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ABSTRACT. We construct, for all positive integers % and v with
u < v, a decomposition of Ky — Ku (the complete graph on
v vertices with a hole of size u) into the maximum possible
number of edge disjoint triangles.

1 Introduction

A partial triangle decomposition with leave L of a graph G, PT(G), is a
triple (V, B, L) where V is the vertex set V(G) of G, B is a collection of
edge-disjoint triangles in G and L is the subgraph (of G) containing those
edges of G not covered by the triangles of B. When we do not wish to
specify the leave of a PT(G) we may just write the pair (V, B) instead of
the triple (V, B, L). A mazimum partial triangle decomposition of a graph
G, MPT(G), is a PT(G) with the property that no other PT(G) contains
more triangles.

Let K, denote the complete graph on v vertices. Whenv=1or3 (mod
6), an MPT(K,) is equivalent to a Steiner triple system of order v. In [9]
and [10] an M PT(K,) is constructed for all positive integers v. Let K, -K,
be the complete graph on v vertices with a hole of size u; that is the graph
formed from K, by removing all edges which have both their vertices in
a subset of size u of the vertex set of K,. In this paper we construct an
MPT(K, — K,) for all positive integers u and v (u < v). This problem
closely resembles the problem of embedding M PT(K,)’s. An M PT(K,),
(U, A) say, is said to be embedded in an MPT(Ky), (V,B) say, ifUCV
and A C B.

In 1983, Mendelsohn and Rosa [8] considered the following problem. For
which values of u and v can any M PT(K,) be embedded in an M PT(K,)?
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This problem is a generalisation of the 1973 result of Doyen and Wilson
on embeddings of Steiner triple systems [2]. Mendelsohn and Rosa proved
necessary conditions for all u and v and sufficient conditions except in
the cases where precisely one of u and v is 4 or 5 (mod 6). Following
further progress on the problem by Hartman, Mendelsohn and Rosa [6]
and Hartman (5], the problem was recently settled by Fu, Lindner and
Rodger [4]. Their paper proves the following two theorems.

Theorem 1.1. [4] Let v > u. Any MPT(K,) can be embedded in an
MPT(K,) if and only if

e if u=6thenv=7orv>10,
e if u>6and u is even thenv=u+1 or v > 2u, and

e if u> 6 and u is odd then v > 2u.

Theorem 1.2. [4] Let v > u. Any MPT(K,) (U, A, L,) can be embedded
in an MPT(K,) (V, B, Lp) such that Ly C Ly if and only if

o if u=0 or 2 (mod 6) then v is even,

e if u=4 (mod 6) then v =4 (mod 6),

e if u=5 (mod 6) then v=>5 (mod 6), and

e v > 2u, with strict inequality if ©=0,2,4 or 5 (mod 6).

Embeddings of the type described in the Theorem 1.2 are equivalent to
MPT(K, — K,)'s and so we have the following corollary.

Corollary 1.1. Forv > 2u and (u,v) = (0.0), (0,2), (0,4),(2,0),(2,2), (2,4),
(4,4) or (5,5) (mod 6), and for v > 2u and uw = 1 or 3 (mod 6), there is
an MPT(K, — K,) with leave L as shown in Figure 1.

Note that the leaves shown for the cases (u,v) = (1,4), (1,5),(3,4),(3,5)
(mod 6) result from the constructions used in [4] and are not the only
possible leaves. It is worth remarking that for some congruence classes
of u and v (for example (u,v) = (0,1) (mod 6)) the number of possible
(as permitted by the degrees of the vertices and the number of edges in
K, — K, nonisomorphic leaves in an M PT(K, — K,) approaches infinity
as u and v become arbitrarily large.

We need the following notation. Let (Zy, {d1,d2,...,d:}) denote the
graph G with vertex set V(G) = Z, and edge set E(G) = {{z,y}: di =z—y
ory—z (mod w) and i € {1,2,...,t}}. If G, Gy, ..., G, are edge disjoint
subgraphs of a graph G such that E(G) = E(G1) U E(G3) U --- U E(G,)
then we write G = G1 + G2 + : - - + G;. Let G denote the complement of
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the graph G and for vertex-disjoint graphs G and Ga, denote by G1 V G2
the graph with vertex set V(G V G2) = V(G)) U V(G2) and edge set
E(Gl v Gz) = E(Gl) U E(Gz) U {{:z:,y}: z € V(Gl),y € V(Gz)}

2 Preliminary results

We begin this section with the following crucial lemma. Parts (1) and (3)
of this lemma can also be found in [3], Lemma 6.3 and 6.4.

