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ABSTRACT. We address questions of Chartrand et al. about
k-stratified graphs and distance graphs. A k-stratified graph G
is a graph whose vertices have been partitioned into k distinct
color classes, or strata. An underlying graph G’ is obtained by
ignoring the colors of G. We prove that for every pair of positive
integers k and I, there exists a pair of 2-stratified graphs with
exactly k greatest common stratified subgraphs such that their
underlying graphs have exactly ! greatest common subgraphs.
A distance graph D(A) has vertices from some set A of 0—1
sequences of a fixed length and fixed weight. Two vertices are
adjacent if one of the corresponding sequences can be obtained
from the other by the interchange of a 0 and 1. If G is a
graph of order m that can be realized as the distance graph of
0 — 1 sequences, then we prove that the 0 — 1 sequences require
length at most 2m — 2. We present a list of minimal forbidden
induced subgraphs of distance graphs of 0 — 1 sequences. A
distance graph D(G) has vertices from some set G of graphs
or k-stratified graphs. Two vertices are adjacent if one of the
corresponding graphs can be obtained from the other by a single
edge rotation. We prove that K, minus an edge is a distance
graph of a set of graphs. We fully characterize which radius
one graphs are distance graphs of 0 — 1 sequences and which
are distance graphs of graphs with distinctly labelled vertices.

1 Introduction

In [1], Chartrand et al. raised several questions about k-stratified graphs
and distance graphs. We answer some of these open questions and present
results that contribute to the solutions of most of the remaining questions.
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A k-stratified graph G is a graph whose vertex set has been partitioned
into k distinct color classes, or strata. Stratified graphs were introduced
in response to problems in VLSI design [5], but have become the focus
of theoretical works. We denote the k colors of G by 1,2,...,k, and if
there are n; vertices of color 7 for 1 < i < k, then (n1,n2,...,nk) is the
color vector of G. The underlying graph of G, denoted G’, is obtained by
ignoring the colors assigned to the vertices of G. In Section 2, we answer
one open question from [1] by proving that for every pair of positive integers
k and [, there exists a pair of 2-stratified graphs with exactly k greatest
common stratified subgraphs such that their underlying graphs have exactly
! greatest common subgraphs.

A graph (respectively k-stratified graph) G, can be rotated into a graph
(respectively k-stratified graph) Gy if G, contains vertices u, v, and w such
that wv € E(G,), uw &€ E(G,) and G, = G, —uv+uw [1]. Chartrand et al.
define a distance graph D(G) of a set G of stratified graphs with fixed order
and fixed color vector as a graph whose vertices are the elements in G, where
two vertices are adjacent if the corresponding graphs can be obtained from
each other by a single edge rotation [1]. An analogous distance graph for
unstratified graphs has also been defined, and determining which graphs are
distance graphs of some set of graphs has been studied in detail by several
authors [1] [2] [4]. Chartrand et al. conjecture that all graphs are distance
graphs of some set of graphs [2]. In Section 3, we prove that K, minus an
edge is such a distance graph. Section 3 is also concerned with determining
which graphs are distance graphs D(A) of some set A of 0 — 1 sequences
with fixed length and fixed weight. These distance graphs have vertices
from A, and two vertices are adjacent if the corresponding sequences can
be obtained from each other by the interchange of a 0 and 1. If G is a graph
of order m that can be realized as the distance graph of 0 — 1 sequences,
then we prove that the sequences require length at most 2m — 2, thereby
answering another open question from [1]. We also present a list of minimal
forbidden induced subgraphs of distance graphs of 0 — 1 sequences.

In Section 4, we study radius one graphs. We fully classify which radius
one graphs are distance graphs of 0 — 1 sequences and which are distance
graphs of graphs with distinctly labelled vertices. We present an example
of a graph that can not be realized as the distance graph of a set of graphs
with distinctly labelled vertices.

