A Sufficient Condition for Oriented Graphs to be Hamiltonian *

Pan Lin Qiang, Zhang Ke Min (Department of Mathematics, Nanjing University, Nanjing, 210093, P. R. of China)

Abstract: In this paper, we prove the following result: Let D be a disconnected oriented graph of order n. If $d^+(u)+d^+(v)\geq n-2$ for any pair u,v of nonadjacent vertices such that $N^+(u)\cap N^+(v)\neq\emptyset$ and $d^-(u)+d^-(v)\geq n-2$ for any pair u,v of nonadjacent vertices such that $N^-(u)\cap N^-(v)\neq\emptyset$, then D contains a directed Hamiltonian cycle.

We use the terminology and notation of [1]. D = (V(D), A(D)) will denote an oriented graph on n vertices. A digraph is disconnected if there is a directed path from u to v for any two vertices u and v. Define |uv| = 1 when $uv \in A(D)$ and |uv| = 0 when $uv \notin A(D)$. If $v \in V(D)$ and $S \subseteq V(D)$, we denote the set of arcs from v to S (resp. from S to v) by (v, S) (resp. (S, v)). Furthermore, we define $d_S^+(v) = |(v, S)|, d_S^-(v) = |(S, v)|$. Define $N^+(u) = \{v|v \in V(D), uv \in A(D)\}$, $N^-(u) = \{v|v \in V(D), vu \in A(D)\}$. If $S \subseteq V(D)$, an S-path is a directed path of length at least two having exactly its origin and terminus in S.

Theorem Let D be a disconnected oriented graph of order n. If $d^+(u) + d^+(v) \ge n - 2$ for any pair u,v of nonadjacent vertices such that $N^+(u) \cap N^+(v) \ne \emptyset$ and $d^-(u) + d^-(v) \ge n - 2$ for any pair

^{*}The project supported by NSFC.

u,v of nonadjacent vertices such that $N^-(u) \cap N^-(v) \neq \emptyset$, then D contains a directed Hamiltonian cycle.

Proof: Suppose that D satisfies the condition of the theorem, but does not contain a directed Hamiltonian cycle. Let S be a longest directed cycle in D.

We first prove that there is a S-path in D. Suppose there is no S-path in D. Then since D is disconnected and S is a proper subset of V, D contains a directed cycle S' having precisely one vertex, say u, in S. Let $S = x_0x_1x_2\cdots x_ax_0$, $S' = x_0y_1y_2\cdots y_bx_0$, $A = \{x_1, x_2, \cdots, x_a\}$, $B = \{y_1, y_2, \cdots, y_b\}$ and $F = V(D) - (A \cup B \cup \{x_0\})$. Obviousely, |A| = a, |B| = b and |F| = n - (a + b) - 1 = f. Since there is no S-path in D, x_a , y_b and x_1 , y_1 are pairs of nonadjacent vertices such that $N^+(x_a) \cap N^+(y_b) \neq \emptyset$ and $N^-(x_1) \cap N^-(y_1) \neq \emptyset$. Since D contains no S-path, we have

$$d_B^+(x_a) = d_B^-(x_1) = d_A^+(y_b) = d_A^-(y_1) = 0 \tag{1}$$

and there is not a path of form x_avy_1 or y_bvx_1 , where $v \in F$. Hence,

$$|x_a v| + |vy_1| \le 1$$
, $|y_b v| + |vx_1| \le 1$

for each $v \in F$. Furthermore,

$$d_F^+(x_a) + d_F^-(y_1) + d_F^+(y_b) + d_F^-(x_1)$$

$$\leq \sum_{v \in F} [(|x_a v| + |v y_1|) + (|y_b v| + |v x_1|)]$$

$$\leq 2f. \tag{2}$$

Clearly,

$$d_A^+(x_a) \le a - 2, \ d_A^-(x_1) \le a - 2, \ d_B^+(y_b) \le b - 2, \ d_B^-(y_1) \le b - 2.$$
 (3)

Combining (1), (2) and (3), we get

$$d^{+}(x_{a}) + d^{+}(y_{b}) + d^{-}(x_{1}) + d^{-}(y_{1})$$

$$\leq 2(a-2) + 2(b-2) + 2f + |x_{a}x_{0}| + |y_{b}x_{0}| + |x_{0}x_{1}| + |x_{0}y_{1}|$$

$$= 2(a+b+f+1) - 6$$

$$= 2n - 6.$$
(4)

The above inequality implies $d^+(x_a) + d^+(y_b) \le n - 3$ or $d^-(x_1) + d^-(y_1) \le n - 3$, but this contradicts the hypothesis of the theorem.

