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ABSTRACT. In this paper, we deal with the convez generators
of a graph G = (V(G), E(G)). A convez generator being a min-
imal set whose convex hull is V(G), we show that it is included
in the “boundary” of G. Then we show that the “boundary”
of a polymino’s graph, or more precisely the seaweed’s “bound-
ary”, enjoys some nice properties which permit us to prove that
for such a graph G, the minimal size of a convex generator is
equal to the maximal number of hanging vertices of a tree T,
obtained from G by a sequence of generator-preserving contrac-
tions.

1 Introduction

In order to make use of the geometric notion of convexity outside the context
of euclidian spaces, one need to define an abstract converity .space. A
convezily space is a pair (V,C), where V is a set and C a collection of
V-subsets, called the convez sets, such that:

(c.1) @ and V are convex;
(c.2) the arbitrary inersection of convex sets is convex;

(c.3) the union of any family of convex sets totally ordered’by inclusion is
convex.

For any A C V the convez hull of Ais ¢(A)={C| ACC,C € C}. We
will deal with convexity in graphs. For generalities about graphs we refer [4].
Given a connected graph G = (V(G), E(G)) we define the interval-function
I: V(G) x V(G) — 2V(©) such that for any z,y € V(G), Io(z, ) is the set
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of vertices of all shortest paths between z and y. We write I(z,y) instead
of Ig(z,y) when there is no ambiguity. A subset C C V(G) is convex if
I(z,y) C C, for any z,y € C. It is easy to see that the sets defined this
way satisfy c.1, c¢.2 and ¢.3 thus, giving a convexity space, called geodesic
convexity, widely used by many authors (see [11]). This is the convexity we
use throughout this paper. There are several other ways to define intervals
in a graph, but we will not treat this topic here. The interested reader can
find good results and references in [6]. The interval notion is interesting
because: firstly, it translates naturally the notion of the interval from the
euclidian geometry and secondly, it gives an iterative way to calculate the
convex hull. More precisely, for any subset A of V(G) we have:

o(A) = G I*(A) where I°(A) = A and I**1(A) = U I(z,y)

k=0 zyel*(4)

A minimal subset of vertices B of G such that ¢(B) = V(G) is called a
convez generator of G.

Given a connected graph G, it is clear that we can always obtain the
tree containing a single edge, by contracting a set of edges of G. The
graph obtained from G by contracting a set A C E(G) is denoted G/A.
Contracting an edge zy of G means identifying = with y and omitting the
loop created. If we allow only the generator-preserving contractions, then
we may expect to find a tree T which reflects somehow the structure of G.
This is indeed the case and we show that for any generator B of G and
for any tree T obtained from G by a sequence of gp-contractions we have
|B| 2 |d1(T)|, where dy(T) is the set of hanging vertices of T. We can
interpret this as a min-max inequality and the natural question is whether
there are graphs for which the equality is attained. We show that by taking
the generator-preserving contractions to be those obtained by contracting
the edges of Djokovic classes the equality is attained for the seaweeds which
are a subclass of median graphs. We have studied the seaweeds in [9] in the
frame of image compression.

2 Generator-contractible graphs

All the graphs considered subsequently are connected. Given the graphs
G = (V(G), E(G)) and H = (V(H), E(H)), f: V(G) = V(H) is a con-
tracting map if for any z,y € V(G) we have de(z,y) > du(f(z), f(¥))
Here de(z,y) denotes the distance between z and y that is, the number of
edges of any shortest path between x and y. Using this notation we have
Is(z,y) = {z € V(G) | da(z,y) = da(z, 2) + dc(2,y)}. We are interested
only on those contracting maps obtained by the contraction of sets of edges.

It is clear that f: {a,b,c,d} — {z,y,2} such that f(a) = z, f(c) = 2
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and f(b) = f(d) = y (see figure 1) is a contracting map but it can not be
obtained by the contraction of any set of edges of Cj.

a d x
y
b c

Figure 1

From now on we will write “generator” instead of “convex-generator”. A
graph G is generator-contractible onto H (GgcH) if there is a sequence of
graphs G = Gy, ..., G, = H such that for any i < p and for any generator
B of G; there is an onto contracting map f: V(G;) — V(Gi41) such that
@(f(B)) = V(Gi+1). We denote by B(G) the set of generators of G and
the g-rank of G is g(G) = min{|B]| | B € B(G)}. We will denote by 8(G)
~ the set of trees T" such that GgcT.

Lemma 1.2. For any graph G we have g(G) > max{|di(T")| | T € 6(G)}.

