On the genus of the star graph

Sarmad Abbasi

Department of Computer Science
Rutgers University
Piscataway NJ 08855
email: sabbasi@paul. rutgers.edu

ABSTRACT. The star graph S, is a graph with S, the set of all
permutations over {1,...,n} as its vertex set; two vertices
and w2 are connected if 7 call be obtained form 72 by swapping
the first element of m; with one of the other n — 1 elements. In
this paper we establish the genus of the star graph. We show
that the genus, g, of S, is exactly equal to n!(n —4)/6+1 by
establishing a lower bound and inductively giving a drawing on
a surface of appropriate genus.

1 Introduction

In [1] Akers, Harel and Krishnamurthy introduced the star graph as a
computational network for parallel computing. It was also shown that the
star graph has many properties which are desirable for practical networks;
such as low diameter, low degree, symmetry and low fault diameter. They
also designed efficient routing algorithms on the star graph. Since then
some work has been done to design efficient parallel algorithms for the star
graph [6]. In this paper we are concerned with the genus of this graph.
Akers, Harel and Krishnamurthy [1, 2] conjectured that the genus of the
star graph is n — 3. We show that this conjecture is far from the truth: in
fact the genus, g, of Sy, is given by

_nl(n—4)

gn = 6 + 1.

2 Cayley graphs

GivenI a group and py, po, . . ., pi & set of generators for I', the Cayley graph
G(T;p1,..., px) is obtained by taking I as the vertex set; two vertices 7y,
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wq are connected if and only if m, = p;m2 for some j. Many well known
interconnection networks can be expressed as Cayley graphs. For example,
we can realize the n-cube as a Cayley graph by taking I as the product of
n copies of Zy, that is,

F - €B?=1 Z2.

The generators of I are given by (1,0,0,...,0),(0,1,0,...,0),...,(0,0,0,
...,1). In [2] it has been suggested that in general Cayley graphs make a
good choice for interconnection networks.

We want to study Cayley graphs of familiar groups. Therefore, S, the
group of permutations of {1,...,n} is a natural choice. We shall restrict
our attention to Cayley graphs obtained from a set of transpositions as
generators of S,. Given a set of transpositions T, we can construct a
transposition graph Gr on n vertices {1,...,n}, such that {4,7} is an edge
in Gr if and only if (3, /) € T. The following theorem, first given by Cayley
himself, characterizes when T is a minimal set of generators for Sn.

Theorem 2.1. —em (Cayley) A set of transpositions T is a minimal set
of generators for S, if and only if the transposition graph Gr is a tree
spanning {1,...,n}.

The star graph S, is a Cayley graph obtained by taking I' = S,, the
group of all permutations of {1,2,...,n} with set of generators T. =
{(1,2),(,3),...,(1,n)}. Thus there is an edge between two permutations
m;, and o, if w2 can be obtained from 7 by swapping the first element of
1 with one of the other n — 1 elements. The transposition graph Gr,, can
be drawn to look like a star (This explains the reason for the name “star
graph”). The star graph S, is n—1 regular with n! vertices and n!(n — 1)/2
edges.

Figure 1 shows the star graphs S3 and S4. We have labeled the vertices
by appropriate permutations written in straight line notation (In straight
line notation a permutation = is written as (w(1),7(2),...,m(n)).) which
we will use henceforth. Note that &4 consists of four copies of S3, where
the ith copy of S3 is obtained by considering vertices with 7(4) = i. We
can generalize this decomposition as follows. Let St be the subgraph of
S, induced by all the permutations = with 7(n) = <. Then it is easy to
see that Si is isomorphic to Sp—;. Hence S, consists of n copies of Sn—1.
In order to understand the genus of the star graph we will have to further
decompose S, into smaller star graphs. For every 7 = (m(1),...,m(n)),
we write ® = () Bry Y Ox), Where o = (7(1),7(2)), Br = 7(3), 1= =
(w(4),...,m(n — 1)), and 6, = n(n). Hence we view every permutation =
as illustrated below:

- B
- %

P, S AP N
7 = (w(1), 7(2), 7(3), 7(4), ..., w(n — 1), 7(n))
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Figure 1. Star Graphs S3 and &,

Let S,y = 70; 6 = i] denote the graph induced by all the permutations
« such that 4 = v and 8, = i; that is, Sa[y = ;6 = 7] consists of all
the permutations whose last n — 3 entries are fixed as (o, 7). Similarly, we
can define S, [y = 7o) etc. For example, Sg[y = (2, 6)] is the graph induced
by all permutations of the form (x, *,%,2, 6,%). It can easily be seen that
for any v and i, S,[y = 70;8 = 4] is isomorphic to S and S,[y = 7] is
isomorphic to S;. Lastly, we also note that S} = S,[6 = i].

3 The genus of the star graph

The genus of a graph is the minimal genus of an orientable surface on which
the graph can be drawn without any edge crossings. The genus of a graph
may be considered as a measure of non-planarity. Hence if we can draw a
graph on a plane without any edge crossings then its genus is 0. Graphs
with high genus are “extremely non-planar.” For more formal treatment
of this subject see [3, 4]. In this section our goal is to prove the following
theorem:

Theorem 3.1. For n > 3, the genus of the star graph S, is given by,

_nl(n—4)

n = 6 + 1.
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Our method is based on that of Beineke and Harary [5], who computed
the genus of the n-cube. To show the above result we first establish a lower
bound for g, which follows from the Euler characteristic formula.

Theorem 3.2. Let g, denote the genus of Sy, then for n > 3,

Y —4
gnzﬁ(—"s——)ﬂ.

Proof: Consider any optimal embedding of S, in a orientable surface of
genus gn. Let F, be the number of faces of S, on the surface. Further,
let V,, and E, denote the number of vertices and edges in S,,. Notice, that
for n > 3, the girth! of S, is 6. Therefore, it follows that each face in the
embedding has at least 6 edges. Thus,

6F, < 2E,. 1)
Now, according to Euler characteristic formula we have,
20, =FEpn - F, —Va+2.
Using inequality (1) we get,
2gn > 2/3E, — Va +2.
Since S, has n! vertices and n!(n — 1)/2 edges, a simple calculation gives

us the desired result. m]

To obtain the upper bound we have to do a little more work. We start by
observing that n!(n—4)/641 is a unique solution to the following recursion:

fom {o ifn=3 @

nfa-1+ % —n+1 otherwise

To prove Theorem 3.1 it suffices to show that g3 = 0 and g, < ngn_1 +
n!/6—n+1. Ss is a hexagon; hence g3 = 0. However, S is more interesting.
We want to embed S; in a surface of genus 1. We think of a torus (a surface
of genus 1) as a square whose opposite sides are identified appropriately.
Therefore Figure 2 shows that g4 = 1 by drawing it on a square with
opposite sides identified. This figure will play an important role in the
proof for the upper bound. We observe that in Figure 3(a) every 4 [6=1]
is a face. Also, every S4B = i] is a face (see Figure 3(b)).

1The girth of a graph G is the length the smallest cycle in G.
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Figure 2. The Genus of S; is 1

Figure 3. Each S4[6 = i] and 84[8 = i] is a face
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Figure 4 is obtained by simply sliding each S; to align them in a line.
Figure 5 shows that we can think of a torus as four spheres with four
handles attached between them. Hence our original drawing of Figure 2,
can be used to obtain a drawing of 84 such that each S4 is drawn on a
sphere (Figure 6). Four handles have been attached between the spheres
to complete the drawing. Further, every face in Figure 2 is still a face in
Figure 6. For simplicity, the edges between the different S} are not drawn.

