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ABSTRACT. In this note a conjecture of P. Johnson Jr., on the
Hall condition number is disproved.

We follow [1] for terminologies and notations and we consider finite undi-
rected simple graphs. We say that (G, C), where C is a list assignment of
G, satisfies Hall’s condition if the following holds:

Y _HH,C,i) 2 |E(H),
1
here H is an arbitrary subgraph of G and ¢(H, C, i) denotes the maximum
number of independent vertices of H having the color 7 in their lists, and i
ranges over Ueeg()C(e).

For a graph G, let s(G) denote the smallest integer m with the property
that (G, C) satisfies Hall’s condition for every list assignment C of G with
IC(v)| = m for all v € V(G).

The following theorem has appeared in [2] and [3]:

Theorem A. For every graph G we have:

s(G) = max{I'IV((H))I'I H is a subgragh of G}

Hilton and Johnson in [2] posed a problem stating that: Does there exist
a graph G with s(G) < x(G) —2? And how much less than x(G) can s(G)
be? In [3] Johnson solved this problem by constructing a family of graphs
which showed that the set {x(G) — s(G)} is unbounded. In the same paper
he posed the following conjecture:

Conjecture. For every graph G, x(G) < %s(G).
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In this note we disprove the above conjecture. We construct a graph G
with x(G) =5 and s(G) = 3.

Let M be the graph shown in Figure 1. Note that {b;,...,bs} is an
independent set of size 5 in M and |V(M)| = 11. We have x(M) = 4
and M is triangle-free. Actually, M is one of the graphs constructed by
Mycielski (see [1]).

Proposition. Let G be a graph obtained by joining a new vertex o to the
vertices of M. Then x(G)=5 and s(G) =3.

Proof: It is clear that x(G) = 5. Also, since G has an odd cycle as a
subgraph, we have s(G) > 3. By Theorem A, it suffices to show that for
every subgraph H of G with |[V(H)| = 3k + 1, where 1 < k < 3, we have
a(H) > k+1. But, since for any such H we have [V(H)NV(M)| > 3k, thus
it is sufficient to show that for every subgraph L of M with |V(L)| = 3k
(1 £ k < 3), we have a(L) > k+ 1. We know that M is triangle-free and
from Ramsey theory we have r(3,2) = 3, 7(3,3) = 6 and r(3,4) = 9, as
desired. (]
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Figure 1. A graph G with x(G) = 5 and s(G) = 3.
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