Lemma 2.1.

(1) Let w = 6m +4, m > 1, and let G = (Zw,{1,2,3}). Then G =
F1+F2+F3+K4+2mK3+3mK2 where Fy, F» and F3 are 1-factors
of G and where the K, and the 3m copies of Ks are pairwise vertex
disjoint (and hence cover all the vertices of G).

(2) Let w = 6m +4, m > 1, and let G = (Zw,{1,2,3}). Then G =
F+ P3+ (4m +2)K3 + (3m + 1)K, where F is a 1-factor of G, Ps is
a path with three edges, and the endpoints of the path together with
the 6m + 2 vertices occurring in the 3m + 1 copies of Ky cover the
vertices of G (once each).

(3) Let w = 6m +2, m > 1, and let G = (Zw,{1,2,3}). Then G =
F+K4+4mKs+ (3m — 1)K, where F is a 1-factor of G and the K,
and the 3m — 1 copies of K» are pairwise vertex disjoint (and hence
cover all the vertices of G).

(4) Let w = 6ém +2, m > 1, and let G = (Zw,{1,2}). Then G =
Fy + F5 + Cs 4 (2m — 1) K3 where Fy and F> are 1-factors of G and
where Cs is a 5-cycle.

(5) Let w = 6m +2, m > 1, and let G = (Zu,{1,2,3}). Then G
(4m + 2)K3 + Cem.-

(6) Let w = 6m +4, m > 1, and let G = (Zw,{1,2}). Then G =
(2m + 2)K3 + Cem+2-

Proof:

(1) Let the triangles be {3: +4,3i + 5,3i+ 6} withi=0,1,...,2m — 1.
Let the K4 have vertices {0,1,2,3} and let the 3m copies of K be
{6i+4,6i+7}, {6i+5,6i+8}, {6i+6,6i+9} withi=0,1,...,m—1.
Let F; consist of the edges {3i+3, 3i+4}, {65 +2, 65 +5}, {0,w—2},
{1,w — 1}, F, consist of the edges {3i +2,3i +4}, {65 + 3,65 + 6},
{0,w — 1}, {1,w — 2} and F3 consist of the edges {3i + 3,3i + 5},
{65 +1,67 +4}, {0,w -3}, {2w—1} with i=0,1,...,2m — 1 and
j=0,1,...,m—1.
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(2) Let the triangles be {3i,3i + 2,3i + 3} and {3i + 1,3 +2,3i + 4}
with i =0,1,...,2m. Let the 1-factor F consist of the edges {0,1},
{2,w—1}, {3i+3,3i+4}, {6j+5,6j+8} withi=0,1,...,2m—1and
j=0,1,...,m — 1. Let the path P3 consist of the edges {0,w -1},
{w-1,1}, {1,w—2} and let the 3m+1 copies of K3 be {3i+1,3i+3}
and {65 + 2,6 + 5} withi=0,1,...,2mand j=0,1,...,m — 1.

(3) Let the triangles be {3i+ 2,3 +4,3i+ 5} and {3i+3,3i +4,3i+ 6}
withi=0,1,...,2m—1. Let the 1-factor F consist of the edges {6i+
1,6i+4}, {3j+3,3j+5} withi=0,1,...,mandj =0,1,...,2m—1.
Let the K4 have vertices {0,1,2,3} and let the 3m — 1 copies of K2
be {3i + 5,3i + 6} and {65 +4,65 + 7} withi=0,1,...,2m —2 and
i=0,1,...,m-1

(4) Let the 5-cycle be (0,2,1,w —1,w —2) and let the triangles be {3: +
3,3i+4,3i+5} withi=0,1,...,2m —2. Let the 1-factors F, and F,
consist of the edges {0, 1}, {6i+2, 6i-+3}, {6i+4, 6i+6}, {6i+5,6i+7}
and {0, w—1}, {6i+5, 6i+6}, {6i+1,6i+3}, {6i+2, 6i+4} respectively
with:i=0,1,...,m—1.

