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Abstract. Let G be a graph. A vertex subversion strategy of G, S, is
a set of vertices in G whose closed neighborhood is deleted from G. The
survival-subgraph is denoted by G/S. The vertex-neighbor-integrity of G,
VNI(G), is defined to be VNI(G) =sénvi(nG) {IS| + w(G/S)}, where S is any

vertex subversion strategy of G, and :J(G/ S) is the maximum order of the
components of G/S. In this paper, we discuss the relationship between the
vertex-neighbor-integrity and some well-known graphic parameters.

I. Introduction

Integrity was introduced by Barefoot, Entringer, and Swart as an al-
ternative measure of the vulnerability of graphs to disruption caused by
the removal of vertices. [1,2] Goddard and Swart established the bounds
for integrity in terms of independence number, vertex covering number,
connectivity, and chromatic number. [9)]

A spy network can be modeled by a graph whose vertices represent the
stations and whose edges represent the lines of communication. If a station
is destroyed, the adjacent stations will be betrayed so that the betrayed
stations become useless to network as a whole. [10] Therefore instead of
considering the integrity of a communication graph, in [6,7] we discussed the
vertex-neighbor-integrity of graphs — disruption caused by the removal of
vertices and all of their adjacent vertices. Incidentally, the edge-neighbor-
connectivity and the edge-neighbor-integrity of graphs were discussed in
4,5,8].
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Let G=(V,E) be a graph and u be a vertex in G. N(u) = {v € V(G)|v #
u, v and u are adjacent} is the open neighborhood of 4, and N[u] = {u} U
N(u) denotes the closed neighborhood of u. A vertex u in G is said to be
subverted if the closed neighborhood Nu] is deleted from G. A set of vertices
S = {uy, uz, ..., um } is called a vertez subversion strategy of G if each of the
vertices in S has been subverted from G. Let G/S be the survival-subgraph
left after each vertex of S has been subverted from G. The vertez-neighbor-
iniegrily of a graph G, VNI(G), is defined to be

VNI(G) = _ él‘lfi(lé){lsl +w(G/S)},

where S is any vertex subversion strategy of G, and w(G/S) is the maximum
order of the components of G/S.

[z] is the smallest integer greater than or equal to z. |z] is the greatest
integer less than or equal to =.

The values of VNI of graphs can be very small or very large, see the
following examples:

Example 1.1: K; 5,31, where n > 2, is a star. By the definition of VNI, it
is clear that VNI(Kj n-1) = 1.

Example 1.2: P, where n > 2, is a path with n vertices. We have shown

that VNI(P,) = [2v/n + 3] — 4. [6]

In Section III, we find the lower and upper bounds of VNI for all graphs
related to some well-known graphic parameters. Moreover, we discuss some
properties of the graphs with VNI equal to some of those graphic param-
eters. For the completeness of the paper, we present the related graphic
parameters and some basic properties in Section II.

II. Related Graphic Parameters and Properties

In this section, we present the related graphic parameters and some
basic properties. All other undefined terminology and notations are taken
from [3].

Let G=(V,E) be a graph. The integrity of G, I(G), is defined to be
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I(G)= sglvi(%){lsl +w(G-8)}

where w(G —S) is the maximum order of the components of G—~S. A subset
8’ of V is called an I-set of G if I(G)=|S'| + w(G - §').

Let S be a subset of V. S is called a vertex cut strategy of G if the
survival-subgraph G/S is disconnected, or is a clique, or is §l. The neighbor-
connectivity of G, K(G), is defined to be the minimum size of all vertex
cut strategies S of G. [10] A subset S* of V is called a VNI-set of G if
VNI(G) = |S*] + w(G/S"). Then we have the following theorem:

Theorem 2.1: For any connected incomplete graph G with order > 3,
every VNI-set of G is a vertex cut strategy of G.

Proof: Let S* be a VNI-set of G, and assume that S* is not a vertex cut
strategy of G. Then G/S* is a nontrivial connected graph, and is not a
clique. Let vo be a vertex of V(G/S*). Then

VNI(G) = [$*] + w(G/S")
= [8*| + [V(G/S")
> [8*] + {vo}| +w((G/S")/{0})
= |8* U {vo}| +w(G/(S" U {vo}))

> VNI(G), since S*U {v} C V(G).
A contradiction. Therefore S* is a vertex cut strategy of G.  QED.

