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Abstract

This paper is about critical sets in latin squares and the weaker concept
of partial latin squares with unique completion. This work involves taking
two known partial latin squares with unique completion, or critical sets in
latin squares, and using a product construction to produce new partial latin
squares with unique completion, or new critical sets in larger latin squares.

1 Definitions and background results

Throughout this paper the concepts of partial latin squares with unique completion
and critical sets of latin squares are used, discussed and extended. In this section
these terms are defined and the existing results are presented.

Definition 1.1 A latin square L of order n is an n X n array with entries chosen
from a set N, of size n, such that each element of N occurs precisely once in each
row and in each column.

Definition 1.2 If N’ = {0,1,...,n — 1} and the rows and columns of the latin
square are indexed from 0 to n — 1, then a back circulant latin square has the
integer i + j (mod n) in cell (i,j). A back circulant latin square, of order n,
corresponds 1o the cyclic group C,. Hence C,, will be used to represent such a
latin square.

For convenience, a latin square will sometimes be represented as a set of
ordered triples (i, j; k), this is read to mean that element k occurs in cell (3, j)
of the latin square.

Using this notation, a back circulant latin square can be represented by the set
{(¢,7;i+3) | 0 < 4,7 < n— 1}, where addition is taken modulo n.
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Definition 1.3 Let L be a latin square of order n. If n — s rows of L can be de-
leted, and n — s columns of L can be deleted to leave s? elements of L which form
a latin square S of order s then S is a latin subsquare (or simply a subsquare) of
L.

Definition 1.4 A partial latin square P of order n is an n x n array with entries
chosen from a set N, of size n, such that each element of N occurs at most once
in each row and column.

So P may contain a number of empty cells and a triple (¢, j; k) € P if and
only if the (i, j) position of this partial latin square has entry k.

In the following example, and in all examples in this paper which involve
partial latin squares, an entry of — in the array is used to indicate that the cell is
empty.

Example 15 Let P = {(0,0;1), (0,1;2), (1,2;0), (2,0;0), (2,2 2)}.

1 2 -
P=l- - 0
0 - 2

Since each of the entries 0,1 and 2 occur at most once in any row or column, P is
a partial latin square. However, there is no latin square of order 3 which contains
P,

As the above example demonstrates, a partial latin square need not be con-
tained in any latin square of the same order as itself. This point becomes important
later on when partial latin squares are used in Definition 1.23.

On the other hand, some partial latin squares are contained in many latin
squares of the same order. The partial latin squares of greatest interest in this
paper are those which are contained in precisely one latin square of that order.

It is possible that not all the elements of the set A, from which the entries of
P are chosen, are used in the partial latin square P. It is for this reason that the
set V is listed in full for discussions of unique completion.

Definition 1.6 A partial latin square P of order n, is said to be uniquely com-
pletable (or P completes uniquely to L, or P has (UC)) if for the given set of
possible entries, N, there is one and only one latin square, L, of order n which
has element k in position (i, j) for each (i, j; k) € P.

The following concept was introduced by Nelder [10].

Definition 1.7 A critical set in a latin square L is a partial latin square which
has a unique completion to L and all proper subsets of the partial latin square
complete to at least two distinct latin squares. Formally, a critical set, in a latin
square L of order n,isaset C = {(¢,j; k) | i,j € {0,1,...,n—1}and k € N'}
such that,
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1. L is the only latin square of order n which has element k in position (i, §),
Joreach (i,j; k) € C;

2. no proper subset of C satisfies 1.

Example 1.8 Consider Cs, the back circulant latin square of order 6, and let
& = {(0,0;0),(0,1;1),(0,2;2),(1,0;1),(1,1;2),(2,0;2), (4,5;3), (5,4; 3),
(5,5;4)}. The set &g is a critical set in Cg. The latin square Cs and the crit-
ical set &g are as follows.

| o=o
N =

1

1

|

Cs = 86

1l

- - - - - 3

- — - - 3 4

(=T Y-S O U )
O O W
N = O O W
WK = O U
W= OO

0
1
2
3
4
5

Colbourn, Colbourn and Stinson [2] make the observation that although the
recognition of critical sets in “special cases” (where the unique completion of the
partial latin square is relatively easy to verify) is “straightforward”, it is “not the
case in general”. They prove that “deciding whether a partial latin square has
more than one completion is NP-complete, even if one completion is given as
part of the problem description”.

The definitions below follow the terminology of groupoids as used in Dénes
and Keedwell [6], p. 23.

Definition 1.9 Two latin squares L and M (both of order n) are said to be iso-
topic if there exists an ordered triple (¢, v, x) of one-to-one mappings such that
¢, ¥ and x map the rows, columns and entries, respectively, of L onto M.

Then M = {(r¢,c;ex) | (r,c;e) € L}.
That is, two latin squares are isotopic if one can be transformed into the other
by rearranging rows, rearranging columns and renaming entries.

Definition 1.10 The two latin squares are said to be isomorphic if the one-to-one
mappings ¢, and x are equal.

Definition 1.11 Two partial latin squares (or critical sets) P and P are said to be
isotopic if there exists an ordered triple (¢, , x) of one-to-one mappings which
maps the elements (a, b; c) of P onto the elements (z, y; z) of P.

Definition 1.12 As for latin squares, two partial latin squares are said to be iso-
morphic if the one-to-one mappings ¢, and x are equal.

Lemma 1.13 (Donovan et al. [8)) If C is a critical set in the latin square L and
(¢, %, x) is an isotopism from C to C then C is a critical set in the latin square L
and L is isotopic to L.

295



It follows that a partial latin square isotopic to a partial latin square with unique
completion also has unique completion.

Definition 1.14 Let P be a partial latin square and L be a latin square to which
P completes. An element p of the partial latin square P is a—essential if there is
an a x a subsquare S of the latin square L such that (P \ {p}) N S does not have
(UC)in S.

Let P be a partial latin square which completes uniquely to a latin square L,
then an element p of the partial latin square P is 2—essential if there isa 2 x 2
subsquare S of the latin square L such that (P \ {p}) N S does not have (UC) in
S. Since a partial latin square of order 2 with at least one entry is always uniquely
completable, (P \ {p}) N S does not have (UC) if and only if (P \ {p})N S = 0.
Hence for an element p to be 2—essential there must be a latin subsquare S of
order 2 such that S N P = {p}.

Example 1.15 Consider a partial latin square P with unique completion to C,,
the back circulant latin square of order 4. Let

001 2 - 01 2 3
1 2 - 12 3 0
P=1_ - andCi=1ls 3 o 1
3 - 1 - 30 1 2

The partial latin square P is not a critical set since some of the elements
may be removed to form a new partial latin square with unique completion. For
example, the element (0, 2; 2) can be removed from P, that is to say, P\ {(0,2;2)}
has (UC).