(5) Let the triangles be {0,1,w—1}, {w/2-1,w/2,w/2+2}, {w/2, w/2+
1,w/2+3}, {3, 3i+2,3i+3}, {3i+1,3i+2,3i+4}, {3i+w/2+1,3i+
w/2+2,3i+w/2+4}, and {3j +w/2+3,35 +w/2+5,3j +w/2+6},
withi=0,1,...,m—1and j=0,1,...,m—2. Let the edges of Cgpn
be {w/2-1,w/2+1}, {w/2+2,w/2+3}, {3i+w/2+4,3i+w/2+6},
{3i+3, 3i+4}, {3i+w/2+3, 3i+w/2+4}, {3j+1,3j+3}, {3j+w/2+
2,35 +w/2+ 5}, and {3k +w— 1,3k +2}, withi=0,1,...,m -2,
j=0,1,...,m—-1land k=0,1,...,m.

(6) Let the triangles be {34,3i + 1,3i + 2} and {3i + w/2,3i + w/2 +
1,3i + w/2 + 2} with i = 0,1,...,m. Let the edges of Cem42 be
(3i+1,3i+3), {3 +w/2+1,3i+w/2+3}, {3j +2,3j +3}, and
{3j+w/2+2,3j +w/2+3} withi=0,1,...,2mand j =0,1,...,m—
1.

Lemma 2.2. For each of the following graphs G, we have G = Kz + K3 +
---+ Ks.

(1) G = (Z16,{4,5,7}), G = (Zw, {4,5, ..., 6t + 1}\ {3t —1}) withw =
12t+4and t > 2;

(2) G = (Zu {4,5,...,6t+ 4} \ {3t +4}) withw =12t +10 and ¢ 2 0;

(3) G = (Zw,{4,5,...,6t}\ {3t +1,3t +2,5¢ +1}) withw =12t +2 and
t>21;
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(4) G = (T {4,5,...,6t+3}\ {3t +1,3t +4,5t +3}) withw =12t +8
andt > 1;

(5) G = (Zw {3:.4,...,6t}\ {5t —1}) withw =12t + 2 and t > 1;
(6) G = (Zw,{3,4,...,6t +3}\ {5t +3}) withw =12t +8 and t 2 0.

Proof: The following difference triples developed modulo w provide the
required decomposition.

(1) For G = (Z16, {4,5,7}) the difference triple is (4,5,7). For ¢ =2 let
the difference triples be (4,8,12), (6,9,13) and (7,10,11). For ¢ > 3
let the difference triples be
(4,5t — 1,5t + 3), (6,5t — 2,5t +4),..., (2,4t + 1,6t + 1),

(5,3t — 2,3t +3), (7,3t — 3,3t +4),..., (2t — 3,2t + 2,4t - 1),
(2t — 1,3t +1,5¢), (2t + 1, 3¢, 5¢ + 1), (3¢ + 2,4¢, 5t +2).

(2) For t = 0 there is nothing to do and for ¢ =1 let the difference triples
be (4,6,10) and (5,8,9). For ¢t > 2 let the difference triples be
(4,5t + 2,5t + 6), (6,5t + 1,5t +7), ..., (26,4t + 4,6t + 4),
(5,3t,3t +5),(7,3t — 1,3t +6),..., (2t - 1,2t + 3,4t + 2),
(2t + 1,3t + 3,5t +4), (2t + 2,3t + 1,5t + 3), (3t +2,4t + 3,5t + 5).

(3) For t = 1 there is nothing to do and for ¢ = 2 let the difference triples
be (4,6,10) and (5,9,12). For ¢ > 3 let the difference triples be
(4,5t — 2,5t +2), (6,5t — 3,5t +3), ..., (2t — 2,4t + 1,6t — 1),
(5.3t — 2,3t +3), (7,3t — 3,3t + 4),..., (2% — 3,2t + 2,4t - 1),

(2t —1,3¢t,5t — 1), (2¢,4¢,61), (2t + 1,3t — 1, 5t).

