 12.1 If there exists v € V' such that for all x € N|v], deg(z) >
h, then vxn(G) <n. O

Observation 6 A graph G has yxnr(G) = h if and only if there exists at
least h vertices in V having degree n — 1.

We have shown that yx4(G) > 4(G) for h > 2. Using a theorem from
Fink and Jacobson [4], we determine a better bound for yx4(G) when h > 3.

Theorem A [4] If G is a graph with A(G) > h > 2, then y+(G) > v(G) +
h-2.

Since yxn 2 Yr(G), we have the following.
Theorem 13 If A(G) > h > 2, then vxn(G) > ¥(G)+h—-2. O

The final two theorems extend the best possible lower bounds for dd(G)
to best possible lower bounds for yx»(G). We note that K} achieves both
lower bounds.

Theorem 14 Let G have §(G) > h — 1. Then

hn
Yxu(G) 2 m

and this bound is sharp. O

Theorem 15 Let G have §(G) > h — 1. Then

2hn — 2m

Tx1(G) = hrl

and this bound is sharp. O

5 Concluding Remarks

We introduced the concept of double domination in graphs and derived
sharp bounds on dd(G). We also explored relationships between dd(G) and
other domination parameters. Finally, we extended the concept of double
domination to multiple domination (h—tuple domination) in graphs. We
noted that finding the h-tuple domination number of a graph is a difficult
problem and presented sharp bounds on vxx(G).
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In general, all the questions asked about domination can be asked about
multiple domination and, in particular, double domination. We are investi-
gating scveral of these questions as well as new related types of domination.
We close with two of the many open problems concerning double domina-
tion.

(1) Characterize the graphs for which dd(G) = 2v(G).

(2) Bange, Barkauskas and Slater [2] called a dominating set S of a graph
G efficient (or ezact or perfect) if each vertex in V' is dominated by
exactly one vertex in S. Livingston and Stout [10] studied the exis-
tence and construction of perfect dominating sets in several families
of graphs. Analogously, we say a double dominating set S is effi-
cient if each vertex in V is dominated by exactly two vertices in S.
Characterize the graphs which have efficient dd-sets.
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