However, some elements cannot be removed if the resulting partial latin square
is 1o have unique completion. Both the elements (0,1;1) and (1,1;2) are 2—
essential. To see that (0, 1;1) is 2—essential consider S = {(0,1;1), (0, 3;3),
(2,1;3),(2,3;1)}, a subsquare of order 2 of C4. Now SN P = {(0,1;1)}, s0
(P\{(0,1;1)}) NS = O which obviously cannot have (UC) in S. Similarly there
is another subsquare of order 2 of which (1, 1;2) is the only element in P. Hence
this element is also 2—essential.

Definition 1.16 A partial latin square P is a—critical if it has unique completion
to the latin square L and every element p of P is a—essential.

If a partial latin square is a~critical then the partial latin square is a critical set.
(That is to say, a—critical sets form a special subclass of the class of critical sets.)

A partial latin square P is 2—critical if it has unique completion to the latin
square L and every element p of P is 2—-essential. If a partial latin square is 2—
critical then it is a critical set. Curran and van Rees used this method to show that
certain sets are critical sets in their paper [5].
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Nelder [10] uses scs(m) to denote the size of the smallest of the critical sets
of the latin squares of order m and Ics(m) to denote the size of the largest of the
critical sets of the latin squares of order m.

In all of the subsequent sections of this paper, partial latin squares and critical
sets are examined which complete to latin squares constructed from smaller latin
squares. The following is as defined in Street and Street [13], p. 31.

Definition 1.17 Let M and N be latin squares of order m and n respectively
with entries from the sets {0,1,...,m — 1} and {0,1,...,n — 1} respectively.
Define N7 to be the array obtained from N by adding rn to each entry of N,
forr =0,1,...,m — 1. (Then N* = rnJ + N where J is the matrix whose
entries are all 1's.) The direct product of M with N is L, the latin square of
order mn constructed by replacing the entry r in M by the array NT. One writes
L=MxN.

The direct product of C, with a latin square L of order = is:
L* = {(a,b;c), (a+n,b;c+n),(a,b+n;c+n), (a+n,b+n;c) | (a,b;¢) € L}.

. [0 o
L= [L‘ L°]

Or, in block matrix form:

Since the array L° is identical to the array L, the superscript is omitted from now
on.

Example 1.18 The direct product of Cy with C,, that is Cz x Ca, is the latin
square:

0 1 2 3 4 5 6 17
12 30 5 6 7 4
2 3 0 1 6 7 4 5
3.0 1 2 7 4 5 6
4 5 6 17 01 2 3
5 6 7 4 12 30
6 7 4 5 2 3 0 1
7 4 5 6 3 0 1 2

One may establish results about partial latin squares with unique completion
for the latin squares arising from direct products of other latin squares. These
results follow from information about the partial latin squares with unique com-
pletion and the critical sets in the component latin squares.

The next two results were originally stated by Stinson and van Rees as one
lemma.
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Lemma 1.19 (Stinson and van Rees [12)) For L, a latin square of order n, and
C, acritical set of L, define the partial latin square P* to be

P*=LU{(z+n,y2+n),(z,y+n;2+n),(z+n,y+n;2) | (z,;2) € C}
or in block matrix form:
ct ¢

where C* is the appropriate image of C in L. Then P* completes uniquely to
the latin square L* of order 2n which is the direct product of C, with L.

1
P‘=[L c

Lemma 1.20 (Stinson and van Rees [12]) For L, a latin square of order n, and
C, acritical set of L, define the partial latin square E* to be

E" = (L\C)U{(z+n,y; z+n), (z,y+n; 2+n), (z+n,y+n; 2) | (z,y;2) € C}
or in block matrix form:
B = L\C ¢!

-] ct C
Then there is a critical set C for L* = C3 x L, the latin square of order 2n, such
that:

E*Ccccp
where P* isas in Lemma 1.19.

To prove this, Stinson and van Rees showed that every element of E* is es-
sential.

Lemma 1.21 (Stinson and van Rees [12]) Let L be a latin square of order n, let
C be a 2—critical set of L, and let L* denote the latin square of order 2n which is
the direct product of Ca with L. Then the partial latin square P* is 2—critical in
the latin square L*, where

P = L ¢!
(¢t ¢
and C is the appropriate image of C in L'. (Note that P* is exactly as in
Lemma 1.19.)

This was the first method for constructing critical sets from smaller critical
sets. This paper and the paper by Cooper, Donovan and Gower [3] extend the
work of Stinson and van Rees. .

Since there is a critical set given by Curran and van Rees for C,, the back
circulant latin square of order n, which is 2-critical, the above result gives a con-
struction for critical sets in Cy x C, for n even. Here &, is used to denote a
critical set isotopic to that of Curran and van Rees. Use £, ,, to denote the critical
set of Cy x C,, obtained from this construction for n even, then:

&0 = CaU{(a,b+n;c+n),(a+n,b;c+n),(a+n,b+n;c) | (a,b;¢) € £}
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Example 1.22 Below is £, 4 which is a critical set in the latin square Cy x C4 of
Example 1.18.

0o 1 2 3 4 5 - -
1 2 3 0 5 - - -
2 3 0 1 - - - -
3 0 1 2 - - - 6
4 5 - - 0 1 - -
5 - - - 1 - - -
-— - - 6 - - - 2-

The following definition is used by Cooper, Donovan and Seberry [4].

Definition 1.23 A critical set C of order n is said to be a strongly critical set of a
latin square L, based on the set N, if there exists aset { Py, Py, . .., P;} of partial
latin squares of order n with f = n? — |C| such that:

1L.C=PCP,C---CPCL;

2. foranyi, 2 < i < f, where P; = Pi_y U {(ri-1,8i-1;ti—1)}, the set
P U{(ri-1, si-1;t')} is not a partial latin square for any t' € N\ {t}.

Example 1.24 Consider L, the back circulant latin square of order 3 and the
critical set C which completes to L, both of which are given below.

0 1 2 0 - 2
L=|1 2 0| and C=|- - -
2 0 1 2 - -

The entries for L and C are obviously members of the set N = {0,1,2}. Put
P,=C,P,=PUu{0,1;1)},Ps=PU{(1,0;1)}, Ps= PsU{(1,2;0)},
Ps = P,U{(2,1;0)} and Ps = P; U {(1,1;2)}, then L = Ps U {(2,2;1)}. So
there exists a set { Py, . .. Ps} of partial latin squares which satisfy the conditions
given in Definition 1.23, hence it can be seen that C is a strongly critical set.

Note that the set of partial latin squares, {Py, Py, ..., P;}, satisfying the re-
quirements of Definition 1.23, given in this example is not unique. This is gener-
ally the case.