(4) For ¢t = 1 the difference triple is (5, 6, 9). For t > 2 let the difference
triples be
(4,5t + 1,5t + 5), (6,5¢,5¢ + 6), ..., (2t — 2,4t + 4,6t +2),
(5,3t,3t +5), (7,3t — 1,3t +6),...,(26 — 1,2t + 3,4¢ +2),
(2t,3t + 2,5t +2), (2t + 1,3t + 3,5t +4), (2t + 2,4t + 3, 6 +3).

(5) For t = 1 the difference triple is (3,5,6). For ¢ > 2 let the difference
triples be
(3,3t — 1,3t +2), (5,3t — 2,3t +3),..., (2 — 3,2t + 2,4t — 1),
(4,5¢ — 2,5t +2), (6,5t — 3,50 +3), ..., (2 — 2,4t + 1,6t — 1),
(2t — 1,3t + 1, 5¢), (2t,4¢, 6¢), (2¢ + 1,3¢,5¢ + 1).

(6) For t = 0 there is nothing to do and for ¢ = 1 let the difference triples
be (3,4,7) and (5,6,9). For ¢ > 2 let the difference triples be
(3,3t +1,3t +4),(5,3t,3t +5),...,(2t — 1,2t + 3,4t +2),

(4,5t + 1,5t +5), (6,5¢,5¢ + 6),...., (2t — 2,4t + 4,6t +2),
(26, 3¢ + 2, 5¢ + 2), (2t + 1, 3¢ + 3,5¢ + 4), (2t + 2,4¢ + 3, 6¢ + 3).
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Lemma 2.3. Let u =1 (mod 6) and v = 5 (mod 6) with v > 2u. Then
Ky—K,=Ks+ K3+ Ks+---+ K.

Proof: If u = 1 then the result follows from [8], so assume » > 7. Let
w = v—u = 6m+4 and let r = (u—1)/6. It is straightforward, using Lemma
2.1 (1) and adjoining four further vertices, to see that K5V (Z, {1,2, 3})=
Ks+ K3+ K3+ -- -+ K3. We complete the proof by showing that K§_, V
(Zw, {4,5,...,3m +2}) = K3+ K3+ --- + K3. Note that since 7 <u S w
we have 1 < r < m. We choose m — r of the m — 1 difference triples given
in Lemma 2.2 (1) or (2) and use these to generate K3’s. The half difference
3m+2, together with the remaining 3m+1—3—3(m—r) = 3r—2 differences
in {4,5,...,3m + 1}, yield 6r — 3 = u — 4 1-factors by the Stern and Lenz
result [11). Thus we can pair off these 1-factors with the vertices of K_,
to obtain the required decomposition.

Lemma 2.4. Let w =5 (mod 6) and v = 3 (mod 6) with v > 2u. Then
K,-K.,=Cs+Kz+ K3+ + Ks.

Proof: Let w = v—u = 6m+4 and let r = (u+1)/6. It is straightforward,
using Lemma 2.1 (2) and adjoining two further vertices, to see that K3V
(Zw,{1,2,3})) = Cs + K3 + K3 + --- + K3. We complete the proof by
showing that KS_, V (Zy, {4,5,...,3m +2}) = K3+ K3 +--- + K3. Note
that since 5 < u < w we have 1 < r < m. We choose m — r of the
m — 1 difference triples given in Lemma 2.2 (1) or (2) and use these to
generate K3’s. The half difference 3m + 2, together with the remaining
3m+1—3—3(m—r) = 3r — 2 differences in {4,5,...,3m + 1}, yield
6r —3 = u — 2 1-factors by the Stern and Lenz result [11]. Thus we can
pair off these 1-factors with the vertices of K , to obtain the required
decomposition.

Lemma 2.5. Let u = 3 (mod 6) and v = 5 (mod 6) with v > 2u. Then
Ky—Ky=Ks+ K3+ Ks+---+Ks.

