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ABSTRACT. The existence of holey self-orthogonal Latin squares
with symmetric orthogonal mates (HSOLSSOMs) of types A"
and 1™u! is investigated. For type A", new pairs of (h,n) are
constructed so that the possible exceptions of (h,n) for the ex-
istence of such HSOLSSOMs are reduced to 11 in number. Two
necessary conditions for the existence of HSOLSSOMs of type
1"u! are (1) n > 3u+ 1 and (2) 7 must be even and = odd.
Such an HSOLSSOM gives rise to an incomplete SOLSSOM.
For 3 < u < 15, the necessary conditions are shown to be suf-
ficient with seven possible exceptions. It is also proved that
such an HSOLSSOM exists whenever even n > 5u+ 9 and odd
u>09.
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1 Introduction

We first give definitions of HSOLSSOM and ISOLSSOM. Let S be a set
and H = {51,852, ...,5n} be a set of disjoint subsets of S. A holey Latin
square having hole set H is an |S| x |S| array L, indexed by S, satisfying
the following properties:

(1) every cell of L either contains an element of S or is empty,

(2) every element of S occurs at most once in any row or column of L,

(8) the subarrays indexed by S; x S; are empty for 1 < i < n (these
subarrays are referred to as holes ),

(4) element s € S occurs in row or column ¢ if and only if (s,t) €

(S X S)\Uiign(Si X S5).
The order of L is |S|. Two holey Latin squares on symbol set S and hole
set H, say L and Ly, are said to be orthogonal if their superposition yields
every ordered pair in (S X S)\ U;<;<n(Si X Si). We shall use the notation
IMOLS(s; s1, ..., $n) to denote a pair of orthogonal holey Latin squares on
symbol set S and hole set H = {S}, S2, ..., Sn}, where s = |S| and s; = |S;]
for 1 <i<mn. If H=0, we obtain a MOLS(s). If H = {S1}, we simply
write IMOLS(s, s;) for the orthogonal pair of holey Latin squares.

If H = {S1,52,...,5.} is a partition of S, then a holey Latin square is
called a partitioned incomplete Latin square , denoted by PILS. The type
of the PILS is defined to be the multiset {|S;| : 1 < ¢ < n}. We shall use
an “exponential” notation to describe types: so type ty...t;* denotes u;
oceurrences of ¢;,1 < i < k, in the multiset. Two orthogonal PILSs of type
T will be denoted by HMOLS(T).

A holey Latin square is called self-orthogonal if it is orthogonal to its
transpose. For self-orthogonal holey Latin squares we use the notations
SOLS(s), ISOLS(s, s1) and HSOLS(T) for the cases of H = 0, H = {51}
and a holey partition {51, Sz, ..., Sn}, respectively.

If any two PILS’s in a set of ¢ PILS’s of type T are orthogonal, then we
denote the set by ¢ HMOLS(T). Similarly, we may define ¢t MOLS(s) and ¢
IMOLS(s, 51).

A holey SOLSSOM having partition P is 3 HMOLS (having partition
P), say A, B,C, where B = AT and C = CT. Here a SOLSSOM stands for
a self-orthogonal Latin square (SOLS) with a symmetric orthogonal mate
(SOM). A holey SOLSSOM of type T will be denoted by HSOLSSOM(T).
From 3 IMOLS(s,s;) we can similarly define incomplete SOLSSOM, de-
noted by ISOLSSOM(s, s1). It is clear that an HSOLSSOM(1*~"n!) im-
plies the existence of an ISOLSSOM(v,n). In an HSOLSSOM(T), it is
known (see [12]) that if one hole has an odd size, then every hole must have
an odd size and the number of holes must also be odd.

HSOLSSOMs have been useful in the construction of resolvable orthogo-
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nal arrays invariant under the Klein 4-group [9], Steiner pentagon systems

(10], [1], three-fold BIBDs with block size seven [17] and Authentication

perpendicular arrays [8]. Not only the uniform type k™ but also the nonuni-

form type h™ul! are useful. The existence of an HSOLSSOM(A™) has been
nvestigated by several researchers (see [11}, [16], [12], [5], [4], [3]). The
nown results can be summarized as follows.

heorem 1.1 (1) A SOLSSOM(v) exists if and only if n > 4, exceptv =6
nd except possibly v = 10, 14, 66, 70.
2) An HSOLSSOM(h™) ezists only if n > 5, where h > 2 and n must when
h is odd. These necessary conditions are also sufficient except possibly for
the 28 pairs of (h,n) shown in Table 1.

h n

2 14, 18, 22, 24, 28, 32

3 19, 23, 27

6 6, 7, 12, 18, 19, 22, 23, 24, 27
26, 30, 34, 38, 42, 46, 54, 58, 62, 66 22

Table 1

In Section 3, we shall remove 17 pairs of (k,n) from Table 1 and show
the following.

and n must be odd when h is odd. These necessary ‘conditions are also
sufficient except possibly for h = 3 and n = 19,23,27, and h = 6 and
n=17,12,18,19, 22, 23, 24, 27.

Theorem 1.2 An HSOLSSOM(h™) ezists only if n > 5, where h > 2

The main purpose of this paper is to start the investigation of the exis-
tence of HSOLSSOMs with nonuniform types. The simplest of such types is
the type 1"u!. An HSOLSSOM (1™u!) is equivalent to an ISOLSSOM(n +
u,u). The necessary condition for the existence of an HSOLSSOM(1"w!)
is n > 3u + 1, where u is odd and n is even. We shall show that such an
HSOLSSOM exists whenever even n > 5u 4+ 9 and odd » > 9. For small
u, 3 < u < 15, we shall show that the necessary condition is also sufficient,
with very few possible exceptions.