The vast majority of critical sets which can be found in the literature are actu-
ally strongly critical sets but it is not true that all critical sets are strongly critical.
It is helpful to consider an example of a critical set which is not strongly critical.

299



Example 1.25 The following set C is a critical set which is not strongly critical,
(7).

| & oo
|
| 80 ==
|

o =1
—

l wo | o |
|

Obviously N is {1,2,3,4,5,6). Consider the cell (4,0) which is empty.
The union of the entries in the column and in the row in which this cell sits is
{5,2,3,4}u{6,3} = M\ {1}. Hence CU {(4,0;t)} foranyt € N'\ {1} is not
a partial latin square. Thus when completing C to a latin square the entry in the
cell (4,0) is “forced” to be 1. This in turn “forces” the entry in the cell (5,0) to be
6.

By similar arguments the top row can be filled in. The following partial latin
square, C', is that derived from C when these elements are added to the left-most
column and the top row.

Q

]

| o=
|

ol =1 &
L

| cono | © —
|

Gy = B W NN

Itis easily checked that is as far as one can proceed with this style of argument.
However, the following type of argument can be used to show that the partial latin
square has unique completion.

Consider the third column of C', in particular the empty cells; (3.,2), (4.2)
and (5,2). Suppose that the (3.2) cell is filled with the entry 5, then the result is a
partial latin square, however, this new partial latin square cannot be completed to
a latin square. If there was a latin square (of order 6) containing C' U {(3,2;5)}
then the entry 6 would have to occur somewhere in this column. Now, a 6 could
not be placed in the (4,2) cell as there is already a 6 in this row, nor could a 6 be
placed in the (5,2) cell because, as discussed above, the cell (5,0) must contain
a 6 and only one 6 is permitted in any row. Hence it can be seen that there is
nowhere to place a 6 if the 5 goes in the cell (3,2).

Since the notion of placing a 5 in the (3,2) cell has been dismissed, the only
remaining option is to place a 6 there.

In order to determine the admissible entry for some other empty cells, similar
arguments to the one just used must be invoked.

Bate and van Rees, [1], capture the essence of the second type of argument
used in the previous example in the following definition.
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Definition 1.26 A critical set C of order n is said to be a semi-strong critical set
of a latin square L, based on the set N, if there exists a set {Py, Pa, ..., P;} of
partial latin squares of order n with f = n® — |C| such that:

1. C=P1CP2C"'CP!CL,'

2. forany i, 2 < i < f, where P; = Pi_y U {(ri-1,8i-1;ti-1)}, one
of the sets P;_y U {(ri-1,si-1;t')}, Pi=1 U {(ri-1,8';ti=1)} or Pi.y U
{(+', 5i—1;ti—1)} is not a partial latin square for any t' € N'\ {t}, s' €
{0,1,...,n=1}\{s}or € {0,1,...,n — 1} \ {r} respectively.

Then C in Example 1.25 is a semi-strong critical set.

Definition 1.27 If P is a partial latin square of order n with unique completion
to a latin square L and there exists a set { Py, P, .. ., P;} of partial latin squares
of order n with f = n® — | P| such that:

1. P=P1CP2C"'CPJCLp'

2. foranyi, 2 < i < f, where P; = P;_y U {(ri—1,8i-1;ti-1)}, the set
Pio1 U {(ri=1,8i-1;%")} is not a partial latin square for any t' € N \ {t}

then P is said to be strongly uniquely completable.

If P is strongly uniquely completable, then P is a strongly critical set or some
subset of P is a strongly critical set.

It is an obvious generalisation of the definition above to define a semi-strong
uniquely completable set.

2 A product construction

This work stems from an interest in extending the definitions and results of Stin-
son and van Rees, published in [12], which were given in Section 1.

2.1 Products of partial latin squares

The following definition has a similar flavour to Definition 1.17.

Definition 2.1 Let P be a partial latin square of order m with entries taken from
the set {0,1,...,m — 1} such that P completes uniquely to the latin square M
and let Q be a partial latin square, but of order n, with entries taken from the set
{0,1,...,n — 1} such that Q completes uniquelyto N.

Let Q" be the array obtained from Q) by adding rn to the entry in each non-
empty cell of Q. for r = 0,1,...,m — 1. Similarly let N™ be the array obtained
from N by adding rn to the entry in each cell of N,forr =0,1,...,m— 1.
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Define the completable product of P with Q, written P x Q, to be the partial
latin square R of order mn which is the array obtained by replacing each entry r
of P with the array N™ and each entry r of M \ P with the array Q".

The completable product of P with @ is contained in the direct product of M
with N.

Then Curran and van Rees’ work is for completable products P x Q with P a
partial latin square with unique completion to M where

SEPE

(such as in Example 1.22).

Remark 2.2 Let (a, b; c) be an element of the latin square M and let (a, B; v)
be an element of the latin square N. Then it is a consequence of Definition 1.17
that the latin square L = M x N contains the element (an + a, bn + 8; cn + ¥).
(Here a,b,c € {0,1,...,m — 1} and a,8,y € {0,1,...,n=1}) IfPisa
partial latin square with unique completion to M and Q is a partial latin square
with unique completion to N then the following statements can be made about the
completable product R = P x Q:

1. if (a,b;c) € Pthen (an + a,bn+ B;cn +v) € R;

2. if (a,b;¢) ¢ Pbut (o, 8;7) € Q then (an + a,bn + B;cn + v) is still an
element of the partial latin square R;

3. if (a,b;c) & Pand(a,B;7) ¢ Q then (an+a,bn+ Bsen+9) € R

Since the direct product of latin squares is not commutative, the completable
product of partial latin squares is not commutative either. However the following
results are very useful even though they are weaker than commutativity.

Lemma 2.3 The direct product L = M x N of two latin squares M and N is
isomorphic to the direct product L' = N x M.

Proof Without loss of generality suppose that M is a latin square of order m
whose entries are those of the set {0,1,...,m — 1} and that N is a latin square
of order n whose entries belong to the set {0,1,...,n—1}.

If (a, b; ¢) is an element of the latin square M and if (z, y; z) is an element of
N, then there willbe an element (a.n+=z, b.n+y; c.n+2) in L and an element
(z.m+a, ym+b, zm+c) in L',

Then the one-to-one mapping i.n + j — j.m + i can be applied to the rows,
columns and entries of L to map the clements of L to those of L’. O
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Lemma 24 Let P and Q be partial latin squares with unique completion to the
latin square M and N respectively. The completable products P x Q and Q x P
are isomorphic.

Proof The same mappings are used as in the proof above. It is only necessary
to show that each empty cell of the completable product P x @ is mapped to an
empty cell of the completable product @ x P.

In Remark 2.2, it is pointed out that the only empty cells of the completable
product P x @ are those of the form (a.n + z, b.n + y) where there is an element
(a, b; c) of the latin square M which is not an clement of P and there is an element
(z,y; z) of N which is not an element of Q.