Proof: If u = 3 then the result follows-from [8], so assume u > 9. Let
w =v—u = 6m+2and let r = (u+3)/6. It is straightforward, using Lemma.
2.1 (3) and adjoining two further vertices, to see that K5V (Z, {1,2,3}) =
Ks + K3+ K3+ - - -+ K3. We complete the proof by showing that Ki_, VvV
(Zw,{4,5,...,3m+1}) = K3+ K3 +....+ K3. Note that since 9 Su <w
we have 2 < r < m. We choose m — 7 of the m — 2 difference triples given
in Lemma. 2.2 (3) or (4) and use these to generate K3’s. The half difference
3m+1, together with the remaining 3m — 3 —3(m —r) = 3r — 3 differences
in {4,5,...,3m}, yield 6r — 5 = u — 2 1-factors by the Stern and Lenz
result [11]. Thus we can pair off these 1-factors with the vertices of Ki_,
to obtain the required decomposition.

Lemma 2.6. Let u =5 (mod 6) and v = 1 (mod 6) with v > 2u. Then
K”—Ku=05+K3+K3+--'+K3.
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Proof: Let w = v—u = 6m+2 and let r = (u+1)/6. It is straightforward,
using Lemma 2.1 (4) and adjoining two further vertices, to see that K5V
(Zw,{1,2}) =Cs+ Ka+ K3 +---+ K3. We complete the proof by showing
that KV (Zw,{3,4,...,3m+1}) = K3+ K3 +---+ K3. Note that since
5 <u < w we have 1 <7 < m. We choose m — 1 of the m — 1 difference
triples given in Lemma 2.2 (5) or (6) and use these to generate K3’s. The
half difference 3m+1, together with the remaining 3m—2-3(m—r) = 3r—2
differences in {3,4,...,3m}, yield 6r —3 = u —2 1-factors by the Stern and
Lenz result [11). Thus we can pair off these 1-factors with the vertices of
K¢_, to obtain the required decomposition.

Lemma 2.7. Let u=1 (mod 6), u > 7, and v = 5 (mod 6) with v > 2u.
Then K, — Ky = C4 + K3 + K3 + -+ - + K3 where the Cy has two vertices
in the hole and two vertices not in the hole.

Proof: Let w=v—u=6m+4andletr = (u—1)/6. It is straightforward,
using Lemma 2.1 (6) and adjoining two further vertices, to see that K§V
(Z, {1,2}) = C4+ K3+ K3+ - -+ K3. We complete the proof by showing
that KS_oV{Zuw, {3,4,5,...,3m+2}) = K3+ K3+ --+Ks. Note that since
7 <u < w we have 1 <7 < m. We choose m — r of the m — 1 difference
triples given in Lemma 2.2 (1) or (2) and use these to generate Ks’s. The
half difference 3m + 2, together with the remaining 3m+1—-2—3(m—r) =
3r — 1 differences in {3,4,5,...,3m + 1}, yield 6r — 1 = u — 2 1-factors by
the Stern and Lenz result [11]. Thus we can pair off these 1-factors with
the vertices of KS_, to obtain the required decomposition.

Lemma 2.8. Let u = 3 (mod 6) and v = 5 (mod 6) with v > 2u. Then
Ky — Ky =C4+ K3 + K3 +-- - + K3 where the Cy has two vertices in the
hole and two vertices not in the hole.

Proof: If u = 3 then the result follows from [8], so assume u > 9. Let
w = v—u = 6m+2 and let 7 = (u+3)/6. It is straightforward, using Lemma
2.1 (5) and adjoining two further vertices, to see that K3V (Zw,{1,2,3}) =
K,+ K3+ K3+ -+ -+ K3. We complete the proof by showing that KS_,V
(Zow,{4,5,...,3m+1}) = Ka+ Kz +--- + Ks. Note that since 9 <u <w
we have 2 < r < m. We choose m — r of the m — 2 difference triples given
in Lemma 2.2 (3) or (4) and use these to generate K3’s. The half difference
3m +1, together with the remaining 3m —3—-3(m —r) =3r—3 differences
in {4,5,...,3m}, yield 6r — 5 = u — 2 1-factors by the Stern and Lenz
result [11]. Thus we can pair off these 1-factors with the vertices of KS_,
to obtain the required decomposition.