Proof: Using the easy remark that any set A whose convex hull is V(G)
contains a convex generator, the result follows easily by induction on the
length of the sequence of graphs G = Gy, ...,Gp = T needed to contract
GontoT. a

We show now that the generators of graphs and the transversals of hy-
pergraphs are closely related. Given a graph G = (V(G), E(G)), we define
the hypergraph Hg = (V(Hg), E(Hg):

- V(He) =V(G);

- A€ E(Hg) if and only if A # @ and V(G) — A is a maximal convex
set in G.

With these notations we have the following:

Proposition 1.2. B is a generator of G if and only if B is a transversal
of HG.

Proof: Let B be a generator of G. Assume on the contrary that B is not
a transversal of Hg. Then there is an edge A of Hg such that AN B = §.
The fact that V(G) — A is convex implies B C ¢(B) C V(G) — A #V(G),
which is impossible.

Let now B be a transversal of Hg. Assume on the contrary that B is
not a generator of G, that is ¢(B) # V(G). Clearly, ¢(B) is convex and
B C ¢(B). This implies that A = V(G) — ¢(B) is an edge of Hg and
A N B =, which is impossible. o
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Remark 2: Given the hypergraph H = (V(H), E(H)), with V(H) =
{a,b,c,d} and E(H) = {{a,b}, {b,c},{c,d}, {d,a}, {a,c}}, one can easily
verify that for any graph G on the vertices {a, b, ¢, d}, the hypergraph Hg
defined above is different from H. This remark suggest the following:

Problem 1: Given a hypergraph H, under what conditions there is a graph
G such that Hg is isomorphic to H?

Remark 3: The edges of Hg are what is left outside the maximal con-
vex sets of G. Thus, it makes sense to consider these edges as parts of a
somewhat “boundary” of G. So, the preceding proposition says that the
generators of G are included in the “boundary” of G.

In the following section we will show that it is “easy”, for a median graph
G, to find generator preserving contractions and the “boundary” of G.

3 Median graphs

Introduced by Avann [1], these class of graphs have been intensively studied
by many authors. The interested reader can find recent contributions in
21, 3], (9}, [20], 11], [12], [13].

A graph G is median if for any z,y,2 € V(G), I(z,y,2) = I(z,y) N
I(y,2z) N I(z,z) is a singleton, or equivalently, there is a unique vertex
m = mg(z,v,2), the median of z, y and z in G, such that: d(z,y) =
d(z: m)+d(m: y)’ d(ys z) = d(ya m)+d(mr z) and d(z: z) = d(za m) +d(m1 x)'

All median graphs are bipartite. Trees are median graphs. Another
important example of median graph is the hypercube Q. of dimension n,
having the {0, 1}-vectors of length n as vertices, two vertices being joined
if they differ in exactly one coordinate. The 6-cycle and the graph Ko 3 are
not median graphs.

Mulder [11] has shown that the median graphs are included in the class of
graphs isometrically-embeddable in the hypercube. We will give the precise
statement of this result later in this section after having introduced some
terminology and the chracterisation of the graphs isometrically-embeddable
in the hypercube. A graph G is isometrically-embeddable in a graph H if
there is a map f: V(G) — V(H) such that dg(z,y) = du(f(z), f(¥)) for
any pair of vertices z,y € V(G). If V(G) C V(H) then G is an isometrical
subgraph of H. The subgraph of G induced by the set X C V(G), is
the graph G[X] = (X, E;) such that Fy = {wv € E(G) | v,v € X}. A
convez-subgraph of G is the graph G[C] induced by the convex set C. A
convex-subgraph is always isometrical, the converse is not true in general.

For any edge ab of G we define the sets Nab = {z € V(G) | d(z,a) <
d(z,b)}, Nba = {z € V(G) | d(z,b) < d(z,a)} and eNb = {z € V(G) |
d(z,a) = d(z, b)} that partition V(G). It is clear that if G is bipartite then
aNb = 0. Unless explicitly stated, all the graphs encountered hereafter
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will be bipartite. Djokovic [5] has defined the relation § on the edges of a
bipartite graph as follows: if e, f € E(G), e = ab and f = zy then,

edf & {z,y} N Nab +# 0 and {z,y} N Nba # 0.

The relation & is always reflexive and symmetric but, in general, it is not
transitive as one can easily verify for the graph K 3. We will use the terms
Djokovic classes or §-classes when § is an equivalence relation. It is shown
in [5) and [8] that & is transitive if and only if Nab and Nba are convez for
any edge ab of G. Djokovic has shown:

Theorem 1.8. [5]: G is isometrically-embeddable in a hypercube Q if and
only if G is bipartite and Nab and Nba are convex for any ab € E(G).