In this case the element (z.m + a,y.m + b;z.m+c)of L’ = N x M isnot
an element of @ x P so the cell (z.m + a,y.m + b) is empty. a

2.2 The unique completion of products of partial latin squares

The following results about completable products generalise the work of Stinson
and van Rees beyond a doubling construction. In [9] a trebling construction was
given but the following theorem is much more general.

Theorem 2.5 Let P be a partial latin square which is strongly uniquely com-
pletable to the latin square M of order m and let Q) be a partial latin square with
unique completion to the latin square N of order n. Then the partial latin square
R = P x Q has unique completion to L, the direct product of M and N.

Proof Since P is strongly uniquely completable there is a set of partial latin
squares, {P1, P2, ..., Py}, with f = m?—| P|, satisfying the conditions of Defin-
ition 1.27. Then P; = P;_; U {(ri-1, si—1;ti—1)} and it is known that for each ¢/
intheset {0,1,...,m—1}\ {¢;-1}, ¢ is either in row »;_; of P;_, orin column
si—1 of P;_,. That is to say there is a cell (r;, z; ') € P;, for some z, x # s;, 0r
there is a cell (z, s;;t') € P;, for some z, x # ;.

Recall that P; = P by the definitionand define Ry =Py x Q@ =PxQ = R.

Now P; = Py U {(r1, s1;1)} which means that in the positionsof R; = R
with rows indexed from r;n to (r; 4+ 1)n — 1 and columns indexed from s;n to
(s1 + 1)n — 1 there is a copy of @Q‘*. Also, [rom the discussion above it can be
concluded that for each ¢’ € {0,1,...,m—1}\ {t,} there isa copy of N*' which
is positioned such that it is either in the rows indexed from rynto (ry + 1)n — 1
or in the columns indexed from s;n to (s; + 1)n — 1. So that each element of
{0+ t'n,1+¢n,...,n — 1 + t'n} occurs cxactly once in each of these rows
or it occurs exactly once in each of these columns. Hence the only elements of
Ni = {0,1,...,mn — 1} which have not alrcady occurred in the rows indexed
from ryn to (r; + 1)n — 1 or in the columns indexed from s;nto (s + 1)n—1
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are 04+tn, 14+tin, ..., n — 1+ ¢1n. So these are the only entries which
may be placed in the cells which are defined by the intersection of these rows
and columns, but these cells already contain a copy of Q** which has unique
completion to N** when restricted to this set of entries, so this n x n subarray of
R = R, is forced to complete to N¢:, This produces a new partial latin square
R2=Ps x Q.

Similarly, a sequence of partial latin squares, Ry, Ra, . . ., Ry is obtained with
Ry = Py x Q. Since P; has only one entry less than the latin square M, the
partial latin square R, has only one subarray containing a copy of @Q* for some
i. There is only one possible completion from this point and it leads to the latin
square L=M x N. a

Corollary 2.6 The result still holds if Q, instead of P, is the partial latin square
which is strongly uniquely completable.

Proof By Lemma 2.4 and Lemma 1.13 the completable product of P with Q must
have unique completion. O

If both of the partial latin squares P and  are strongly uniquely completable
then their completable product is strongly uniquely completable. In the case
where one of P or @ is not strongly uniquely completable (or if both are not)
then the completable product P x @ is not strongly uniquely completable either.

Theorem 2.7 Let P be a partial latin square which is uniquely completable to
the latin square M of order m and let Q be a partial latin square with unique
completion to the latin square N of order n. Suppose that at least one of the
partial latin squares P and Q is semi-sirong uniquely completable. Then the
partial latin square R = P x Q has unique completion to L, the direct product of
Mand N.

Proof Without loss of generality supposc that P is semi-strong uniquely com-
pletable. (If it weren’t then @ would be and the following argument could have P
and @ interchanged and by Lemma 2.4 the two products are isomorphic.) Then
there is a set of partial latin squares, {P,Ps,..., Py}, with f = m? — | P|, sat-
isfying Conditions 1 and 2 of Definition 1.26. However, P is not necessarily a
critical set so it might not meet all the requircments of that definition, but it will
meet the enumerated conditions.

As in Theorem 2.5, the idea is to develop a sequence, Ry, R, ..., Ry, of
partial latin squares withR; =P, x Q=P x Q = R.

IfP; = Pi—y U {(ri-1, si—1;1i—1)} it is because either

1. ¢’ isinTow r;_; or column s;_, alrcady forall ¢’ € My \ {ti-1 };
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2. thecell (r;—,,s’) is not empty or the entry ¢;_, already appears somewhere
incolumn &' forall ' € {0,1,...,n— 1} \ {si-1};

3. thecell (', s;—) is notempty or the entry ¢;__, already appears somewhere
inrow ¢ forall ' € {0,1,...,n = 1} \ {r;_1}.

In case (1), by the arguement of Theorem 2.5, a copy of N*ti-* must sit in the cells
of P x Q with rows indexed by r;_17n t0 (r;_; + 1)n — 1 and columns indexed
by si_1nto (si—y +1)n— 1.

In case (2), the entries 0 + ¢;—yn,1 + ¢;_;n,... must appear in each of the
TOWS ;17 t0 (r;—1 + 1)n — 1. Some already appear in the copy of Q*-1 sitting
in columns s;_;n to (s;—; + 1)n — 1. Why must all the hitherto unused entries
also sit in these columns? From the consequences of the definition of semi-strong
uniquely completable detailed above, it can be seen that for each set of columns
s'nto (s’ + 1)n — 1 there is either a copy of N* for some z (that is, the cells are
full and nothing can be put there) or there is a copy of Nti-1 in some other rows
of that column which prevents any of those entries from being used elsewhere in
those columns. Hence the only place those entries may be used in these rows is in
columns s;_;n to (s;—; + 1)n — 1. Furthermore, there is only one possible way to
arrange them in those rows and columns given that there is a copy of Q*i-* there
already.

The arguement for case (3) is similar to that for case (2).

Hence the sequence Ry, R, ..., Ry, of partial latin squares can be forced
and the partial latin square P x @ completes uniquely. O

The product of any two semi-strong uniquely completable partial latin squares
is also semi-strong uniquely completable. (Notc that the strongly uniquely com-
pletable partial latin squares are special cascs of the semi-strong ones.)

These results are not as general as onc might like since they require that at
least one of the partial latin squares be semi-strong uniquely completable. It may
be possible to prove a similar result without that condition but a greater under-
standing of the critical sets which are not strongly or semi-strong critical must be
gained first. Although this result is restrictive, it is sufficient for the later work in
this paper.

Lemma 2.8 The direct product of latin squares is associative. (That is, if L, M
and N are latin squares then L x (M x N) = (L x M) x N.)

