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Abstract

The vertices of the queens’ graph @,, are the squares of an n x n
chessboard and two squares are adjacent if a queen placed on one
covers the other. Informally, a set I of queens on the board is
irredundant if each queen in I covers a square (perhaps its own)
which is not covered by any other queen in I. It is shown that
the cardinality of any irredundant set of vertices of Q,, is at most
[6n+6 —8+/n+3 ] for n > 6. We also show that the bound is
not exact since IR(Q3) < 23.

1. Introduction

The lower (upper) domination numbers v(G), (T(G)), independence
numbers #(G) (8(G)) and irredundance numbers ir(G) (IR(G)) of a graph
G are respectively the smallest (largest) cardinalities of minimal dominat-
ing, maximal independent and maximal irredundant vertex sets of G.

These six parameters are well-studied in the literature (see [3]) and
satisfy the following chain of inequalities:

ir(G) £ 7(G) £ i(G) < B(G) L T(G) < IR(G).

In particular there has been considerable recent interest in the evaluation
of these parameters for graphs defined from n x n chessboards ([2]). This
is perhaps due to the fact that two of these problems, namely the deter-
mination of ¥ and ¢ for the Queens’ graph @, (defined in the following
paragraph), have defied all efforts at solution for at least a hundred years
(see [2]).

The Queens’ graph Q, has the n? squares of the chessboard as its
vertex set and two vertices are adjacent if a queen placed on one covers the
other, i.e. if the two squares are on the same line (row, column or diagonal)
of the board.

The survey paper ([2]) gives an excellent account of recent results on
the six parameters for Q.. Since that paper was written, Weakley ([5])
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and Burger, Cockayne and Mynhardt ([1]) have established new values of
7(@n)-

This paper is concerned with the upper irredundance number IR(Qy).
Informally, a set I of queens on the board is irredundant if each queen in I
covers a square (perhaps its own) which is not covered by any other queen
in I. Weakley ([5]) has shown I'(Q,) (and hence IR(Q,) ) > 2n — 5 and
McCrae ([4]) has used computer techniques to generate examples which
show this lower bound is not exact. In the present work we show that
IR(Qn) < |6n + 6 —8y/n+3 | and show that our bound is also not exact
since TR(Qs) < 23.

2. The Upper Bound for IR(Q,)

The following notation and terminology will be required. The rows
and columns are numbered in obvious matrix fashion. The sum-diagonal
numbered % contains the squares (7,j) such that (i + j) — (n + 1) = k.
The difference-diagonal numbered k contains the squares (7,j) satisfying
(i = j) = k. There are (2n — 1) sum-diagonals (difference-diagonals) which
are numbered 0,£1,%£2,...,%(n — 1).

For a vertex v of Q, r(v), ¢(v), d(v), s(v) denote respectively the
row, column, difference-diagonal and sum-diagonal which contain v. A set
I of vertices of a graph G is irredundant if for eachv € I
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Let I be an irredundant vertex set of @y, A be the set of isolated ver-
tices of G[I] where |A| = a < n (since f(Qn) = n) and X = {=z,...,%:} =
I — A. Since I is irredundant, for each i = 1,...,t, z; is adjacent to
yi € V = I (a private neighbour of z;) which is not adjacent to any vertex
of I — {z;}. Vertices z; and y; are on a line ¢;. Let {y1,...,%:} =Y, and
Z =V —(IUY). The private neighbour property implies that £y, ...,¥; are
distinct. Define U = {£,...,4}.

We begin with a few simple propositions.
Proposition 1. If z;,z; (or yi,y;) are adjacent on a line £, then £ ¢ U.

Proof. If {zi,z;} C £ and {zx,y} C £ € U, then one of 1, (say 1)
is distinct from k. Then {z;,zx} C £ contradicting the private neighbour
property of yi. (Similar proof for {yi,y;} C£.) 1

Proposition 2. Let £ be any line. If {z;,z;} C £, then {yr,ye} € £ and
conversely.
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Proof. Suppose {zi,z;,yk,y2} C £. Clearly the private neighbour
property is contradicted. |

Proposition 3. Let ¢; be the line defined by z;,y;. Then none of the other
stz lines which contain z;,y; are in U.

Proof. Suppose m # {; contains z; and m € U. Then for some j,
{zj,yj, i} C m, contrary to the private neighbour property of y; . (Similar
proof for y; e m.) |
Proposition 4. Ifv € A, then {r(v), c(v), d(v), s(v)}NTU = 0.

_Proof. Suppose v € A is on line £ € U. Then for some i, {z;,;,v} C £,
contrary to the private neighbour property. |
Proposition 5. Ifv € A, then N(v) C Z.

Proof. Vertex v is isolated in G[I] and is not adjacent to y € Y (for
otherwise y is not a private neighbour). |
Proposition 6. For eachi=1...,t, ;i — {z;,9:} C Z.