2 Stratified Graphs

When two graphs are not isomorphic, it is often useful to have some way
of measuring how different they are. In [1], Chartrand et al. define a
distance between two k-stratified graphs G, and G, in terms of a greatest
common stratified subgraph, or more simply a greatest stratified subgraph,
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H of G, and Gy. A greatest stratified subgraph H is an [-stratified graph,
1 <1 < k, which has maximum size, no isolated vertices, and is isomorphic
to stratified subgraphs of both G, and Gs. Its I colors are any subset of the
k colors assigned to G, and Gp. Chartrand et al. analogously define the
greatest common subgraph Ho of the underlying graphs G;, and Gj. They
present several results concerning greatest stratified subgraphs and greatest
common subgraphs. One example that will be useful for our purposes is
that the size of the greatest stratified subgraph is less than or equal to the
size of the greatest common subgraph. Our first theorem answers one of
the open questions in [1].

Theorem 1. For every pair of positive integers k and l, there exists a
pair of 2-stratified graphs G, and G, containing exactly k distinct greatest
stratified subgraphs, such that the underlying graphs G, and G} contain
exactly 1 distinct greatest common subgraphs.

Proof: Given a pair of positive integers & and {, choose an integer z so that
k < (z+ 1)l. Let G be the one-point union of = copies of Co42 obtained
by identifying exactly one vertex from each cycle.

We will construct the disjoint graph G% such that it has { distinct iso-
morphism types of components, Hi, Ha, ..., H;. Let H; be composed of z
paths P;; and z paths Py 42_4, all originating at a common center vertex.
Let G% be a graph with max{k,l} components where each component is
isomorphic to some H; in such a way that all I of the H;’s occur at least
one time and no more than z + 1 times. Figure 1 illustrates G| and the
two isomorphism types of G5 for k =5 and [ = 2.

. H
G1 l’-11 2

Figure 1.

We claim that representatives from these ! isomorphism types H1, Ha, . ..,
H,, are the | unique distinct greatest common subgraphs of G} and Gj.
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Clearly, the representatives of the ! different isomorphism types are common
subgraphs of G} and Gj. First, we show that the size q of the greatest
common subgraphs of G and G is 2{z. Notice that each component in G5
has size 2lz by virtue of its construction. Thus, q > 2lz. Now, note that
G/ has z cycles, and G5 has no cycles. Thus, any common subgraphs can
have no cycles. In order to break the cycles in G}, we must remove at least
z edges since no cycles share an edge. The graph G consists of (2! + 1)
edges, and so any common subgraph has size ¢ < z(2l + 1) - z = 2i=z.
Therefore, the size of any greatest common subgraph is ¢ = 2lz, and so
Hy, Ha,..., H are greatest common subgraphs of G} and Gj.

We now show that representatives from the ! isomorphism types are the
unique distinct greatest common subgraphs of G| and G5. Suppose that
a graph B is a greatest common subgraph of G} and G5. Since B is a
common subgraph, it must have no cycles. We again remove at least z
edges of G{, one from each cycle, leaving a graph with size q < 2lz. Since
B must have size ¢ = 2lz, we remove exactly one edge from each cycle,
and so B is connected. Hence, B is necessarily isomorphic to a component
of G4. Thus, the ! unique distinct greatest common subgraphs of G} and

» are components of G5; Specifically, they are the ! distinct isomorphism
types Hy, Ho,..., H).

We now color the underlying graphs G| and G to obtain G; and Gs.
Color the center vertex of G| with color 1. In each cycle, color exactly
one of the vertices that is adjacent to the center vertex with a 1. Color all
remaining vertices with 2’s.

We color G by considering the following two cases.

Case 1. If £ <!, then G) has [ components. Choose any & of these. Color
the k center vertices with 1’s. For each of these k& components, choose =
of the paths and color the vertices adjacent to the center vertex with 1’s.
Color all remaining vertices with 2’s. For the remaining ! — k components,
color the center vertices with 2’s. Color the paths arbitrarily; for example,
use all 2’s.

So, exactly k of these components are stratified subgraphs of G; and G5.
They are greatest stratified subgraphs since the underlying subgraphs are
greatest common subgraphs, and the size of a greatest stratified subgraph
is less than or equal to the size of a greatest common subgraph of a pair of
graphs.