Now we can state the following result of Mulder:

Theorem 2.3. [11): G is median if and only if it is an isometric subgraph
of a hypercube @ such that the median in Q of any three vertices of G is
also a vertex of G.

Figure 2 illustrates the fact that the 6-cycle Cg (the bold edges in the
figure) is an isometric subgraph of Q3 but, the median m in Q3 of z, y and
z is not in Cg thus, showing once more that Cg is not a median graph.

y
Figure 2. Cg is an isometric subgraph of Qs

For a graph isometrically embeddable in a hypercube, we will note by
Dab the §-class containing the edge ab and Bab the set of vertices of Nab
having a neighbour in Nba. Here we list some properties of median graphs,
shown in [11], that we will need subsequently.

Theorem 3.3. If G is a median graph then:
(m.1) For any edge ab of G the sets Nab, Nba, Bab and Bba are convex;

(m.2) The equivalence class Dab is a cut and a matching between Bab and
Bba and the mapping f: Bab — Bba, defined by f(x) = =’ whenever
zz' € Dab is an isomorphism between G[Bab] and G|Bba).

(m.3) The graph G’ = G/Dab is median for any edge ab of G.

One can find the proof of the following results in [9] and [12]:
Proposition 1.8. If G is a median graph then:
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(i) for any edge ab € E(G), G is generator-contractible onto G/ Dab;

(ii) C # V(G) is a maximal convex set if and only if there is an edge
uwv € E(G) such that C = Nuv and Nvu = Byu.

4 Polyminoes’ graphs and seaweeds

Golomb (7] defined the polyminoes as shapes made by connecting certain
number of equalsized squares, each joined together with at least one other
square along an edge. Without loss of generality, the squares of this defi-
nition can be taken to be the unit squares of the plane, that are the sets
K = [a,a'] x [b,}] with &’ =a=+1, b’ =b=x1 and g, b are integers. Of
course, all the pixels images are polyminoes. Given a set A of unit squares
we construct the graph G*(A) by taking the centers of the squares of A as
its vertices, two vertices being joined by an edge if and only if the corre-
sponding squares have eactly one edge in common. Thus we can define a
plane polymino as a set  of unit squares such that G*(r) is connected.
Let now define the gluing operation on the graphs. Let G; and G2 be
any two graphs. Let f: V(H;) — V(Hz) be an isomorphism between an
induced subgraph H; of G; and an induced subgraph Hz of G2. We can
obtain a new graph G by gluing G with G along Hy and H; as follows:
1. Delete all the edges of H, from G;; 2. Identify all the vertices = of H;

with their images f(z) of Ha.
; :; oo |
»—o ¢ »
& !

Fig. 3.0 A polvimmae 1 Fig. 3.b Ihe graph (). Fig. 3.c . Ihe graph ().

Given a polymino m we construct the polyminos’ graph G(w) by associ-
ating a 4-cycle C(K) to any square K of 7 and we glue two such cycles
C(K,) and C(K32) along an edge if and only if the corresponding squares
K, and K> have that edge in common (see figure 3).

We deal with the polyminoes without holes that are those polyminoes
m for which G*(w) has no isometric cycles of length > 4 (see [9]). As a
natural generalisation of the polyminoes without holes, we define the class
‘W of the seaweeds by the following inductive procedure:

Step 0: W = {C,}!

Step 1: For any G;,G, € W, let G be the graph obtained by gluing G,
with G, along P; and P, verifying:

1¢, is the cycle of length 4
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() P, and P; are convex paths of the same length > 1 of G; and
Ga;

(b) Any edge of P, (P,) is contained in exactly one 4-cycle of G
(G2);

(c) Every interior vertex of P; (P) is of valency 3 in G (G2).

Step 2: Add G to W. Goto Step 1.

We have shown [9] that if  is a polymino without holes, then G(7) is a
seaweed. We have chracterized the seaweeds and we have shown that we
can recognize them and the graphs of plane polyominoes in polynomial time
O(mn), where m is the number of edges and n is the number of vertices.
Here we list some properties of the seaweeds needed for the next section.
The detailed proofs of these properties can be found in [9).

Theorem 1.4. If G is a seaweed then:

(1) G is a median graph, for any edge uv of G the subgraph G[Buv] is a
convex path and the number of 4-cycles containing wv is 1 or 2.