The decompositions given in Lemmas 2.3 and 2.5 are not required for
our MPT(K, — K,) constructions but are of interest because they are
equivalent to pairwise balanced designs. Lemmas 2.3 and 2.5 prove that
for all w = 1 or 3 (mod 6) and all v = 5 (mod 6), v > 2u, there exists a
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pairwise balanced design (of index 1) on v points with one block of size
u, one block of size 5, and the remaining blocks of size 3. These pairwise
balanced designs are needed for the constructions in [1].

3 Maximum packings

The results of Section 2 allow us to construct maximum packings of K, — Ky
for each of the remaining congruence classes of u and v.

31 v<2u

The following Lemma leads to an easy way of constructing maximum pack-
ings of K, — K, when the size u of the hole is large enough relative to
v.

Lemma 38.1. If all the edges with both vertices not in the hole occur in
the triples of 8 PTS(K, — K.), then the PTS is a maximum packing.

Proof: Since every triple must contain at least one edge with both vertices
outside the hole the result follows.

Lemma 3.2. For v < 2u+ 1 and v — u even, there is a maximum packing
of K, — K, having leave L as shown in Figure 1.

Proof: Take a 1-factorization of K,_. and pair off the 1-factors with the
hole vertices. Since v < 2u+ 1, the number of 1-factors v —u — 1 is at most
u.

Lemma 38.3. For v < 2u and v — u odd, there is a maximum packing of
K, — K, having leave L as shown in Figure 1.

Proof: Take a near 1-factorization of K,_, and pair off the 1-factors with
the hole vertices. Since v < 2u, the number of near 1-factors v — u is at
most u.

3.2 u=25 (mod6)
The cases v = 1 or 3 (mod 6) follow immediately from Lemmas 2.6 and 2.4
and so we have the following lemma.

Lemma 3.4. For (u,v) = (5,1) or (5,3) (mod 6) and v 2 2u, there is a
maximum packing of K, — K, having leave L as shown in Figure 1.

As the following lemma shows, the cases v = 0,2 and 4 (mod 6) follow
easily from the cases v =1,3 and 5 (mod 6).

Lemma 3.5. For (u,v) = (5,0),(5,2) or (5,4) (mod 6) and v > 2u, there
is a maximum packing of K, — K, having leave L as shown in Figure 1.
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Proof: We have constructed an M PT(Ky+1—Ku.) (VU{z}, B) in Corollary
1.1 or Lemma 3.4 and we can suppose that z is a vertex not in the hole
and, when » = 1 or 3 (mod 6), z is in the Cs. Hence, (V, B\X) where X

is the set of triples in B which contain z, is the required M PT(K, — Ku).

3.3 «=0,2 (mod 6)

Lemma 8.6. For (u,v) = (0,1),(0,3),(2,1) or (2,3) (mod 6) and v 2 2u,
there is a maximum packing of K, — K, having leave L as shown in Figure
1

Proof: By Theorem 1.1, an MPT(u) (U, A, L) can be embedded in an
MPT(@®) (V, B, Ls). Then (V, B\ (AU X)) where X is the set of triples in
B which contain an edge of Ly, is the required M PT(K, — Ku)

Lemma 3.7. For (u,v) = (0,5) or (2,5) (mod 6) with v 2 2u and v #
2u+1 if u =2 (mod 6), there is a maximum packing of K, — K, having
leave L as shown in Figure 1.

Proof: By Lemmas 2.7 and 2.8, there is an MPT(K, — Ku+1) (V,B,L)
with hole U such thatL is a 4-cycle (a, b, ¢, d) with a,c € U and with b, d¢
U. Let K, — K, have vertex set V and hole U\ {a}. Then (V, BU{a,b, c})
is the required M PT(K, — Ku).

The proof of the following lemma is due to D. Hoffman.

Lemma 3.8. For u = 2 (mod 6) and v = 2u + 1, there is 2 maximum
packing of K, — K, having leave L as shown in Figure 1.