Case 2. If k > I, we have k components in G5. Then, some of the [
isomorphism types H; for 1 <z <! will have more than one representative.
For each isomorphism type H;, we have at most z + 1 representatives.
Denote representative n; for 0 < n; < z of isomorphism type H; as H; n,.
For each representative H; n,, color the center vertex with a 1. Notice that
each representative H; »; has z shorter paths and z longer paths. Color n;
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of the shorter paths so that the vertex adjacent to the center vertex has
color 1. Color z — n; of the longer paths so that the vertex adjacent to
the center vertex has color 1. Color all remaining vertices with 2’s. Notice
that for every isomorphism type H;, there are £+ 1 distinct ways to do this
coloring scheme. Clearly, we have ! distinct greatest common subgraphs
and k distinct greatest stratified subgraphs. Figure 2 shows G; and G5 for
k=5and !l =2 a

Figure 2.
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This new relationship between greatest stratified subgraphs and greatest
common subgraphs aids in the understanding of the connections between
stratified graphs and their underlying graphs.

3 Distance Graphs

In [1}, Chartrand et al. introduced two types of distance graphs. The first
type relates to 0 — 1 sequences. A 0 — 1 sequence is a binary string of a
prescribed length and weight. The distance graph D(A) of a set of 0 — 1
sequences of a fixed length and fixed weight is the graph whose vertices are
the sequences in A4; two vertices s; and s are adjacent if one sequence can
be obtained from the other by the interchange of a 0 and 1. The distance
graph D(G) of a set of stratified graphs G of a fixed size and fixed color
vector is the graph whose vertices are the graphs in G; two vertices G,
and G are adjacent if the corresponding graphs can be obtained from each
other by a single edge rotation. Distance graphs of unstratified graphs
have also been studied [2]. We only consider stratification as a significant
construct when some of the k color classes have more than one vertex. If
a graph of order k is k-stratified, then, in keeping with convention, we call
this a graph with distinctly labelled vertices. We are interested in knowing
which graphs are distance graphs of 0 — 1 sequences and which graphs are
distance graphs of graphs.

Lemma 1 formalizes a statement made by Chartrand et al. concerning
the relationship between distance graphs of 0 — 1 sequences and distance
graphs of graphs [1].

Lemma 1. If G = D(A) for some set A of 0—1 sequences, then G = D(G)
for some set G of graphs with distinctly labelled vertices.

Proof: Let G be a graph of order m. Suppose that G = D(.A) for some set
A of 0 — 1 sequences. For each 0 — 1 sequence s; for 1 < 7 < m, we must
construct a distinctly labelled graph G; that preserves the adjacencies of the
0 — 1 sequences. Suppose that each 0 — 1 sequence has length k. Construct
a series of bipartite graphs G;,Gsq,...,G,, where one partite set has a
single vertex labelled vo, and the other partite set has k vertices labelled
1,9, ...,V To construct the graph G;, draw an edge from the vertex
labelled vg to the vertex labelled v; (1 < 7 < k) if bit j is equal to 1 in s;.
Thus, if each of the 0 — 1 sequences have weight ! (for some ! < k), then
the corresponding bipartite graphs will each have size I. It is clear that this
construction preserves all adjacencies. ]

The converse of Lemma 1 is not true. Chartrand et al. state that the
graph H shown in Figure 3 is not a distance graph of 0 — 1 sequences but
assert that it may still be the distance graph of a set of stratified graphs
[1]. In Figure 3, we present a set of distinctly labelled graphs of which it is

the distance graph.
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Figure 3

If a graph G can be realized as the distance graph of some set of 0 — 1
sequences, it would be useful to have an upper bound for the minimum re-
quired length of the sequences. Given a distance graph G of 0—-1 sequences,
we can think of the sequences as the rows in a matrix. To determine an
upper bound for the minimum length of the sequences, it suffices to deter-
mine the number of non-constant columns in this matrix. We can ignore
any constant columns while preserving all adjacencies among the sequences.

The following theorem and corollary use this idea to answer open ques-
tions posed by Chartrand et al. [1].

Theorem 2. Let G be a connected graph of order m > 2. If G can be
realized as the distance graph of some set of 0 — 1 sequences, then the
matrix of the sequences has at most 2m — 2 non-constant columns.

Proof: Let G be a connected distance graph of some set of 0 —1 sequences.
We will prove that the matrix of the sequences has at most 2m — 2 noncon-
stant columns by induction on m.