(2) for any 4-cycle Co of G and for any unit square Ko in the plane,
there is an unique embedding p: V(G) — Z3 (Z is the set of integers)
verifying:

(i) the projection of u(Cp) on Z?2 is the boundary of Ko;

(ii) for any 4-cycle C of G, the projection of u(C) on Z2 is the
boundary of a unit square K;

(iii) if the 4-cycles Cy and C> of G have one edge in common then the
projections Ky and K3 of u(C) and p(C>) on Z? have exactly
one edge in common.

For a fixed embedding p of G, an edge zy is horizontal (vertical) if the
projection of u(zy) on Z2 is horizontal (vertical). As a seaweed G is a
median graph, all the edges of the hypergraph H¢g will be of the form Buv
(proposition 1.3), where uv is some edge of G. By the preceding theorem,
the subgraph P = G[Buv] is a convex path that we call an extremal segment
of G. Let ES be the set of all extremal segments of G, that is the set of all
G’s subgraphs, induced by the vertices of the edges of Hg. In [9] we have
shown:

Lemma 1.4. Let P € ES and let e be an edge of P. If e is horizontal
(vertical), then all the edges of P and Duv are horizontal (vertical).

This lemma allows us to classify the segments of ES in vertical and
horizontal ones.
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Lemma 2.4. For any P, P’ € ES we have [V(P)NV(P’)| <1 and when
V(P)NV(P') = {z}, then z is an extremity of P and P’ and either P is
horizontal and P’ vertical, or P is vertical and P’ horizontal.

5 A min-max result on seaweeds

Given a seaweed G, we fix one of its embeddings given by theorem 1.4. Let
R be a maximal chain of extremal segments, that is a maximal sequence
Py,..., Pc of segments of ES such that |V(P) N V(Pyy)| =1 for ¢ =
1,...,k —1. We will write “chain” for “maximal chain”. It is clear from
the lemma 2.4 that in any chain the horizontal segments alternate with the
vertical ones. Let HH (VV) be the set of all the chains whose first and
last segments are horizontal (vertical). We note by HV the set of all the
other chains. It is clear that any segment is included in exactly one chain.
For any chain R we denote with h(R) (v(R)) the number of its horizontal
(vertical) segments. With these notations we have:

Lemma 1.5. If G isa seaweed, then g(G) = 3 pepy MR)+2 pevy v(R)+
> renv MR).

Proof: By proposition 1.2, we need to find a minimum size transversal
of Hg. It is clear that for any hypergraph a minimum size transversal is
the union of minimum size transversals of its connected components. The
connected components of Hg are the chains, defined above, contained in
the sets HH, HV and VV, which form a partition of ES. For any chain
R we denote by 1 and 2 the extremities of its first segment, 2 and 3 the
extremities of its second segment and so on. Let now {1,2,...,k} be the
set of these extremities for a chain R. It is easy to see that if Risin VV
(in HH) then k is even and the set {1,3,...,k — 1} is a minimum size
transversal of R and |{1,3,...,k — 1} =v(R) (I{1,3,...,k — 1}| = h(R)).
If Ris a chain of HV then kis odd and the set {2,4,...,k—1} is a minimum
size transversal of R and the equalities |{2,4,...,k — 1}| = h(R) = v(R)
are verified. This shows the lemma. O

Theorem 1.5. If G is a seaweed then g(G) = max{|d,(T)| | T € 0(G)}.

Proof: Let B be the minimum generator of G found in the preceding
lemma. By the lemma 1.2 we have |B| > |d1(T")| for any tree T obtained
from G by a sequence of generator-preserving contractions. We will find a
sequence of é-classes Dy, ..., Dy, each containing at least two edges, and a
sequence of graphs G = Gy, G; = G;—1/D;, i =1,...,4, such that G, is a
tree T and |B| = |d,(T")|-

Let R be a chain of HH and {1,3,...,k—1} a minimum size transversal
of R (see the proof of the preceding lemma.) We note by Py, ..., Py, the
horizontal segments of this chain. Let D;,..., D, be the é-classes defined
by the edges of E(P;)U---U E(Pix_1). We have |D;| > 2, because any edge
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of G is contained in at least one 4-cycle (theorem 1.4.). Let G, be the graph
obtained from G by contracting D;,..., D,. The order of contractions is
insignificant, because the contraction is a commutative operation. It is clear
that after these contractions, every horizontal segment of R is reduced into
a vertex of valency one in G,. Thus, [di(G,)| > h(R). We write “>”
because some other horizontal segments of G could have been reduced into
vertices of valency one in G,.

