A Note on k-Rotation Graphs

ERICH PRISNER *

Mathematisches Seminar Universität Hamburg

For an integer $k \geq 1$ the k-rotation graph $\mathcal{R}_k(G)$ of a graph G = (V, E) has the set of all connected k-edge subgraphs of G as vertex set. Two such vertices $H_1 \neq H_2$ are adjacent in $\mathcal{R}_k(G)$ whenever there are labelings $e_1, \ldots e_k$ and $d_1, \ldots d_k$ of the edges of H_1 respectively H_2 such that e_i and d_i have exactly one common vertex, for every $i = 1, \ldots k$ [2]. Surely the 1-rotation graph is just the ordinary line graph.

It is very easy to see that the line graph of every connected graph must be again connected. Since $L^2(G)$ is a spanning subgraph of $\mathcal{R}_2(G)$ [2], the same is true for the 2-rotation graph. For higher k, the k'th iterated line graph $L^k(G)$ is not necessarily a subgraph of $\mathcal{R}_k(G)$, so this approach ends here. However, in this note we show:

Theorem 1 For every $k \geq 1$ the k-rotation graph of every connected graph is again connected.

We need the following

Lemma 2 For every $k \geq 1$, if two connected k-edge graphs H_1 and H_2 have k-1 common edges and nonempty intersection, then the corresponding vertices in $\mathcal{R}_k(H_1 \cup H_2)$ are adjacent.

Proof: We prove the result by induction over k. The case k=2 is rather obvious. Let now k>2, let the result be true for all smaller integers greater than 2, and let H_1 and H_2 be as above. We denote by e_1 and e_2 the edges in H_1-H_2 and H_2-H_1 respectively. Since H_1 and H_2 are connected with nonempty intersection, $H_1 \cup H_2$ is connected, whence we find some path $x_0, x_1, x_2, \ldots, x_{\ell-1}, x_{\ell}$ with $e_1 = x_0 x_1$ and $e_2 = x_{\ell-1} x_{\ell}$. Let P_0 denote the vertex set of this path. Now we define recursively P_i as the set of vertices of $V(H_1 \cup H_2) \setminus \bigcup_{j < i} P_j$ adjacent to some vertex in $\bigcup_{j < i} P_j$. It is easy to see that every vertex in P_i must be adjacent to some vertex in

^{*}Mathematisches Seminar, Universität Hamburg, Bundesstr. 55, 20146 Hamburg, Germany, e-mail: ms6a013@math.uni-hamburg.de

 P_{i-1} , for $i \ge 1$. Since $H_1 \cup H_2$ is connected, $P_0 \cup P_1 \cup \cdots \cup P_t$ is a partition of its vertex set for some integer $t \ge 0$. We distinguish the following cases:

Case 1: $t \leq 1$ and $H_1 \cup H_2$ is a tree. Then every edge outside our basic path is incident with exactly one vertex of the path, but not with x_0 or x_ℓ (since H_1 and H_2 are connected). We can find a linear ordering $e_1 = d_1, d_2, \ldots, d_{k+1} = e_2$ of the edges of $H_1 \cup H_2$ such that every pair d_i, d_{i+1} has some common vertex. This ordering is found by starting with e_1 , then adding all edges outside our basic path and incident to x_1 , then adding x_1x_2 and all edges outside the path and incident to x_2 , and so on. It is obvious how this labelling induces the necessary labellings of H_1 and H_2 .

Case 2: $t \geq 1$ and there is some vertex $v \in P_t$ with at least two neighbors in $P_t \cup P_{t-1}$. Let F denote the set of edges incident with v. For i=1,2, we obtain H_i' from H_i by deleting all edges in F, and then all isolated vertices. Now H_1' and H_2' are connected, with k-|F| edges, k-|F|-1 common edges, and nonempty intersection. We apply induction hypothesis to obtain feasable labellings of H_1' and H_2' . Since $|F| \geq 2$, it is easy to extend them to feasable labellings of H_1 and H_2 .

Case 3: $t \geq 2$ and the vertices in P_t are independent. We choose some $u \in P_t$ and some neighbor v in P_{t-1} . The degree of v is at least 2. As in Case 2, denote by F the set of all edges incident with v, and obtain H'_i from $H_i - F$ by deleting all isolated vertices. The rest of the proof is exactly as in Case 2.

If t = 0 then Case 1 holds. If t = 1 then either $H_1 \cup H_2$ is a tree, or Case 2 holds. Surely Case 2 or 3 (maybe both) holds for $t \ge 2$.

Note that the nonempty intersection of $H_1 \cap H_2$ follows for $k \geq 2$. The case k = 1 is only included for technical reasons — we needed it in the induction.

Proof of Theorem 1 We use the convention that connected k-edge subgraphs of G are denoted by capitals X, Y, Z, whereas the corresponding vertices of $\mathcal{R}_k(G)$ are denoted by corresponding small letters x, y, z.