Since G is connected, we can label the vertices as vy, v, .. ., Up, such that
each v; (1 < i < m) is adjacent to some v; (j < 7). Let s; be the 0 — 1
sequence that corresponds to vertex v;. Suppose that m = 2. Then, v is
adjacent to vp, and therefore s; and so must differ in exactly two bits, and
thus their matrix has 2 = 2m — 2 non-constant columns.

Suppose that the statement holds for k vertices. Then the matrix of
sequences s1, $, .. ., Sk has at most 2k — 2 non-constant columns.

Consider the vertex viy;. Since ve4y is adjacent to at least one previous
vertex v; (§ < k + 1) the sequence s differs from s; in exactly two bits.
So, sk+1 agrees with s; in all but at most two of the constant columns.
Therefore, at most two of the constant columns are no longer constant
after adding the row sg41. Thus, by our inductive hypothesis, the matrix
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of sequences s1, 82, . ..,Sk+1 has at most (2k — 2) +2 = 2(k + 1) — 2 non-
constant columns. (]

Corollary 1. Let G be a connected graph of order m > 2. If G can be
realized as the distance graph of some set of 0—1 sequences, then an upper
bound for the minimum required weight of the sequences is m — 1.

Proof: Theorem 2 shows that the sequences require length at most 2m —2,
and what is accomplished by assigning 1’s to more than half of these bits
can be accomplished by simply switching the roles of the 0’s and 1’s. O

Theorem 2 gives a finite algorithm for determining whether a given graph
can be realized as the distance graph of 0—1 sequences. For example, given
a graph of order m, we can check all possible 0 — 1 sequences of length less
than or equal to 2m — 2 with weight less than or equal to m — 1. Using
this idea, we looked for minimal forbidden induced subgraphs of distance
graphs of 0 — 1 sequences. There is a natural connection between distance
graphs of 0 — 1 sequences and line graphs; all distance graphs of 0 — 1
sequences of weight two are isomorphic to line graphs. Thus, we looked at
the nine minimal forbidden induced subgraphs of line graphs [3, p. 75]. We
proved that exactly four of these are minimal forbidden induced subgraphs
of distance graphs of 0 — 1 sequences. See Figure 4.

Figure 4

In addition, we proved that the complete bipartite graph Kj3 is a min-
imal forbidden induced subgraph of distance graphs of 0 — 1 sequences.
Thus, except for K1 and Ks 2, which can be realized as distance graphs of
0 —1 sequences through simple constructions, all complete bipartite graphs
are unattainable as distance graphs of 0 — 1 sequences. In contrast, Jarrett
showed that all complete bipartite graphs are distance graphs of some set
of graphs [4].

Several families of graphs have been shown to be the distance graphs
of sets of 0 — 1 sequences and therefore of sets of graphs. It is known
that complete graphs, cycles, trees, unicyclic graphs, and line graphs are
distance graphs of 0 — 1 sequences [1]. It is conjectured by Chartrand et al.
that all graphs are distance graphs of some set of graphs [2].

Next, we provide an additional family of graphs that are distance graphs
of graphs.

240



Theorem 3. For all n, the graph K, minus an edge is the distance graph
of a set of graphs.

Proof: We may assume that n > 5. Construct n — 2 disjoint copies of the
cycle C,,—2. For convenience, we label the n—2 consecutive vertices of each
cycle as v1,v3,...,vn—2. The labels are only considered for the purposes
of attaching pendant edges and are then ignored. For each copy, attach
two pendant edges to vertex v;, no pendant edges to vertex vy, and single
pendant edges on the remaining n —4 vertices. Make these n— 2 copies into
distinct graphs Hq, Hy, ..., H,_2 by adding a vertex v such that graph H;
has an edge that connects the vertex v; to the vertex v. We distinguish v by
attaching two pendant edges to it. Clearly, these n —2 graphs are mutually
adjacent. Now let H,_, be the graph obtained from the cycle C,_2 by
attaching single pendant edges at all vertices and an edge connecting a
vertex v (distinguished with two pendant edges) to one of the vertices of
the cycle. Clearly H,_; is adjacent to all previous graphs. Now construct
the final graph H, by attaching pendant edges to C,—_» exactly as those
on graphs H; through H,_», but H, has an edge connecting a vertex v
(distinguished with two pendant edges) to an end vertex of one of the two
pendant edges attached to vertex v;. This graph H, is adjacent to the
first n — 2 graphs, but it is not adjacent to graph H,_;. Thus, we have
constructed a set of graphs for which K, minus an edge is the distance
graph. O