Let now, Dy, ..., Dy be the 6-classes defined by the edges of all the hori-
zontal segments of all the chains in HHUHYV . Let G}, be the graph obtained
from G by contracting these classes. By repeating the preceding argument
for all the chains in HH U HV, we have |di(Gr)| 2 ¥ regnuav MR).

Remember that Gy, is median ((m.3) th. 3.3) and all the contracted edges
up to now were horizontal (lemma 1.4.)

Let now P be any vertical segment of a chain R € VV. Assume that
P is defined by the edge uv of G, that is P = G[Buv], Buv = Nuv (see
figure 4.) Let a and o’ be the extremities of P. The class Duv is not in
{Ds,..., Dy} otherwise, at least one of the edges ab or a'd’ is contained in
a horizontal segment P’ of a chain R’ € HH U HV. But then, the segment
P is contained in R and in R’, which is impossible by the maximality of
chains. Thus, the vertical segments of the chains V'V of G are not altered
by the contraction of D, ..., Ds. Let Dayy, ..., Dy, be the 6-classes defined
by all the edges of all the vertical segments of the chains in VV.

a b

u
o
a b
Figure 4

It is easy to deduce by what precedes, that all these classes have at least
2 edges in Gp. Thus, if z is a vertex of valency 1 in G and zy is the edge
of G, incident to z, then zy is not included in any of D;, i = h 4+ 1,...,v.
This implies that the vertices of di(G4) remain of valency 1 in the graph
G, obtained from G, by the contraction of Dp44,..., D,.

All the vertical segments of the chains V'V being reduced in vertices of
valency 1 in G,,, we have |d1(Gy)| > |d1(Gr)| + X gevv ¥(R) 2 |BI.

If G, contains any cycle, this will be of even length because G, is me-
dian and so, bipartite. From this follows that anyone of the §-classes
Dy4y, ..., Dq defined by the edges of all the cycles of G, contains at least
two edges. Thus, the vertices of d;(G,) remain of valency 1 in the tree Gq
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obtained from G, by the contraction of Dy41,...,Dq. This implies that
|d1(Gg)| 2 |d1(Gy)| = | B, and the proof is complete. (u}

The following example illustrates the constructive proof of the preceding
theorem.

3 2
4 !
1 10
5 (q 9
p -
(a) G is a seaweed (b) A tree obtained from G by
contracting é-classes
Figure 5

In this figure, the vertical (horizontal) segments are presented in bold
(double line).There are three chains: one chain R € VV containing the
segments P, with extremities 1 and 2 and we write P;(1,2) and simi-
larly, P»(2,3) and P;3(3,4); one chain R’ € VH containing the segments
P4(5,6) and Ps(6, 7); one chain R” € HH containing the segments Ps(8, 9),
P;(9,10) and Ps(10,11). It is easy to find the transversals {1,3} for
R, {6} for R’ and {8,10} for R”. A minimum generator of G is then
B = {1,3,6,8,10} thus, g(G) = 5. The contraction of three classes defined
by the edges of the horizontal segments of R’ and R” and the contraction
of the classes defined by the edges of the vertical segments of R gives a
graph which has 5 vertices of valency 1, but is not yet a tree. It suffices
then to contract one §-class defined by the edges of the cycle of this graph
to obtain the tree in 5.b.

Remark 4: In the proof of the preceding theorem we found some very
special generator-preserving contractions, obtained by the contraction of
6-classes. This is due to the structure of the seaweeds which are a special
subclass of median graphs. One may wonder whether these contractions
work for the graphs of 3-dimensional polyminoes or the median graphs in
general. The answer is negative for both the cases, as one can verify for
the graph of a 3-dimensional polyminoe =, such that G*(x) is drawn in the
figure 6. A minimum generator of this median graph is {a, b, c}.
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b c
Figure 6. The graph G* of a 3-dimensional polyminoe

It is not hard to verify that for all the trees T obtained by contracting
d-classes on this graph, we have |d; (T')| < 2 thus showing the falsity of the
following conjecture of Mulder [12] saying:

. Mulder’s Conjecture: If G is a median graph then g(G) = max{|d;(T)}| |
T € 6(G)}. -

This remark suggests the following:

Problem 1: Chracterize the median graphs for which the min-max equality
can be obtained by contracting only é-classes. We conjecture that these
graphs are the class of seaweeds obtained by the procedure in 4, with the
step 1 (a) relaxed as follows:

Step 1: (a’) P, and P, are convex paths of the same length > 0 of G; and
Go;
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