Proof Let L be a latin square of order I, M be a latin square of order m and N be
a latin square of order n. Let S be the latin square formed by the direct products
of L with M and N suchthat S = L x (M x N)andletT = (L x M) x'N.

Let I, denote the entry in cell (z,y) of L, let m,,, denote the entry in cell
(w,v) of M, and let n, denote the entry in cell (u, z) of N.
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Consider the direct product of M with N. The cell (w, v) of M and the cell
(u, z) of N combine to determine the cell (w.n + u,v.n + z) of M x N. The
entries m,,, of M and n,. of N yield an cnury of my,.n + ny, in this cell of
M x N. Now this cell of M x N and the cell (z,y) of L combine to determine
the cell (z.mn + (w.n + u),y.mn + (v.n + z)) of S. The entries I, of L and
Myy.n+ny; of M x N giverise to an entry of I;y.mn + (Myy .7 + ny.) in this
cell of S.

Now consider the direct product of L with M. The cells (z, y) of L and (w, v)
of M combine to determine the cell (z.m+w, y.m-+v) of their direct product. The
entries of these cells of L and M are I, and mn,,, respectively, hence the entry in
thiscell of L x M is Izy.m+my,. Now thiscell of L x M and thecell (u, z)of N
combine to determine the cell ((z.m+w).n+u, (y.m+v).n+2) of T. The entries
lzy.m+ my, of L x M and n, of N yicld an entry of (lzy m+ myy).n+ ny.
in this cell of T.

It is easy to see that the cell (z.mn+ (w.n+u), y.mn+ (v.n+ 2z)) of S is the
same cell as the cell ((z.m+w).n+u, (y.m+v).n+z) of T. Now it is necessary to
show that these cells of S and T have the same entries. It follows from properties
of the integers that Iz, mn + (Myy .1 + 1yz) = (lgy.m + Myy).n + ny, SO these
cells have the same entries. f

Let L be a latin square of order ¢, M be a latin square of order m and N be
a latin square of order n. Let P, @ and /2 be partial latin squares which complete
uniquely to L, M and N respeclively.

Let U be the completable product /> x (2 x 1) and let V be the completable
product (P x Q) x R. Since the completable product of two partial latin squares is
only defined if both partial latin squares have unique completion, the completable
product Q x R must have unique complction for U to be defined. So far the only
results about the unique completion of complctable products are Theorems 2.5
and 2.7 so it can be proven that Q x I has uniquc completion only if either Q or
R is semi-strong or strongly uniquely complctable. Then U is well defined if at
least one of Q or R is semi-strong or strongly uniquely completable (it may be
possible that there are weaker condidtions which guarantee that U is well defined
but they are not known). Similarly V is well dcfined if at least one of P or Q is
semi-strong or strongly uniquely complctable.

Theorem 2.9 Let L be a latin square of order I, M be a latin square of order m
and N be a latin square of order n. Let P, Q and R be partial latin squares which
complete uniquely to L, M and N respectively.

Where the completable product of the three partial latin squares P,Q and R
is well defined, it is an associative operation.

Proof Let S denote the latin square formed by the direct products of L with M and
NsuchthatS = Lx(MxN) = (LxM)xN. ObviouslybothU = Px(Qx R)
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and V = (P x Q) x R are partial latin squares which can be completed to S. The
nonempty cells of U and V must both contain the same entries or they could not
both complete to the same latin square S. Hence to show that U = V it suffices
to show that cell (i, j) of U is empty if and only if cell (i, 7) of V is empty.

In general a cell of U has the form (am.n 4+ (An + ), dm.n + (en + ¢)) for
a,d€{0,1,...1-1},8,e€ {0,1,...m—1}and 4,{ € {0,1,...n —1}.

As explained in Remark 2.2, such a ccll of U is empty if and only if the cell
(o, 8) of P is empty and the cell (Bn + v, en + ¢) of Q x R is empty too. Now,
the cell (Bn + v,en + {) of Q x R is cmply if and only if both the cell (3, ¢) of
@ and the cell (v, ¢) of R are empty.

Hence the cell (am.n+ (Bn+7),dm.n+ (en+¢)) of U is empty if and only
if the cell (a, §) of P is empty, the cell (8, €) of Q is empty and the cell (v,¢) of
R is empty. This happens if and only if the cell (am + 8,dm + ¢) of P x Q is
empty and the cell (v, {) of R is empty.

Now, (am + 8,6m + €) of P x @ is cmpty and the cell (v, ¢) of R is empty
if and only if the cell ((am + B)n + 7, (§m + €)n + ¢) of V isempty. Hence the
completable product of partial latin squares is associative. a

2.3 Critical sets from products of partial latin squares

The following theorem is an extension of the result of Stinson and van Rees stated
in Lemma 1.21.

Theorem 2.10 If P and Q are both 2—critical sets and at least one of them is
semi-strong or strongly critical, then the partial latin square R = P x Q is also
2—critical.

Proof By Theorem 2.5 or 2.7 the partial latin square R = P x @ has unique
completion,

Let P be a partial latin squarc of order 1. which completes uniquely to the
latin square M and let @ be a partial latin square of order n which completes
uniquely to the latin square N. '

It must be shown that each element of R is 2—essential. That is to say, for
every element ¢ € R there is a 2 x 2 subsquare S of L = M x N such that
(R\ {c}) N S does not have (UC) in S. Recall that a partial latin square of order
2 needs only one entry to be uniquely complctable. That is to say, (R\ {c}) NS
does not have (UC) ifand only if (R\ {c}) NS = 0.

Without loss of generality let the set of entrics for the latin square M be My =
{0,1,...,m -1}

First consider an element of R chosen from one of the n x n subarrays which
isacopyof @*,i € {0,1,...,m}. Consider also the array N of L = M x N to
which the element belongs. Since cach @ is a 2—critical set in the corresponding
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N, there must be a subsquare of order 2 in N¥ such that the element of Q* is
2-essential.

The elements of R which lie in the # x n subarrays which are copies of N*,
must be considered in two parts, those belonging to N* \ @ and those elements
of N* which are also in Q. An element in onc of these n x n subarrays will have
the form (an + z,8n + y;in + 2) for some o, 8 € {0,1,...,m — 1} and for
some z,y,z € {0,1,...,n— 1} such that P has an element (a, 8; ¢) and there is
an element (z,y;2) € N.