Notice that we distinguished the vertex v in the above construction by
attaching two pendant edges to it, but if we were considering K, minus as
edge as the distance graph of stratified graphs, we could distinguish v by
coloring it a different color from the other vertices.

Generalizations of the construction employed in the proof of Theorem 3
could lead to the classification of more graphs as distance graphs of graphs
or of stratified graphs.

4 Radius One Graphs

A radius one graph G is a graph that has at least one vertex v., which we
call a center, such that every other vertex in G is adjacent to v.. In this
section, we determine which radius one graphs are distance graphs of 0 — 1
sequences and which radius one graphs are distance graphs of graphs with
distinctly labelled vertices. Our next theorem provides the motivation for
our study of radius one graphs.

Theorem 4. All graphs are distance graphs of some set of graphs (respec-
tively, stratified graphs) if and only if all radius one graphs are distance
graphs of some set of graphs (respectively, stratified graphs).
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Proof: The forward direction is obvious, so we consider the reverse direc-
tion. Suppose that every radius one graph is a distance graph of some set
of graphs. Then, for any graph H, H V K; (where V denotes the join of
two graphs) is a distance graph of some set of graphs. Since every induced
subgraph of HV K is also a distance graph, H is a distance graph of some
set of graphs. a

We now introduce some notation. Choose positive integers m and n. Let
s be the 0 — 1 sequence of length m + n with the first m bits equal to 1
and the next n bits equal to 0. All sequences that are adjacent to s are
obtained by the interchange of a 1 and a 0, and each can be denoted as s; ;
to represent the sequence obtained by interchanging a 1 from the ith bit
position of s (for ¢ € {1,2,...,m}) with a 0 from the jth bit position of s
(for j € {m+1,m+2,...,m+n}). We define the graph S to have vertex
set {s;; | i€ {1,2,...,m},j € {m+1,m+2,...,m+n}} Clearly, all
vertices in S are 0 — 1 sequences that are adjacent to s. Since all vertices in
S are sequences of the same weight, two vertices are adjacent if they differ
in exactly two bits.

Notice that for a fixed ip € {1,2,...,m}, we can define an induced sub-
graph of S as Sy, = {sio,j |7 € {m+1,m+2,...,m+n}}. All n vertices
in S;, are mutually adjacent, and thus Sj, is isomorphic to K,. Similarly,
we can define an induced subgraph Sj, that is isomorphic to Km.

Lemma 2. The graph S is isomorphic to K, x K.

Proof: For simplicity, we denote V(Km) = {1,2,...,m} and denote V(Ky)
= {m+1,m+2,...,m+n}. Then, V(Knx Ky) ={(3,5) | i€ V(Km),j €
V(K,)}. Now, let ®: S — K x K, be defined by ®(s: ;) = (4,7) where
i€{l1,2,...,m}and j € {m+1,m+2,...,m+n}. The mapping ® is
clearly a bijection. Two elements (i, ), (¢',5') € Km x K, are adjacent if
i=1 and j # j' or j = j' and 1 # i'. Two elements in S are adjacent if
the sequences differ in exactly 2 bits. Two sequences s; ; and sy j;» differ
in 0 bits among the first m bits if s = ¢/, and they differ in exactly 2 bits
among the first m bits if i # ¢’. Similarly for the last n bits. Thus, s;; and
su j differ in a total of 2 bits if either i = i’ and j # j' or i # 7 and j =7
Thus, & preserves adjacencies, and the proof is complete. a

Theorem 5. Given a radius one graph G with a tenter vertex v., let
G. = G — {v.}. Then G is a distance graph of a set of 0 — 1 sequences
of length m + n and weight m if and only if G. is an induced subgraph of
Kpnx Ky

Proof: First, suppose that G, is an induced subgraph of K,, x K,. Con-
struct a sequence s with bits 1 through m equal to 1, and bits m+1 through
m +n equal to 0. This sequence s will correspond to ve.
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By Lemma 2, all elements in G. can be represented by a vertex of S
(as defined above) such that all adjacencies are preserved. Furthermore,
all sequences corresponding to elements in G, are adjacent to s. Thus, G
is the distance graph of some set of 0 — 1 sequences of length m +n and
weight m.