A subset C of V is called a covering of G if every edge of G has at least
one end in C. A covering C is a minimum covering if G has no covering
C' with |C'| < |C|. The covering number of G, ao(G), is the number of
vertices in a minimum covering of G.

A subset I of V is called an independent set of G if no two vertices
of I are adjacent in G. An independent set I is maximum if G has no
independent set I with |I’| > |I|. The independence number of G, By(G), is
the number of vertices in a maximum independent set of G. The following
results will be used in Section III.
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Lemma 2.2: A set I C V is an independent set of G if and only if V-1 is
a covering of G. [3]

Lemma 2.3: For any graph G, ao(G) + 6o(G) = [V(G)]. [3]

A subset M of E is called a matching in G if no two edges of M are
adjacent in G. A matching M is maximum if G has no matching M’ with
[M’] > |[M]. Let B1(G) be the number of edges in a maximum matching in
G. The following results will be used in Section III.

Lemma 2.4: For any graph G, £1(G) < ao(G). (3]
Lemma 2.5: In a bipartite graph G, $1(G) = ao(G). (3]

A subset L of E is called an edge covering of G if each vertex of V(G) is
an end of some edge in L. An edge covering L is a minimum edge covering
if G has no edge covering L' with |L’| < |L|. The edge covering number of
G, a1(G), is the number of edges in a minimum edge covering of G.

III. Lower and Upper Bounds

We have proved in Theorem 2.1 that for any connected incomplete
graph G with order > 3, every VNI-set of G is a vertex cut strategy of
G, and hence every VNI-set has cardinality at least K(G). If a graph G is
disconnected or is a complete graph, then the neighbor-connectivity of G,
K(G) = 0, and VNI(G) is still a positive integer. Therefore it is easy to
show that K(G) is a lower bound of VNI(G).

Theorem 3.1: For any graph G, K(G) < VNI(G).

Proof: If G is disconnected or is a complete graph, then K(G) = 0 and
VNI(G) is a positive integer, hence K(G) < VNI(G).

If [V(G)] < 2, then G is complete or disconnected, and hence K(G) <
VNI(G).

If G is connected and |[V(G)| > 3, then let S* be a VNI-set of G, and
VNI(G) = |$*|+w(G/S"). By Theorem 2.1, S* is a vertex cut strategy of G,
hence |S*| > K(G), and then VNI(G) > K(G) + w(G/S*) 2 K(G). QED.
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Theorem 3.2: For any connected graph G with order > 2, if VNI(G) =
K(G), then every VNI-set S* of G is a minimum vertex cut strategy of G
and G/S* = 0.

Proof: Since VNI(G) = K(G), G is incomplete. Let S* be a VNI-set of
G, then VNI(G) = |S*| +w(G/S") = K(G), and [S*| < K(G). By Theorem
2.1, |S*| > K(G), so [S*| = K(G) and w(G/S") = 0. Therefore S* is a
minimum vertex cut strategy of G and G/S* = §. QED.

The following example is a graph whose value of VNI equals the
neighbor-connectivity K.

Example 3.1: The graph G is shown in Figure 3.1. VNI(G) = K(G) =
2. S = {u.v} is a unique VNI-set of G and is also a minimum vertex cut
strategy of G.

Y

Figure 3.1

For any graph G, the integrity I(G), the edge covering number a;(G),
and the independence number B¢(G) are upper bounds of VNI(G). For any
graph G without any isolated vertices, the covering number ao(G) and the
size of a maximum matching 3;,(G) are upper bounds of VNI(G).

Theorem 3.3: For any graph G, VNI(G) < I(G).
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Proof: Let S'={u1,us, ..., tm} be an I-set of G, so I(G)=[S8'| + w(G —
§'). G/S'=G-N[S'|CG—S', where N[S']=U7Z,N[u;], so w(G/S') = w(G -
N[s']) < w(G —§'). Thus

VNIG) = min {IS] +w(G/S)}

< I8'| +w(G/S)

<81+ w(G - §') = I(G).
QED.