Consider an element of an n x n subarray of R which is one of the elements of
N\Q', (i € {0,1,...,m—1}). Since this clcment of R was chosen to belong to
NI\Q, (z,v; 2) ¢ Q. Theelement («, 3; i) is 2-cssential in P so there must be a
subsquare of M of order 2 which intersccts /2 in the element («, 8; ¢) alone. Sup-
pose thissubsquare is $ = {(a, 3; i), (v, 7: J), (8,83 5), (6,%;9)}. In L = M x N
there is a subsquare S’ = {(an + «, fu + yi in + 2), (an + z,yn + y; jn + 2),
(dn+z,Bn+y;jn+2),(dn+z,yn+y;in+z)). Since SNP = {(a, 8;7)} and
(z,y; 2) ¢ Q itfollows from Remark 2.2 that S'N R = {(an+z, fnty;int2)}.

Hence any element (an 4 z, Bn -+ y; ni + z) of N¥ \ Q' is 2—essential.

Now consider an element of 72 which sits in a copy of N and is also an
element of Q. Since this element is in a copy of N the element (a, 3;7) € P and
because this element is also in @, the clement (w, z; z) € Q. Now, both P and Q
are 2-critical so there must be a subsquarc 5 in Af and a subsquare T" in N, with
S and T both of order 2, such that SN I’ = {(«, #;3)} and TNQ = {(w, z; 2)}.

Suppose S = {(a, B; 1), (@,7;4), (3, 8 j), (6, 7; )} for some 7,4 in the set
{0,...,m=1}and T = {(w,z;2), (w,v;3), (v, z;y), (4, v; 2)} for some u,v
in the set {0, ...,n — 1}. Then there is a subsquare, A, of order 2 of L such that
A = {(an+w, fn+z;ni+z), (an+w, yn+v;nj+y), (dntu, fntz; nj+y),
(0n+ u,yn + v;ni + 2)}.

Consider the element (dn + u, fn + 2;nj + y) of A. It is not an element
of R, as explained in Remark 2.2, since neither (4, 8; j) € P nor (u,z;y) € Q.
Similarly for (an + w,yn + v;nj + y) and (dn + u,yn + v;ni + z). Hence
ANR= {(an +w, Bn + z;ni + z)} and this clement is 2—essential.

Thus it is shown that any element of &, in a copy of N? such that it also
belongs to @, is 2-essential.

Hence every entry of R is 2-cssential and so /2 is 2—critical. a

Up to isotopy there is only onc latin squarc of order 3 so one may consider C3
and the critical sets in this latin squarc without any loss of generality.
It is stated in Curran and van Reces [5] that ses(3)=2 and lcs(3)=3.

Lemma 2.11 Up to isotopy there is only one critical set of size 2 and one critical
set of size 3 in Cs, the back circulant latin square of order 3. (Both of these critical
sets are strongly critical. See Example 1.24.) They are:

¢ = {(0,0;0),(1,1;2)},and
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¢’ ={(0,0;0),(0,1;1),(1,0; 1)}.

Under certain conditions the completable product of two 3—critical partial latin
squares can be shown to be 3—critical.

Example 2.12 Choose both M and N 1o be the back circulant latin square of

order 3. That is,
0o 1 2
M=N=Cs=1|1l 2 0

2 0 1

Let P be the 3—critical set {(0,0;0),(0,1;1),(1,0;1)} (of the second type dis-
cussed above in Lemma 2.11) which completes uniquely to M = Cs and let Q
be the 3—critical set {(0,0;0), (1, 1;2)} (of the first type in Lemma 2.11), which
completes to N = Cs. Then the completable product R = P x Q is:

[0 1 2 3 4 5 6 - -
1 2 0 4 5 3 - 8 -
2 0 1 5 3 4 - - -
3 4 5 6 - - 0 - -
4 5 3 - 8 - - 2 -
5 3 4 - - - - -
6 - - 0o - - 3 - -

8 - - 2 - - 5 -

All the elements of R are 3-essential. llowever, some of the elements are not
contained in any 3 x 3 subsquare of L. = M x N which meets R in a critical
set. Instead each of these elements is in a subsquare which makes the element 3—
essential because it intersects R in a partial lutin square with unique completion
in which the element is essential, but not all of the other elements are essential.
For instance there is no subsquare of order 3 which contains the element (0, 0; 0)
and meels R in a critical set. This element is only 3-essential because of the sub-
square of L = M x N of order 3 whose elements are {(0, 0;0), (0, 5;5), (0,7;7),
(5,0;5),(5,5;7),(5,7;0), (7,0;7), (7, 5;0), (7, 7; 5) }. This subsquare intersects
Rin the partial latin square P = {(0,0;0), (0, 5;5), (5, 0;5), (7,7;5)} which is
not a critical set of the subsquare (for example, P \ {(7,7;5)} has unique com-
Ppletion), yet the partial latin square P \ {(0,0;0)} does not have (UC). Hence
(0, 0; 0) is 3—essential.

Since this has unique completion and all the elements are 3—essential, this is
a critical set of size 39.
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Theorem 2.13 Let P be a critical set of size 2 in a latin square of order 3. (Then
P is isotopic to the first critical set in the last lemma.) Let Q be a critical set of
the latin square N, of order n. If Q is 3—critical then the completable product
R = P x Q is a 3—critical set.

Proof Without loss of generality lct /2 = {(0,0;0), (1, 1;2)} which completes to
Cs.
By Theorem 2.5, R completcs uniquely to the latin square L = C3 x N.

The partial latin square R can be partitioned into nine n x n subarrays, two of
which contain copies of N* and the remaining seven of which contain copies of
Q' fori e {0,1,2}).

An element of R is of the general form (&.n + a,y.n + b; z.n + ¢) where
a,b,c € {0,1,...,n— 1} and a;,y,z € {0,1,2} for some (a,b;c) € N and
(2,y;2) € Cs. '

If the element of R sits in onc of the copics of @* then (z,y; 2) € (C3\ P) =
{(0,1;1), (0,2;2),(1,0;1), (1,2;0), (2,0;2),(2, 1;0),(2,2;1)} and (a, b;¢) €
Q. (See Remark 2.2.) Since @ is 3-critical, it follows from the definition that
there exists a subsquare of order 3, Sy, of N which meets @ in such a way that
the element (a, ; c) is essential. That is, Sy NQ has unique completion to Sy but
(Sv N Q) \ {(a,b; c)} does not complcte uniqucly. Suppose that the subsquare,
Sn, of the latin square N is as shown below, The headline and sideline are used
to indicate the columns and rows (respectively) in which the entries sit.

b ¢ h

a ¢ k S

d k J c

g J ¢ k

where d,e, f,g,h,k € {0,1,...,n — 1}. (There is no information about the
ordering of the rows a, d and g, nor about the ordering of the columns b, e and h,
nor of the entries ¢, f and k.)