To embed S, in an orientable surface we will take n embedded copies of
8,1 in a surface of genus g, such that Sp[y = ;6 = 4] is a face for
every ~o and 1. For every 7o, we will then use four handles as in Figure 6
to connect the rest of the edges in S;[y = ~]. Therefore by attaching a
total of n!/6 handles we will obtain a drawing of S,. The next lemma and
recursion (2), tell us that n!/6 handles are sufficient for our purpose.

Figure 4. Another drawing of S4

oo

l 2 3

Figure 5. The torus shown as four spheres with four handles attached
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Figure 6. Drawing a S4 on a torus

Lemma 3.1. Let M,,..., M, be orientable surfaces, all of genus g. If
we add k > n — 1 handles between them to make a connected orientable
surface M, then the genusof M isng+k—n+1.

Proof: Consider two disconnected surfaces of genus g; and gs. If the two
surfaces are connected by a handle then the resulting surface has genus
g1 + g2. Further, if we add a handle to a connected surface we increase
its genus by one. Now the result follows from noting that if we attach k
handles between n surfaces one by one to obtain M, then exactly n — 1
handles will be used to connect disconnected surfaces. m]

Comparing the above lemma and recursion for n!(n —4)/6 + 1, we notice
that if we start with S, and embed every S,_; inductively in n surfaces
of genus g, then we are allowed to attach »!/6 handles between the n
surfaces. Call an edge in S, old if it connects two vertices In Si for some
1. Further, an edge is new if it is not old. Hence all the new edges of S,
connect some vertex in S, to some vertex in S for ¢ # j. For example,
the thin edges in Figure 2(a) are the new edges of S;. The following lemma
gives us a nice drawing of 84 provided we have a nice drawing of its old
edges.

Lemma 3.2. Assume we have a drawing of S84 which contains the old
edges of 84 on some (not necessarily connected) surface M. Further, in
this drawing S} is a face for every i. Then we can obtain a drawing of S,
by attaching four handles to this surface such that every S48 = i] is a face
for every 1.

Proof: Given a drawing in which every S; is a face we can “inflate” the
surfaces under each S} to form spheres over Si. Now four handles can be
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attached to these spheres as shown in Figure 6 to route all the new edges.
Since this new Figure is similar to Figure 6, it can be readily seen that
every S4[8 = i] is a face. u]

Now we are ready to prove our upper bound. The proof is by induction
on a slightly stronger statement.

Theorem 3.3. For n > 3 there exists an embedding of S, on a surface of
genus n!(n — 4)/6 + 1 such that every S,[y = v0;6 =1] is a face.

Proof: For n = 4 the result follows from Figure 2. Assume that n > 5;
then by induction we can embed every S, in a surface of genus gn—1 such
that every Sp[y = 70;6 = 1] is a face. Hence we have a drawing of all the
old edges of S,. Fix a 4o and consider Sy[y = 7] which is isomorphic
to S;. The new edges of S,[y = 7o) correspond to the thin edges of S4
in Figure 3(a). Further, for every i, Sa[y = 70,6 = i] corresponds to
Si. Since each Sn[y = 70;6 = i] is a face by Lemma 3.2 we can add all
the new edges in S,[y = 7o by attaching only four handles. Notice that
every new edge of S, is a new edge in Sy[y = o] for some unique 7o.
Hence, if we repeat this process for all choices of yo we get a embedding
of S,. Furthermore, in this drawing every S8 = i;v = ~0) is a face.
There are (3)(n —4)! choices for ~o, and each requires 4 handles. We have
added 4(%)(n —4)! = % handles. Hence by Lemma 3.1 the genus of the
new surface is ngn_1 + n!/6 — n+ 1. Further, from our construction this
drawing of S, has every Sn[f = i;7 = 7] as a face. To continue the
induction on this stronger statement we must obtain a drawing of S, such
that every Suly = 70;6 = i] is a face. Hence by renaming every vertex
7 = (Qry Bres Yo O ) 10 (@, Oy Yy Br) We get the desired drawing. a
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