By Lemma 2, distinct vertices x, y of $\mathcal{R}_k(G)$ are adjacent provided $|E(X \cap Y)| = k - 1$. We define a measure of similarity on the vertices of $\mathcal{R}_k(G)$: Let for $x, y \in \mathcal{R}_k(G)$, d(X, Y) denote the length of some shortest X-Y path in G and c(X, Y) the maximum edge number of a component of $X \cap Y$. Then we define

$$s(x,y) := d(X,Y) + k - c(X,Y).$$

These numbers are nonnegative integers (since $c(X,Y) \le k$, $d(X,Y) \ge 0$), and equal to 0 if and only if x = y. Moreover s(x,y) = 1 implies c(X,Y) = 1

k-1, that is, $xy \in E(\mathcal{R}_k(G))$ by Lemma 1. Thus it suffices to show that for every $x, y \in V(\mathcal{R}_k(G))$ with $s(x,y) \geq 2$ there is some vertex z of $\mathcal{R}_k(G)$ with $|E(X \cap Z)| = k-1$ and s(z,y) < s(x,y). We distinguish two cases:

In case $X \cap Y = \emptyset$, choose some shortest X - Y path, and let e be that edge of the path having one of its vertices in X. Then there is some edge e in E(X) such that $E(X) \cup \{e\} \setminus \{a\}$ generates some connected subgraph E(X) of E(X) or E(X)

In case $X \cap Y \neq \emptyset$, we have d(X,Y) = 0. Let e be any edge of $E(Y) \setminus E(X)$ touching the component of $X \cap Y$ with largest edge number c(X,Y). As above, there must be some edge a of X such that $E(X) \cup \{e\} \setminus \{a\}$ generates some connected graph Z in G. Again $|E(X \cap Z)| = k - 1$, and again s(z,y) < s(x,y), since c(Z,Y) > c(X,Y) and d(Z,Y) = 0.

Actually we have proven a little more. The facet graph of a set of k-element sets has this set as vertex set, and two distinct sets form adjacent vertices whenever they have k-1 common elements, see [5] or [4]. We take the edge sets of the connected k-edge subgraphs of G as our set, and form the facet graph $\mathcal{F}_k(G)$ thereof. Then Lemma 2 assures that $\mathcal{F}_k(G)$ is a subgraph of $\mathcal{R}_k(G)$, and Theorem 1 proves that $\mathcal{F}_k(G)$ is connected for connected G.

Let us define one more graph-operator. For $k \geq 1$, and a graph G = (V, E), let $\Phi_k(G)$ denote the graph with all connected induced k-vertex subgraphs of G as vertices, where such $H_1 \neq H_2$ are adjacent whenever there are labellings x_1, \ldots, x_k and y_1, \ldots, y_k of $V(H_1)$ and $V(H_2)$ such that every pair x_i, y_i is distinct and adjacent. Now $\mathcal{R}_k(G) = \Phi_k(L(G))$ for every $k \geq 1$. Surely $\Phi_1(G) = G$, and $\Phi_2(G)$ is called the edge graph of G in [1].

Now our Theorem would follow from an affirmative answer of the following problem:

Question: Is $\Phi_k(G)$ is connected for every connected graph G and every $k \geq 1$?

A statement corresponding to Lemma 2 is not true in this case, as can be seen by the graph in Figure 1: G - x and G - y are connected 7-vertex subgraphs of G with 6 common vertices, nevertheless the corresponding vertices in $\Phi_7(G)$ are not adjacent.

Figure 1

Another open question is whether the k-rotation graph of every n-connected graph were n-connected. This holds for k = 1 [3] and k = 2, since $L^2(G)$ is a spanning subgraph of $\mathcal{R}_2(G)$, as mentioned above.

References

- [1] H.-J. Bandelt, M. Farber, P. Hell, Absolute reflexive retracts and absolute bipartite retracts, *Discrete Appl. Math.* 44 (1993) 9-20.
- [2] G. Chartrand, H. Hevia, E.B. Jarrett, Planarity of double-rotation graphs, Congressus Numerantium 76 (1990) 183-192.
- [3] G. Chartrand, M.J. Stewart, The connectivity of line graphs, Math. Ann. 182 (1969) 170-174.
- [4] M.S. Jacobson, A.E. Kézdy, J. Lehel, Intersection graphs associated with uniform hypergraphs, in: Surveys in Graph Theory (G. Chartrand, M. Jacobson eds.) Congressus Numerantium 116 (1996) 173-192.
- [5] V.B. Le, E. Prisner, Facet graphs of pure simplicial complexes and related concepts, Hamburger Beiträge zur Mathematik aus dem Mathematischen Seminar, Heft 19 (1992).