Next, suppose that G is a distance graph of 0 — 1 sequences of length
m + n and weight m. Reorder all columns of all sequences such that the
sequence s which corresponds to v, has bits 1 through m equal to 1, and
bits m +1 through m+n equal to 0. Since all other sequences are adjacent
to s, they must be vertices from the graph S. Thus, G, is an induced
subgraph of S, and it now follows from Lemma 2 that G, is an induced
subgraph of K, x K. a

Corollary 2. Given a radius one graph G with a center vertex v., let
G. = G — {v.}. Then G is a distance graph of a set of 0 — 1 sequences of
length m + n and weight m if and only if G, is a line graph of a bipartite
graph.

Proof: We will need the following facts. First, the line graph of the com-
plete bipartite graph K, » is isomorphic to K, x K,. Second, induced
subgraphs of the line graph L(H) of some graph H are isomorphic to the
line graphs of subgraphs of H. Since subgraphs of K,,, are bipartite
graphs, it follows that line graphs of bipartite graphs are isomorphic to
induced subgraphs of K,, x K, With these results, the corollary follows
directly from Theorem 5. 0

As a result of Theorem 5, the following graphs are unattainable as dis-
tance graphs of 0 — 1 sequences: K) V Coqy for I > 2, K1V K12, and
Ki.vK 1,3

In fact, Coryy for i > 2, Ki,1,2, and K3 are exactly the minimal forbid-
den induced subgraphs of line graphs of bipartite graphs [6]. Notice that
all nine of the minimal forbidden induced subgraphs of line graphs contain
some of the above as induced subgraphs. For instance, K; V K, and
K1V Cyy1 for I =2 are in the list of minimal forbidden induced subgraphs
of line graphs that are also minimal forbidden induced subgraph of 0 — 1
sequences. See Figure 4.

Corollary 3. Given a radius one graph G with a center vertex v., let
G:. = G - {v.}. If G, is an induced subgraph of K,, x K,, then G is a
distance graph of a set of distinctly labelled graphs.

Proof: Suppose that G, is an induced subgraph of K, x K,. Then G is
a distance graph of a set of 0 — 1 sequences by Theorem 5. It follows that
G is a distance graph of a set of distinctly labelled graphs by Lemma 1. O

The converse of Corollary 3 is false. As a counterexémple, we proved
that K ;3 is the distance graph of a set of graphs with distinctly labelled
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vertices, but, as stated above, K 3 is not an induced subgraph of K, x K.

See Figure 5.

H,
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Figure 5

We now introduce some additional notation. Let E be a subset of the
vertex set of the line graph of a complete graph, V(L(Ky)), and let G(E)
be the subgraph of L{K,) induced by the vertices in E. Let E° be the
complement of E, so ES = V(L(K,))\ E. Then, G(EC) is the subgraph
of L(Ky) induced by the vertices in E€.

Define R(E) as the graph with vertices (v,w) such that v € E and
w € EC, where v is adjacent to w in L(K,). Define the adjacencies in R(E)
as follows: (v;,w;) is adjacent to (vy,wy) if v; = vy and wj is adjacent
to wj or w; = wjs and v; is adjacent to vys. Clearly by these adjacencies,
R(E) is an induced subgraph of L(Ky) x L(Ky). In particular, R(E) is an
induced subgraph of G(E) x G(E®).

Now, let H be any graph with n distinctly labelled vertices. Then the line
graph L(H) is an induced subgraph of L(K,). Let E = E(H), where E(H)
denotes the edge set of H. All graphs that are adjacent to H can be obtained
by a single edge rotation. We denote any graph that is adjacent to H by
H (v;,w;) where the edge v; € E is rotated to the position w; € E€ (an edge
that is not in H). Clearly, »; must be adjacent to w; in L(K,). We define
the graph Ay as the graph with vertex set {H(v;,w;) | v; € E,w; € E°,
and v; is adjacent to w; in L(K,)}. So, the vertices in Ay are distinctly
labelled graphs that are adjacent to H. Two vertices in Ay are adjacent if
the corresponding graphs are adjacent.