Let S’ be an I-set of G, < S’ > be the induced subgraph of G by §', and
r = A(< §' >) be the maximum degree of < §' >. Then we can improve
the upper bound:
Theorem 3.4: VNI(G) < I(G) —r.

Proof: As described above, ' is an I-set of G and < S’ > is the induced
subgraph of G by S'. Let v be a vertex in < S’ > with the maximum degree.
i.e., degesrs(v) = A(< S' >) = r. Let v be adjacent with u1, us,...,u, in
<S>, and §* = §' — {uy,u2,...,ur}. Then G/S* =G - N[§'] C G-/,
where N[S*]=Uyes-N[u], s0o w(G/S") < w(G — §'). Thus

VNI(G) = sg}(!};){lsl +w(G/S)}

< 18"+ w(G/S7)

<|8'|+w(G-8)-r=LG) -
QED.
Theorem 38.5: For any graph G without isolated vertices, VNI(G) <
B1(G).

Proof: Let M = {[u1, v1], [u2, v2], ---; [thm) Vm]} be a maximum matching in
G, where m = (;(G). Let V*=V(G)—{v1,v2, ..., U, %1, U2, -; Um}.

Assume that there are two distinct vertices z,y € V*, such that z is
adjacent with u; and y is adjacent with v;. Then there is an M-augmenting
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path (z,u;, v;,y) in G, and M’ = (M—[w;, %]) U {[=, wi], [v;, 4]} is a match-
ing in G with size [M| + 1, a contradiction to the maximum matching M.
Therefore at most one end of each edge in M is adjacent with some vertices
of V*, or for some edges in M, both ends of each are adjacent with a same
vertex of V*

If at most one end of each edge in M is adjacent with some vertices of
V*, w.lo.g., we assume that no vertex in V* is adjacent with any vertex
of {u1,u3,...,um}; if for some edges of M, both ends of each are adjacent
with a same vertex in V*, w.l.o.g., we assume that both ends of an edge,
v; and u;, are adjacent with the same vertex z; € V*. Since G has no
isolated vertices, in each of the cases, each vertex of V* is adjacent with
some vertices of {vy, vz, ...,um}. Now we let §* = {v1,vz,...,9m} C V(G).
Then G/S* = 0 and w(G/S*) = 0. Thus

VNI(G) = min_{IS]+w(G/S)}

< 8%+ w(G/SY)

=m+0=m=0(G).

QED.

Theorem 3.6: For any graph G without isolated vertices, VNI(G) <
ao(G).

Proof: By Lemma 2.4, 1(G) < ao(G), and by Theorem 3.5, VNI(G)
< B1(G), so we have VNI(G) < ap(G). QED.

We can improve the upper bound ao(G) as described below. Let C be
a minimum covering of G, and < C > be the induced subgraph of G by
C. If m = A(< C >) is the maximum degree of < C >, then we have the
following theorem.

Theorem 3.7: VNI(G) < ao(G) - m + 1.

Proof: Let v be a vertex in < C > with deg<cs (v) = m, where m is the
maximum degree of < C >. Let S = {v1,v3,...,v5} be a subset of C and
each vertex of S be adjacent with v in < C >. Now let C' = C—S. Then
G/C' is @ or a set of isolated vertices, and w(G/C') < 1. Hence
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VNI(G) < |C'] + w(G/C)
= [C| - IS| + w(G/C)

< ao(G) -m+1.

QED.

Using the above theorem we can determine < C > when VNI(G) =
ao(G).

Corollary 3.8: For any graph G, if VNI(G) = ao(G), then for any min-
imum covering C, the induced subgraph < C > = K3UK,, where r =
ag(G) — 2, or < C > = Kquy(a), @ null graph.

Proof: VNI(G) = ao(G) < ao(G)—m-+1, where m is the maximum degree
of <C>,som=1.