Proof: Take a complete graph on the v —u = 6m+3 vertices. Remove a set
of m pairwise vertex disjoint triangles, and remove one more edge, vertex
disjoint from the m removed triangles. The resulting graph is a complete
multipartite graph, with m parts of size 3, one part of size 2, and 3m + 1
parts of size 1. This graph has a proper edge coloring with 6m + 2 colors
(see [7]). Identify these colors with the 6m +2 vertices in the hole, forming
the remaining triangles.

3.4 u=4 (mod 6)

Lemma 3.9. For (u,v) = (4,0),(4,2) (mod 6) and v > 2u+1, there is a
maximum packing of K, — K, with triangles having leave L as showm in
Figure 1.

Proof: For these congruence classes, v > 2u+2sov+1 2 2(u+1)+1. Hence
there is an M PT(Kyy1— Kut1) (V, B, L) with hole UU{z} where L is a 5-
cycle (a,b, ¢, d, ). When (u,v) = (5,3) (mod 6), we can assume that a =z
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(and that b, ¢, d and e are not in U). In this case (V'\ {a}, B\ X), where X
is the set of triples in B which contain a, is the required MPT(K, — K,).
When (u,v) = (5,1) (mod 6), we can assume (see the proof of Lemma 2.1
(4)) that a, b, ¢, d and e are not in U and that {a,c,z} € B. In this case
(V\{z}, (BU{a,b,c})\ X), where X is the set of triples in B which contain
z, is the required M PT(K, — K,).

Lemma 3.10. For (u,v) = (4,5) (mod 6) and v > 2u, there is a maximum
packing of K, — K,, with triangles having leave L as showm in Figure 1.

Proof: By Corollary 1.1 there is an M PT(K, — Ky+1) (V, B, L) with hole
U U {z}. Then (V, B) with hole U is the required MPT(K, — K.,).

Lemma 3.11. For (u,v) = (4,1) and (4,3) (mod 6) with v > 2u and
v#2u+1 if u=4 (mod 6), there is a maximum packing of K, — K, with
triangles having leave L as shown in Figure 1.

Proof: By Theorem 1.1, an M PT(u) (U, A, L) can be embedded in an
MPT(v) (V, B, Ly). Then (V, B\ (AU X)) where X is the set of triples in
B which contain an edge of L, is the required MPT(K, — K,,).

Lemma 3.12. For v =4 (mod 6) and v = 2u + 1, there is a maximum
packing of K, — K, with triangles having leave L as shown in Figure 1.

Proof: Take a complete graph on the v—u = 6m+5 vertices. Remove a set
of m pairwise vertex disjoint triangles, and remove two more edges, vertex
disjoint from the m removed triangles. The resulting graph is a complete
multipartite graph, with m parts of size 3, two parts of size 2, and 3m + 1
parts of size 1. This graph has a proper edge coloring with 6m + 4 colors
(see [7]). Identify these colors with the 6m +4 vertices in the hole, forming
the remaining triangles.
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(w,v) = (1,1),(1,3),
(3,1),(3,3),(5,5)

(u,2) = (1,5),(3,5) (u,v) = (5,1)

(2,0),(2,2),(4,4)

000.. O Q *
00 ..0
|E(L)] = 0 |B(L)| = 4 |B(L) = 5
(u,v) =(5,3) (u,v) = (0,0),(0,2), (u,v) = (0,4),(2,4)

|B(L)] = (v - u)/2

|E(L)| = (v - u)/2 4 1

Figure 1
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(u,v) =(4,0),(4,2) (z,v) = (1,0),(1,2), (u,v) =(1,4),(3,4)
(8, 0) (3,2),(5,4)
|E(L)) =(v—-u)/2+2 {E(L)} = v/2 |E(L)]=v/2+1
(1,9) = (5,0),(5,2) (%9) = (4,1),(4,3) (2) = (0,5),(2.8)
1E(L)| =v/2+2 |[E(L)]=v+2 [B(L) =wu +1
(u,v) = (0,1),(0,3), v—-uevenand v < 2u + 1 v - u odd and v < 2u

(2’ 1)’ (273)’(4’ 5)

|E(L)=(v-u)2u—-v+1)||E

(Dl=@-u)2u-v+1)

u=4,v=2u+1

|E(L)| =u+2

Figure 1 (continued)
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