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For an integer k > 1 the k-rotation graph R¢(G) of a graph G = (V, E)
has the set of all connected k-edge subgraphs of G as vertex set. Two
such vertices H; # H, are adjacent in R (G) whenever there are labelings
e1,...ex and dy,...dy of the edges of H; respectively Hp such that e; and
d; have exactly one common vertex, for every i = 1,...& [2]. Surely the
1-rotation graph is just the ordinary line graph.

It is very easy to see that the line graph of every connected graph must
be again connected. Since L2(G) is a spanning subgraph of R2(G) [2], the
same is true for the 2-rotation graph. For higher k, the k’th iterated line
graph L*(G) is not necessarily a subgraph of Ry (G), so this approach ends
here. However, in this note we show:

Theorem 1 For every k > 1 the k-rotation graph of every connected graph
is again connected.

We need the following

Lemma 2 For every k > 1, if two connected k-edge graphs Hy and Ho
have k—1 common edges and nonemply intersection, then the corresponding
vertices in Ry (H, U Hy) are adjacent.

Proof: We prove the result by induction over k. The case k = 2 is
rather obvious. Let now k > 2, let the result be true for all smaller integers
greater than 2, and let H; and H, be as above. We denote by e; and e
the edges in H; — Ha and Hs — H; respectively. Since H; and H> are
connected with nonempty intersection, H, U H, is connected, whence we
find some path zg,z1,22,...,%¢-1,2¢ With e; = 202, and ea = z¢_12¢. Let
Py denote the vertex set of this path. Now we define recursively P; as the
set of vertices of V(Hy U Hz) \U;; P; adjacent to some vertex in |J; .; F;.
It is easy to see that every vertex in P; must be adjacent to some vertex in
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Pi_y, for i > 1. Since H; U H» is connected, P,U P, U---U P, is a partition
of its vertex set for some integer ¢ > 0. We distinguish the following cases:

Case 1: t < 1 and H, U H, is a tree. Then every edge outside our
basic path is incident with exactly one vertex of the path, but not with
zg or x¢ (since Hy and Hj are connected). We can find a linear ordering
ey = dy,ds,...,dgy1 = es of the edges of H; U Hy such that every pair
di,d;4+1 has some common vertex. This ordering is found by starting with
e1, then adding all edges outside our basic path and incident to z;, then
adding 2z, and all edges outside the path and incident to x5, and so on.
It is obvious how this labelling induces the necessary labellings of H; and
Hs.

Case 2: t > 1 and there is some vertex v € P, with at least two
neighbors in P, U P,_;. Let F denote the set of edges incident with v.
For i = 1,2, we obtain H} from H; by deleting all edges in F, and then
all isolated vertices. Now H{ and H} are connected, with k — |F| edges,
k —|F| -1 common edges, and nonempty intersection. We apply induction
hypothesis to obtain feasable labellings of H{ and Hj. Since |F| > 2, it is
easy to extend them to feasable labellings of H; and H..

Case 3: t > 2 and the vertices in P, are independent. We choose some
u € P, and some neighbor v in P,_;. The degree of v is at least 2. As in
Case 2, denote by F the set of all edges incident with v, and obtain A} from
H; — F by deleting all isolated vertices. The rest of the proof is exactly as
in Case 2.

If ¢t = 0 then Case 1 holds. If £ = 1 then either H; U H> is a tree, or
Case 2 holds. Surely Case 2 or 3 (maybe both) holds for ¢ > 2. o

Note that the nonempty intersection of H; N Hs follows for k > 2. The
case k = 1 is only included for technical reasons — we needed it in the
induction.

Proof of Theorem 1 We use the convention that connected k-edge
subgraphs of G are denoted by capitals X, Y, Z, whereas the corresponding
vertices of Ri(G) are denoted by corresponding small letters z,y, .

By Lemma 2, distinct vertices z,y of Ri(G) are adjacent provided
[E(XNY)| =k~ 1. We define a measure of similiarity on the vertices
of Ri(G): Let for z,y € Ri(G), d(X,Y) denote the length of some short-
est X-Y pathin G and ¢(X,Y’) the maximum edge number of a component
of XNY. Then we define

s(z,y)=d(X,)Y)+ k—c(X,Y).

These numbers are nonnegative integers (since ¢(X,Y) < k,d(X,Y) > 0),
and equal to 0 if and only if # = y. Moreover s(z,y) = 1 implies ¢(X,Y) =
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k — 1, that is, 2y € E(Ri(G)) by Lemma 1. Thus it suffices to show that
for every z,y € V(R (G)) with s(z,y) > 2 there is some vertex z of Ri(G)
with |E(X N Z)| =k — 1 and s(z,y) < s(z,y). We distinguish two cases:

In case X NY = B, choose some shortest X-Y path, and let e be that
edge of the path having one of its vertices in X. Then there is some edge a
in E(X) such that E(X)U{e}\{a} generates some connected subgraph Z of
G. For, we can choose a as any edge in an end block (that is, an end vertex
of the block-cutvertex tree) of X that does not intersect e. But if all edges
in the end blocks of X intersect e, then X = K ; and we can choose any
edge as a. Obviously |[E(X NZ)| =k —1, but since d(Z,Y) = d(X,Y) -1,
we also get s(z,y) < s(z,y).

In case X NY # 0, we have d(X,Y) = 0. Let e be any edge of E(Y)\
E(X) touching the component of X NY with largest edge number ¢(X,Y).
As above, there must be some edge a of X such that E(X) U {e} \ {a}
generates some connected graph Z in G. Again |[E(X NZ)| =k~ 1, and
again s(z,y) < s(z,y), since ¢(Z,Y) > ¢(X,Y) and d(Z,Y) = 0. o

Actually we have proven a little more. The facet graph of a set of k-
element sets has this set as vertex set, and two distinct sets form adjacent
vertices whenever they have k — 1 common elements, see [5] or [4]. We
take the edge sets of the connected k-edge subgraphs of G as our set, and
form the facet graph F;(G) thereof. Then Lemma 2 assures that F¢(G) is
a subgraph of R;(G), and Theorem 1 proves that F;(G) is connected for
connected G.

Let us define one more graph-operator. For k > 1, and a graph G =
(V,E), let ®:(G) denote the graph with all connected induced k-vertex
subgraphs of G as vertices, where such H; # H, are adjacent whenever
there are labellings 21,... 2 and g1,...,yx of V(H;) and V(H,) such that
every pair z;, y; is distinct and adjacent. Now Ry (G) = @1 (L(G)) for every
k > 1. Surely ®1(G) = G, and ®»(G) is called the edge graph of G in [1].

Now our Theorem would follow from an affirmative answer of the fol-
lowing problem:

Question: Is ®(G) is connected for every connected graph G and
every k > 17

A statement corresponding to Lemma 2 is not true in this case, as can
be seen by the graph in Figure 1: G — & and G — y are connected 7-vertex
subgraphs of G with 6 common vertices, nevertheless the corresponding
vertices in ®7(G) are not adjacent.
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Figure 1

Another open question is whether the k-rotation graph of every n-
connected graph were n-connected. This holds for £ = 1 [3] and k = 2,
since L2(G) is a spanning subgraph of R,(G), as mentioned above.
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