Proof. Let w; € £; — {z;,y;}. If w; = z € I, then both z and z; are
adjacent to y; . If w; = y; € Y, then z; is adjacent to both y; and y;. In
each case the private neighbour property is contradicted. ||

Now suppose that U contains r, ¢, s, d rows, columns, sum-diagonals
and difference-diagonals respectively.

Proposition 7. Ifr+a>n—4 (orc+a>n—4), then |I| < 3n.

Proof. Since each line in U contains a private neighbor, the r rows of U
are distinct. Since A is independent, the rows occupied by vertices of A are
distinct, and these rows are distinct from the rows in U. By Propositions
5 and 6, Z contains (n — 2) elements of r rows of U and (n — 1) elements
from « additional rows. Since |Z| = n? — 2t — a,

(n—2)+an-1)<n’ -2 —a.

Therefore
2t <n®—(r+a)n+2r

<n’—(n—4)n+2r
=4n + 2r.
Hence |I|=t+a<2n+(r+a)<3n. |
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We now establish the upper bound for IR(Qn).

Theorem 8. Forn >6, IR(Qn) < |[6n+6—-8vVn+3].

Proof. If r + a (or ¢+ a) > n — 4, then by Proposition 7, |I| < 3n <
6n+6—8y/n+3forn > 6. Hence assume r+a <n—5andc+a <n—>5.
Assume, without loss of generality, that d < s and re-label X,Y so that
¢,...,¢, are sum-diagonals. Let r1,...,7, (vespectively r1,...,7;) be the
rows occupied by z3,...,2, (¥1,...,¥s). Note that there may be repetitions
among ry,...,7, and among r},...,7}, but no r; is equal to an 7} (r; # r{
since z;,y; are on a sum-diagonal and r; = 7} (j # ) contradicts the private
neighbour property).

Suppose L is the set of lines which are neither in U nor pass through
any vertex of A. Let A be the largest multiplicity of a row in the sequence
1,...,7s. Then there are at least [s/X] distinct rows in the sequence.
These rows are in L (by Proposition 3 and the fact that no vertex of A is
adjacent to vertices of X UY). Further the A vertices of X which are on
the same row, occupy distinct columns and distinct difference-diagonals.
These 2) lines are also in L. Hence we have a set of lines L; C L satisfying
(using elementary calculus)

S

A+2,\22\/2_s.

pi=[{] +222

Applying the same argument to the sequence r,...,rs, we obtain a set
L, C L with |L3| > 2v/2s and L; N L, = O (otherwise z;,y; are on same
row, column or difference-diagonal which contradicts the private neighbour
property). We conclude |L| > 4/2s.

The total number of lines is 6n — 2. Hence

t+ 4o +4v25 < 6n —2

and
I|=t+a<6n-2—4V2s—3a.

Therefore

| € fa(s) = 6n — 2 — 4V/2s. (1)
Moreover

Hl=(+a)+c+s+d

<(n—-5)+(n—>5)+2s.

Therefore

I1] < fa(s) = (20 — 10) + 2s. @)
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Hence
1< | max _(min(fu(s), fa(s)))-

1<s<2n—

The maximum occurs where f1(s) = fa(s).
Solving the quadratic for v/2s, we find that the maximum occurs when

V2s = 2/n + 3 — 2 and so from (1)
7] < 6n—-2—-4(2vn+3-2)
=6n+6—-8vn+3. |

3. An upper bound for IR(Qs)

In this section we show that the bound of Section 2 is not exact. The
bound for TR(Qs) is 27. However we prove

Theorem 9. IR(Qs) < 23.

Proof. Suppose I is an irredundant set of 24 vertices of Qs. Then
t=24—aand |Z| =64— 2t — a =16+ . Suppose o > 2 and a,, a; € A.
By Proposition 5, N(a1)UN(az2) C Z and the minimum degree of Qs is 21.

Hence
|Z| > |N(a1)| + | N(az)| — |N(a1) N N(a2)|
=42 — |N(a1) N N(a2)).

But for any n and non-adjacent vy, v2 € V(Qn), |[N(v1) N N(v3)] < 12,
hence |Z| = 16 + o > 30, which is impossible since & < f(@n) = 8. We
have shown that & =0 or 1.

Suppose U contains 4 or more lines which contain 8 squares (i.e. 4 or
more rows, columns or major diagonals). Let four of these lines be ¢3,...,44

4
and Z; = £; — {zi,y:}. By Proposition 6, | Z; C Z. Therefore
1

4 4
21> |Jz|23 1z Y 1znz
1 1 1<i<j<4
>24—6=18.

Hence 16 + o > 18, a contradiction.
It follows (using a € {0,1}) that U contains at least 20 lines from the
set of sum-diagonals and difference-diagonals numbered +1,...,%6.
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Without losing generality, U contains at least 10 sum-diagonals from
this list say sy, ...510 and these are disjoint. By Proposition 6

10
1212 ) |si = {zi, 3} 220+ 1+2+3+4) = 20.

i=1

Therefore 16 + a > 20, a contradiction which shows that there is no 24-
vertex irredundant set. |1
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