Lemma 3. Let H be a graph with distinctly labelled vertices. Then, for
E = E(H), the graph R(E) is isomorphic to the graph Ay .
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Proof: Let ®: R(E) — Apy be given by ®(v;,w;) = H(vi,w;) where
v; € E, w; € E°, and v; is adjacent to wj in L(K,). Clearly, ® is a
bijection. By the adjacencies defined for R(E), two elements (v;,w;) and
(vir,wjr) are adjacent if v; = vy and w; is adjacent to wj or w; = wijr
and v; is adjacent to v;. Two vertices H(v;,w;) and H(vy, wjr) of Ay are
adjacent if one of the corresponding graphs can be obtained from the other
by a single edge rotation. This clearly implies that they are adjacent if
v; = vy and w; is adjacent to wj or w; = wj. and v; is adjacent to vy.
Thus @ preserves adjacencies, completing the proof. O

Theorem 6. Given a radius one graph G with a center vertex v, let
G: = G — {v.}. Then, G is a distance graph of a set of distinctly labelled
graphs if and only if G, is isomorphic to an induced subgraph of R(E) for
some set E C V(L(K,)).

Proof: First suppose that G, is isomorphic to an induced subgraph of R(E)
for some set B C V(L(Ky,)). Construct a graph H such that E(H) =
Then H has size at least 1, and has no isolated vertices. The graph H will
correspond to v..

By Lemma 3, G, is isomorphic to an induced subgraph of Ay. So, all
vertices of G, can be represented by a distinctly labelled graph such that
all adjacencies are preserved, and all graphs corresponding to vertices in G,
are adjacent to H. Thus, G is the distance graph of some set of distinctly
labelled graphs.

Next, suppose that G is the distance graph of a set G of distinctly labelled
graphs. Then, there exists a graph H € G that corresponds to v,. The line
graph L(H) is an induced subgraph of L(K,), where n is equal to the order
of H. Choose the set E C L(Ky,) such that E = E(H). Then, all graphs
adjacent to H can be represented by vertices of the graph Ag. So, G, is
an induced subgraph of Ay, and by Lemma 2, G, is an induced subgraph
of R(E). 0

Corollary 4. Let G be a graph of radius one with a center vertex v., and
let G. = G — {v.}. If G, is not an induced subgraph of L(K,) x L(K,),
then G is not a distance graph of a set of graphs with distinctly labelled
vertices.

Proof: This follows directly from Theorem 6 using the fact that R(E) is
an induced subgraph of L(K,) x L(Ky). ]

We now have a way to determine which graphs can not be obtained as
the distance graph of a set of graphs with distinctly labelled vertices. For
example, the graph K| ) 5 is not attainable as such a distance graph, since
K1,5 is not an induced subgraph of L(K,) x L(K,). Of course, it may still
be attainable as the distance graph of some set of stratified graphs where
some vertices are assigned the same color.
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The complete classification of radius one graphs which are distance graphs
of 0 — 1 sequences and which are distance graphs of graphs with distinctly
labelled vertices provides insight for the question of which graphs can be
attained as distance graphs.

5 Further Research

In order to obtain a classification for those radius one graphs that are
distance graphs of graphs with distinctly labelled vertices, we introduced
a graph called R(E). Two open problems are to determine exactly which
graphs are isomorphic to an R(E) for some set E and which graphs are
minimal forbidden induced subgraphs of R(FE) for all E.

It remains an open question to see which additional graphs can be re-
alized as distance graphs when stratification plays a significant role. I am
interested to know which graphs are distance graphs when exactly one of
the k > 1 color classes has more than one vertex. Would this stratification
scheme be sufficient to obtain all graphs as distance graphs? Must we con-
sider unlabelled graphs (that is, graphs with all vertices in the same color
class) in order to realize all graphs as distance graphs?
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