Assume that there are at least three vertices in < C > with degree
1, then there are at least four vertices in < C > with degree 1. W.l.o.g.,
let degecs(v1) = degecs(vz) = deg<c>(vs) = degec>(ve) = 1, v1 be
adjacent with vz, and v3 be adjacent with vs. Let C' = C—{v1,v3}, then
VNI(G) < |C'| + w(G/C") < (a0(G) - 2) + 1 =0(G) — 1, 2 contradiction
to VNI(G) = ao(G). Therefore there are at most two vertices in<C>
v_vith degree 1. Hence < C > = KaU K,, where r = ap(G)—2,0r <C> =
Kao(G)- QED.

Please note that if VNI(G) = ao(G), C is a minimum covering of G,
and the induced subgraph < C > is a null graph I_{ao(g), then G is a
bipartite graph with a bipartition (C, V(G)-C), since by Lemma 2.2 and
Lemma 2.3, I = V(G)—C is a maximum independent set of G and there is
no edge between any two vertices of I.

Theorem 3.9: For any graph G, VNI(G) < Bo(G).

Proof: Let C be a minimum covering of G, then by Lemma 2.2 and Lemma
2.3, V(G)—C=l is a maximum independent set of G, and [I| = Bo(G). Each
vertex in C is adjacent with some vertices in I, since if u in C is not adjacent
with any vertex in I, then IU{u} is an independent set of G with size |I|+1,
a contradiction to a maximum independent set I. Thus G/I = @, and
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VNI(G) = min_{IS|+w(G/S)}

< |1+ w(G/I)

= Fo(G) + 0 = o(G).
QED.

Theorem 8.10: For any graph G, VNI(G) < a;(G).

Proof: Let L={[uy,v1], [u2,v2], ..., [¥m, ¥m]} be a minimum edge covering .
of G, a1(G) = m, and $*={u;,u, ..., %m}. Since the listed vertices in S*,
U1, %2, ...y Um, May be the same, |[S*| < m. Then G/S*=0 and w(G/S*) = 0.

VNI(G) = min_{IS]+w(G/S)}

< IS*| +w(G/S*) < m = ay(G).
QED.
For any graph G without isolated vertices, since ao(G), @1(G), Bo(G),

and $8;(G) are upper bounds of VNI(G), by Lemma 2.3 and Lemma 2.4,
the following corollaries are easily obtained.

Corollary 3.11: For any graph G without isolated vertices, VNI(G) <
min(ao(G), @1(G), Bo(G), B1(G)) = min(ay(G), Bo(G), B1(G)).

Corollary 3.12: For any graph G without isolated vertices, VNI(G) <
[V(G)I/2.

Next we discuss the conditions necessarily satisfied by a graph G when
VNI(G) equals the upper bound co(G).

Theorem 3.13: For any graph G without isolated vertices, if VNI(G) =
ao(G) then ao(G) = ﬁl(G).

Proof: VNI(G) < 81(G) and 51(G) < ao(G), so if VNI(G) = ao(G) then
ao(G) = ﬁl(G). QED.
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Although a necessary condition for a graph G to have a value of VNI
that achieves the upper bound ag(G) is ao(G) = % (G), the graph may
or may not be a bipartite graph. To construct a graph G with VNI(G)
= ag(G), Corollary 3.8 can be applied. Let C = {uy, u, e Ugg(G)} be a
minimum covering of G. If VNI(G)=ao(G), then < C >=K,U Kao(G)-2 OF
< C>=Kquq6)- f<C >=I7(°°(G, then the graph G is a bipartite graph.
Hence, to have a non-bipartite graph G, < C > must be KoU K4 (G)y-2-
See the following examples:

Example 3.2: The graph G, is shown in Figure 3.2. VNI(G,)=[{u,v, w}|+
w(G1/{u,v,w}) = 3+ 0 = 3. C={u,v,w} is a minimum covering of G,
and M={e;,e2,e3} is a maximum matching in G;. VNI(G1)=ao(G1) =
£1(G1) =3. < C>=KyU K:. G, is not a bipartite graph.

Gll

Figure 3.2

Example 3.3: Let Go = G; — e, where G, is shown in Figure 3.2.
VNI(G2) = [{u,v,w}| + w(G2/{u,v,w}) = 3. C={u,v,w} is a mini-
mum covering of G» and M={e;,e2,e3} is a maximum matching in Go.
VNI(Ga)=ao(G2) = ,31((;2) = 3. < C>=Kjs. G, is a bipartite graph.