There is a subsquare, Sy, of /. given by:

yu+b ynte yn+h

zn+a zn+c¢ a4k zn+ f

zn+d zn+k zn+4 f zn+e

zn+g zn+ f zn+tec zn+k
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(Note that the elements of Sy, arc all containcd in the same n x n subarray of
the latin square L.) As explained in Remark 2.2, since (z,y;z) ¢ P, the only
elements of Sy which are in R are thosc which are derived from elements of
Sy which are also elements of Q. Hence the partial latin square of order 3,
S N R, is isomorphic to Sy NQ and since (a, b; c) is 3—essential in @ the element
(z.n+ a,y.n + b; z.n + ¢) is 3—-cssential in R,

If the element of R is not, as described above, in a copy of @, then it is
in one of the copies of Ni. In this case (,y;2) € P, that is, (z,y;2) €
{(0,0;0),(1,1;2)}.

Suppose (a, b; ¢) is an element of N \ () then there is a subsquare of L which
meets Rin the two elements (0.n+«, 0.1+4b; 0.n+c)and (1.n+a, 1.n+b;2.n+c)
only. The elements of such a subsquare are shown below.

On+d ... lu+db ... 2n+d
On+4+a 0n+e¢ ln+4c 2n+c¢
ln+a ln+4¢ 2n+e On+c
2.n+a 2n+c¢ On+ec ln+ec

(There is one element here from cach of the nine copies of N* which make up the
latin square C3 x N.) Hence (z.n + a, y.n + b; z.n + ¢) is 3—essential.

If, however, (a, b; ¢) is an element of () as well as an element of N then all the
elements of the subsquare above arc clements of R and this subsquare does not
make (z.n + a, y.n + b; z.n + ¢) 3-cssential in R,

Recall that there is a subsquare, Sy, of N of order 3 which meets @Q in such a
way that the element (a, b; c) is csseatial. That is, Sy N @ has unique completion
to Sy, but (Sy NQ)\ {(a, b; ¢)} docs not complete uniquely. Then either (a, b; c)
is the only element in row a of Sy 11 () and all other elements of Sy N Q are
in one other row of @ (and Sy). or («, b;¢) is the only element in column b of
Sn NQ and all other elements of Sy N (2 are in one other column of @ (and Sy),
or, (a, b; c) is the only element with entry « in Sy N Q and all other elements of
S~ N @ have one other entry.

Suppose the first case, that is, («, b; ) is the only element in row a of Sy N Q,
and without loss of generality, supposc that all the other elements of Sy N Q are
in therow dof @, then Sy N Q C {(«,b;¢), (d,b; k), (d,e; f), (d, h;c)}.

Now consider the subsquare of /, = A/ x N which is shown below.
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On+b ... Ilnt+e ... 2an+4h
On+a On+tc lu+k 2n+f
ln+d ln+k 204 f On+c
2.n+g 2.n+ [ On+e lan+k

(There is one element here from cach of the ninc copies of N? which make
up the latin square C3 x N.) This subsquarc of order 3 meets R in a subset
of the four elements (0.n + a,0.n 4 b;0.n -+ ¢),(1.n + d,0.n + b;1.n + k),
(1.n+d,1.n+e;2.n4 f), (1.0 +d, 2.0 -+ h; 0.n+ c).(The first and third of these
will definitely be in R because they are formed [rom the products of elements of
Cs5 which are also elements of /°. The sccond and fourth may be in R but this
will depend on which elements of Sy arc also clements of @Q.) Hence the element
(z.n+ a,y.n+b; z.n + c) is 3-cssential as it is the only element in its row in this
subsquare which is also in R and there is another row of the subsquare which has
no elements in R.

Similarly, if (a, b; ¢) is the only clement in column b of Sy N Q or ifit is the
only element with entry c in Sy N Q then there is a subsquare of L which meets
Rinsuch a way that (z.n + a,y.n + b; z.u + ¢) is 3—essential in R. a

Corollary 2.14 Let P be:

then the completable product of I’ with itself i times is 3—critical for all i € N.

(This partial latin square occurs in Gower 9] hut for the purposes of that work it
was only necessary to know that it has unigue completion.)

Stinson and van Rees used the construction described in Lemma 1.21 to show
that for m = 2 for some 4, les(in) > | — (3/4)". The corollary above gives the
corresponding result for m a power of 3. ‘That is, for m = 3 for some integer [,
les(m) > 1 — (7/9)". Which mcans that in the limit as m — oo, les(m)/m? — 1
for m a power of 3 just as it docs (or i a power of 2.

Corollary 2.15 The result of Theorem 2.13 also holds for Q x P.
Corollary 2.16 Furthermore, let () be:
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then Q x P* (where P is as in Corollary 2.14) is 3—critical for all i € N.

However, not all completable products of 3—critical sets are 3—critical.

0 1 2
M=N=(=|l 2 0

2 0 1

P ={(0,0;0),(1,0;1),(1,2;0)}und Q = {(0,2;2),(2,0;2),(2,2;1)}.
Then the completable produci, I’ x (Q is:

Example 2,17 Let

0 1 2 - h o o— - 8]
1 2 0o - = = -
2 0 1 5 - 4 8 = 7
3 4 5 - 0 1 2
4 5 3 - - 1 2 0
5 3 4 8 T2 0 1
- - 8 - - 2 - -5

8 — 7 2 -~ 1 5 - 4]

Consider the element (2,2;1). It is an element of four 3 x 3 subsquares of
order 3 of M x N. One of those subsquares is a copy of N which is the top left
hand 3 x 3 subarray of the direct product. Another is the subsquare based on
the entries 1, 4 and 7 which appear in the cells (2,2), (2,5), (2.8), (5.2), (5.5),
(5.8),(8.2),(8.5) and (8.8). Another is the subsquare based on the entries 1,3 and
8 which appear in the cells (2,2), (24), (2.6), (4.2), (44), (4,6), (6.2), (64) and
(6,6). The last subsquare is based on the entries 1,5 and 6 which appear in the
cells (2,2),(2,3),(2,7),(3.2),(3.3),(3.7).(7.2),(7.3) and (7,7).

All the elements of the first two subsquares of M x N are also elements of
P x Q, hence (2,2; 1) cannot be an essential element for the completion of these
subsquares.

Let us turn our attention to the third subsquare, it intersects P x Q) in a set
of five elements, namely (2,2;1), (2,0.8), (4,2:3), (4,6;1) and (6,2,;8). The ele-
ment (2,2,1) is not essential in this subsquare as the two elements (2,6,8) and
(4.2,3) are sufficient 1o form a uniquely completable partial latin square of this
subsquare, as are the two elements (0,2;8) und (4,6;1).

Now consider the fourth subsquare, the elements which this subsquare has in
common with P x Q are; (2,2;1),(2,3,5),(3.2;5)and (3,7;1). The element (2,2;1)
is not essential in this subsquare cither as the two elements (2,3;5) and (3,7,1) are
sufficient to form a partial latin square with unique completion in this subsquare.
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As none of the four subsquares containing the element (2,2;1) meets P x Q in
such a way that (2,2;1) is essential for the unique completion, this element is not
3-essential.