Therefore D contains a S-path P, say $x_{\alpha}z_1z_2\cdots z_{\beta}x_0$, where $x_0,x_{\alpha}\in S$. Let $P_1=x_0x_1x_2\cdots x_{\alpha},P_2=x_{\alpha}x_{\alpha+1}\cdots x_ax_0$ be the directed path on the cycle S. Let the path P be chosen so that α is maximum. Because of the maximality of $S,\alpha\neq a$. Let $A=\{x_0,x_1,\cdots,x_{\alpha}\},B=\{z_1,z_2,\cdots,z_{\beta}\},C=\{x_{\alpha+1},x_{\alpha+2},\cdots,x_a\}$ and $F=V-(A\cup B\cup C)$. Obviously, $|A|=\alpha+1,|B|=\beta,|C|=a-\alpha$ and $|F|=n-(|A|+|B|+|C|)=n-a-\beta-1=t$. Because of the maximality of α and $\alpha\neq a,z_{\beta},x_{\alpha}$ and $z_1,x_{\alpha+1}$ are pairs of nonadjacent vertices such that $N^+(z_{\beta})\cap N^+(x_{\alpha})\neq\emptyset$, and $N^-(x_{\alpha+1})\cap N^-(z_1)\neq\emptyset$ respectively. By the same reason, we have

$$d_C^+(z_\beta) + d_C^-(z_1) + d_B^+(x_{\alpha+1}) + d_B^-(x_a) = 0$$
 (5)

If there exist x_i , $x_{i+1} \in A$ $(i = 0, 1, 2, \dots, \alpha - 1)$ such that $x_i x_{\alpha+1}$, $x_{\alpha} x_{i+1} \in A(D)$, then

$$x_i x_{\alpha+1} x_{\alpha+2} \cdots x_{\alpha} x_{i+1} x_{i+2} \cdots x_{\alpha} z_1 z_2 \cdots z_{\beta} x_0 x_1 x_2 \cdots x_i$$

is a cycle longer than S. This cotradiction shows that

$$|x_i x_{\alpha+1}| + |x_\alpha x_{i+1}| \le 1 (i = 0, 1, \dots, \alpha - 1)$$

Hence,

$$d_{A}^{+}(x_{a}) + d_{A}^{-}(x_{\alpha+1}) = \sum_{i=0}^{\alpha} (|x_{a}x_{i+1}| + |x_{i}x_{\alpha+1}|)$$

$$= \sum_{i=0}^{\alpha-1} (|x_{a}x_{i+1}| + |x_{i}x_{\alpha+1}|) + |x_{a}x_{0}| + |x_{\alpha}x_{\alpha+1}|$$

$$\leq \alpha + 2$$
(6)

Similarly, we have

$$d_A^+(z_\beta) + d_A^-(z_1) \le \alpha + 2$$
 (7)

By the maximality of S, there exists no vertex $v \in F$ such that $x_{\alpha}v$, $vz_1 \in A(D)$ or $z_{\beta}v$, $vx_{\alpha+1} \in A(D)$. Hence,

$$|x_{\alpha}v| + |vz_1| \le 1$$
, $|z_{\beta}v| + |vx_{\alpha+1}| \le 1$

for every $v \in F$. Furthermore,

$$d_F^+(x_a) + d_F^-(z_1) \le t, \quad d_F^+(z_\beta) + d_F^-(x_{\alpha+1}) \le t \tag{8}$$

Obviously,

$$d_B^+(z_\beta) \le \beta - 2, d_B^-(z_1) \le \beta - 2, d_C^+(x_a) \le a - \alpha - 2, d_C^-(x_{\alpha+1}) \le a - \alpha - 2$$
(9)

Combining (4)-(8), we get

$$d^{+}(z_{\beta}) + d^{+}(x_{\alpha}) + d^{-}(z_{1}) + d^{-}(x_{\alpha+1})$$

$$\leq 2(\alpha + 2) + 2(\beta - 2) + 2(a - \alpha - 2) + 2t$$

$$= 2(a + \beta + 1 + t) - 6$$

$$= 2n - 6 \tag{10}$$

The above inequlity implies that $d^+(z_{\beta})+d^+(x_a) \leq n-3$, or $d^-(z_1)+d^-(x_{\alpha+1}) \leq n-3$. But this contradicts the hypothesis of the theorem. This completes the proof of the theorem.

Remark: Let D be an oriented graph of order n $(n \ge 5)$. In [3], it is shown that if for any two vertices x, y, $xy \notin A$ implies $d^+(x)+d^-(y) \ge n-2$, then D is Hamiltonian. The following example shows that in some sense, our theorem is stronger than the above.

Example: Let C be a directed cycle with $n(\geq 5)$ vertices denoted by $x_1x_2\cdots x_nx_1$. For any $i\in\{1,2,\cdots,n\}$, we have $x_{i+1}x_i\notin A$, but $d^+(x_{i+1})+d^-(x_i)=2< n-2$. C does not satisfy the conditions of the theorem of [3]. $N^+(x)\cap N^+(y)=\emptyset$ and $N^-(x)\cap N^-(y)=\emptyset$ for any pair x,y of vertices, so C satisfies the condition of our Theorem.

The bound presented in our theorem is sharp in the following sense. Let k be positive integers and n=2k. Let D be a digraph with n vertices. See Figure 1. The digraph D is disconnected and nonhamiltonian. Vertices v_{2k} , v_{2k-2} are the only pair which are disjoint and have common out-neighbour or common in-neighbour. Furthermore, $d^-(v_{2k}) + d^-(v_{2k-2}) = (k-2) + (k-1) = n-3$.

Figure 1

References

- [1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, London, 1976.
- [2] J. A. Bondy and C. Thomassen, A Short Proof of Meyniel's Theorem, Discrete Math., 19 (1977), 195-197.
- [3] N. Chakroun and Y. Manoussakis, Degré diamére et structure de graphes anti-symeteriques, Thése de doctorat 3 cycle, Université Paris-Sud, Orsay, 1985.
- [4] Zhang Ke Min and Song Zeng Min, Cycles in Digraphs-A Survey, Journal of Nanjing University, 27 (1991), 188-215.