We have known that for any graph G without any isolated vertices,
K(G) < VNI(G) < $1(G) < ao(G). If the lower bound K(G) and the
upper bound ao(G) are equal then VNI(G) = K(G) = B1(G) = ao(G).
However there is only one possible VNI-value for such graphs, as described
in Theorem 3.14.

Theorem 3.14: For any graph G without any isolated vertices, if K(G)
= ao(G) > 1 then VNI(G) = K(G) = 81(G) = ao(G) = 1.

Proof: Since K(G)>1, G is a connected graph, and G has no isolated
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vertices. It is clear that if K(G) = ao(G) then VNI(G) = K(G) = 61(G) =
ao(G). The remaining part is to show that VNI(G) = 1.

Assume that ao(G) > 2. Let C be a minimum covering of G, and
< C > be the induced subgraph of G by C. Since VNI(G)—ao(G), by
Corollary 3.8, < C >= KyU Ka.,(G) 20r<C >—Ka°(q) Now we assume
that < C >= KQUKQO(G) 2, and two vertices, © and v, are adjacent in
< C>. Then let C' = C—{u}. G/C’ is a set of isolated vertices or 0§, so C'
is a vertex cut strategy of G, and K(G) < |C'| = ao(G) -1, a contradiction.
Therefore < C > is a null subgraph of G. By Lemma 2.2, V(G)—C is an
independent set of G, and G—C is also a null subgraph of G. Therefore G
is a bipartite graph with a vertex bipartition (C, V(G)-C).

By the assumption, ag(G) > 2. Let 2 and y be two vertices in C. Since
G is connected, there is a path P starting with = and ending with y. We let
the path P=(z,w,, u1, w2, Y2, ..., Um-1, Wm, y), where 2, %1, Uz, ..., m-1,¥
are the vertices in C, and wy, wa, ..., Wm are the vertices in V(G)—C. Let S*
= (C—{z, u1, uz, ..., n—1, ¥}) U{w1, w3, ..., wn, }, then |S*| = ao(G) — (m—
1+2) +m = ap(G) — 1. Since G/S* is a set of isolated vertices or @, S* is
a vertex cut strategy of G, and K(G) < |S*| = ao(G) — 1, a contradiction.
Therefore ag(G) = 1, and VNI(G) = 1. QED.

Next, we discuss a characterization of graphs with the value of VNI=1.

Theorem 3.15: Let G be a graph of order n > 1. VNI(G) =1 if and only
if G contains a star spanning subgraph or G = K,,, a null graph of order n.

Proof: If VNI(G) = 1, then let S* be a VNI-set of G, and VNI(G) =
|S*| + w(G/S") = 1. Hence there are two cases:
Case 1: |S*| =1 and w(G/S") = 0.

Thus S* = {v} and G/S* = (. Hence each vertex, except v itself, of G
is adjacent with v. Therefore G contains a star spanning subgraph.
Case 2: |S*| =0 and w(G/S*) = 1.

Thus S* = 0 and w(G) = w(G/S*) = 1. Therefore G = K,, a null
graph of order n.

Conversely, if G = K,, then take S* = 0, and VNI(G) = |S*| +
w(G/S*) =041 = 1. If G contains a star spanning subgraph, then let
be the vertex in G with the degree n — 1. Let S* = {u}, then G/S* = 0.
Hence VNI(G) = |$*| +w(G/S*)=1+0=1. QED.

Corollary 3.16: Let G be a graph of order n. If K(G) = ao(G) > 1, then
VNI(G) = 1 and G = K; n-1, a star.
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Proof: By Theorem 3.14 and its proof, we have VNI(G) = K(G) =51(G) =
ao(G) = 1, and G is a connected bipartite graph. By Theorem 3.15, if
VNI(G) = 1 and G is connected, then G contains a star spanning subgraph.
Let u be the vertex in G with the degree n — 1. Since G is a bipartite
graph, no two vertices of V(G)—{u} are adjacent. Therefore G = Ky,a-1,
astar. QED.
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