Since not all of the elements of I’ x ( are 3-essential, P x Q is not 3—critical.
Furthermore, P x Q is not even a critical set. Besides the element (2,2;1), the
other elements which are not 3-esxential are (2,0,2),(3.2;5), (5.0;5), (3.8:2) and
(5.8:1). All six of these elements which are not 3-essential can be removed from
this partial latin square to give a new partial latin square whose size is 39 which
is a (strongly) 3—critical set. (All the remaining elements are essential and it was
checked by computer [11] that the set was uniquely completable.)

This critical set of size 39 is isotopic to the one used by Stinson and van Rees
[12] to show that lcs(9)> 39. 1t is not isotopic to the one of the form Q x P
for i = 1 as described in Corollary 2.16 which is isotopic to the 3~critical set in
Example 2.12.

Theorem 2.18 The completable product of two 3—critical sets of order 3, each of
which is of size 3, is neither 3—critical nor critical.

Proof By Example 2.17 and Lemma 1.13 it follows that in any product of two
3—critical sets of size 3 there arc six ¢lements isotopic to those of Example 2.17,
none of which are essential and without which the partial latin square is a critical
set. ]

At this stage results have been given for somie of the properties of partial latin
squares arising from the complctable products of 2—critical sets and those arising
from the completable products of some 3--critical scts. The next obvious result to
hope for is one involving the completable product of some 4—critical sets.

Up to isomorphism there arc two latin syquarcs of order 4 [6], all the minimal
critical sets of one of these two latin squarcs are 2-<ritical. The other one, the back
circulant latin square of order 4, has a minimal critical set which is not 2—critical.
This minimal critical set has 5 clements and it is the sensible starting point for a
search for results involving 4-critical scts. 1tis uscd in the next example.

Example 2.19 Let

- 2

| ©

and P=Q =
U —

1 -

LN MO
WO =
_—0 W N
| e | =

Then P = Q is a strongly critical set. Four of the elements in this critical set
are 2-essential but the fifth is not, it is 4-essential. The element (0, 1; 1) is the
element which is not 2—essential.
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The completable product, R, of P’ with Q) is:

0 1 2 3 4 5 6 7 8 9 - — 12 13 — -
1 0 3 2 5 4 7 6 - - — 10 — — - 14
2 3 0 1 6 7 4 5 - 1l — = — 15 — =
3 2 1.0 7 6 5 4 — - 9 — — — 13 -
4 5 — — 0 1 - — 1213 — — 8 9 10 11
- - - 6 - - - 2 - - — 14 9 8 11 10
- 7 - - - 3 - - — Ih - - 101 8 9
- -5 — — — | - - - 13 - 1110 9 8
8 9 — — 12 13 M4 15 0 | — — 4 5 - =
- - - 101312 15 M - - - 2 — — - 6
1l - - 1415 12 13 - 3 - — — T - -
- - 9 — 15 14 1312 - - 1 - — — 5 =
12 13 - 8 9 - 4 5 6 7 0 1 - -
- - - 14 - - - W5 4 T 6 — — — 2
- 15 - — — 11 - - 6 7 4 5 - 3 — -
- - 18 - - - 9 - 7T 6 5 4 - - 1 =]

This partial latin square is not a 4—critical set. It is not even a critical set.

The partial latin squares R\ {(0, 15 1)}, 11\ {(1,7;6)}, R\ {(8,5;13)} and
the partial latin square R\ {(12,9;5)} all have (UC). In fact, all four of these
elements can be removed at once and the remaining partial latin square still has
(UC) [11).

Once these four elements are removed the resulting partial latin square is a
critical set.

There are some other elements of It which ure not essential. Those elements
are (04:4),(2,5,7),(3,6,5) and (4,13,9). ‘

Since this minimal critical sct ol order 4 didd not produce a larger 4—critical
set, the search for further results about the completable products of a—critical sets
giving rise to new, larger a—critical scts does not look so promising.

The following is an extension of the result of Stinson and van Rees given in
Lemma 1.19.

Theorem 2.20 If P isa critical set in the lutin sqyuare M of order m with entries
taken from the set {0,1,...,m -~ |} and () is a critical set in the latin square N
of order n, with entries taken from the set |0, 1,...,n — 1} then another partial
latin square of order mn can be defined.

As before, let Q™ be the array obtained from Q by adding rn to the entry in
each cell of Q (whichis notempty), for v = 0, ,...,m—1. Similarlylet (N\Q)"
be the array obtained from N by adding rn 1o the entry in each cell of (N \ Q).
forr=0,1,...,m—1.
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Now define P o Q, to be the pariial latin square of order mn which is the array
obtained by replacing each entry v of I’ with the array (N \ Q)" and each entry
rof M \ P withthe array Q". (Clearly, I’ o Q) is a subset of P x Q.)

If at least one of P and Q is cither semi-strong or strongly critical then there
is a critical set C in the latin square M x N such that

PoQCUCPxQ.

Proof It is known that P x Q has unique completion so it follows that some
subset of P x @ is a critical sct. (It will not necessarily be a proper subset as
demonstrated in some of the carlicr wark 1 this section.) So all that needs to be
shown is that the elements of P o () ire essential,

The clements of PoQ are of twu types, those which lie in subarrays containing
copies of @' and those lying in subartuys contmning copies of N¥ \ @°.

Consider an element of P o () which is i a subarray containing a copy of Q'.
Since all the elements of @ arc essentind fn the unique completion of @ to N, it
follows that all the elements of this type wre essential in P o Q.

Consider an element of P o () which in in o subarray containing a copy of
N\ Q. Then the element is of the [orm (g -t a, hn+ byin+c) where g, h,i €
{0,1,...,m — 1} and a,b,¢ € [0, 1,....n 1} such that (h,k;i) € Pand
(a,b;¢) € Nbut(a,b;c) ¢ Q.

Now consider the subsquarc of A/ »~ N whuse clements are given by the set
{(jn + a,kn+ b, Mj,n +c) | (j.k1 Al;jx) € Al}. Some of these elements are
members of PoQ. Those elements form a pautial latin square isotopic to P. Since
all the elements of P are essential in the unique completion of P to M, then the
element (gn + a, hn + b; in + ¢) is essential in 0 Q. a

It might be possible to extend these results o include completable products of
two partial latin squares where nither of the component partial latin squares is
semi-strong or strongly uniquely completable, Perhaps more needs to be known
about the properties of partial latin squares which are uniquely completable but
are not semi-strong or strongly uniguely completable before the results shown
here can be generalised. The [ollowimy conjecture is offered as a generalisation to
Theorem 2.5.

Conjecture 2.21 The completable pmoduct of wny two partial latin squares with
unique completion also has unique completion.
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