2 Preliminaries

Our direct construction is based on difference methods. The following is
Lemma 2.1 in [3].
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Lemma 2.1 Let G = Z, with g even, let H be a subgroup of G, and
let X be any set disjoint from G. Suppose there exists a set of 5-tuples
B C (GU X)® which satisfies the following properties:

1. for eachi,1 < i <5, and each z € X, there is a unique B € B with
b; = z (b; denotes the i-th co-ordinate of B);

2. no B € B has two co-ordinates in X;

8. for each i,5(1 < i < j < 5) and each d € G\H, there is a unique
BGB’withbi,bjEG andb;—b,-:d;

4’ for b5 € Gl (b]3b2)b3’b4’b5) €B ?!fan’d only 7:’ (b2tb13b4; b3; b5) € B;

5. the differences by — by and bz — by are both odd if (by, bz, b3, bs, ) and
(b2,b1,bs,bs,y) are both in B for any z,y € X,z #y.
Then there exists an HSOLSSOM(h9/*|X|'), where h = |H|.

We state some known recursive constructions. Denote by ILS(s,s1) a
holey Latin square of order s when it contains only one hole of size s;. An
element in the hole of an ILS is said to be evenly distributed if it does not
appear on the main diagonal and if when it appears in one cell, then it
must appear also in its symmetric cell. If each element in the hole is evenly
distributed, then we say that the ILS is balanced . Given 3 IMOLS, if one
of the three ILS is balanced and if also each element in the hole determines
s — 81 distinct entries above the main diagonal in the other two squares,
then we say that the 3 IMOLS are compatible.

The following known constructions are Lemmas 2.2.1 and 2.2.3 in [5).

Lemma 2.2 Suppose q is an odd prime power, ¢ 2 7. Suppose there exist
8 MOLS(m) and compatible 3 IMOLS(m + e;,e;) where m is even, t =
1,2,..,(g=5)/2,k = X 1<,<(q-5)/2(26¢). Then there exisis an HSOLSSOM

of type ml3~D(m + k)1

Lemma 2.3 Suppose ¢ > 5,q is an odd prime power or ¢ = +1(mod 6).
Suppose there exist compatible 8 IMOLS(m + e;, e;) where m is even, t =
1,2,...,(g=1)/2,k = ¥1<i<(q-1)/2(2€t). Then there exists an HSOLSSOM

of type mIk!.

Note that from Lemma 3.2 in [5] compatible 3 IMOLS(v,n) exist for
(v,n) = (10, 2) and (k, 1), where k is any odd integer > 5. The following
are the variations of the above two Lemmas.

Lemma 2.4 Suppose q is an odd prime power, ¢ 2> 7. Suppose m is even
and there exist 3 MOLS(m). Suppose fort =1,2,...,(q—5)/2,e, =0 ore,
odd >0, k= ElgtS(q—s)/z(zet): and there is an ISOLSSOM(m + e, e;) if
e; odd > 0. Then there exists an ISOLSSOM(gm+k+1,u) foru = q,m+1,
orm+k+1.
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Lemma 2.5 Suppose q > 5,q is an odd prime power or ¢ = £1(mod 6).
Suppose there exist compatible 8 IMOLS(m + e, €;) where m is even, t =
L,2,..,(g—1)/2,k =30, <1< (g-1)/2(2€t)- Then there exists an ISOLSSOM
(gm+k+1u) foru=m+1ork+1. Ife, =0 ore, is odd > 0 and
the compatible 8 IMOLS are actually an ISOLSSOM, then there ezists an
ISOLSSOM(gm + k+1,q).

In the proof of Lemma 2.2.1 of [3], the key point is that the initial
SOLSSOM(q) contains some pairs of symmetric common transversals inter-
secting at the top left cell. If we have an HSOLSSOM(1711), which is cycli-
cally generated over Z,, we can utilize it in the place of the SOLSSOM(q)
of Lemma 2.2.1 since similar pairs of transversals can also be found. Taking
m = 4, we state the variation of Lemma 2.2 as follows.

Lemma 2.6 Suppose there is an HSOLSSOM(1™1') which is cyclically
generated over Z,. Then there exist an HSOLSSOM(14™(4 + t)l) and an
HSOLSSOM(13%+3+4(n 4+ 1)) for odd t < n — 3.

We also need several other recursive constructions. The first one is simple
but useful.

Construction 2.7 (Filling in Holes)

(1) Suppose there exists an HSOLSSOM of type {s; : 1 < i < n}. Let
a > 0 be an integer. For eachi,1 < i < n—1, if there exists an HSOLSSOM
of type {sij 11 < j < ki} U {a}, where s; = 3_1 <<y, Sij, then there is an
HSOLSSOM of type {s;;:1 < j<k;,1 <i<n—-T1}U{a+ s,}.

(2) Suppose there exists an HSOLSSOM of type {s; : 1 < i < n}. Suppose
there exists also an HSOLSSOM of type {t; : 1 < j < k}, where s, =
ZISJ'<’= tj. Then there is an HSOLSSOM of type {s; : 1 <i<n-1} U
{t; :1<j<k}.

The next recursive construction for HSOLSSOMs uses group divisible
designs. A group divisible design (or GDD), is a triple (X, G, B) which
satisfies the following properties:

(1) G is a partition of a set X (of points ) into subsets called groups,

(2) B is a set of subsets of X (called blocks) such that a group and a
block contain at most one common point,

(3) every pair of points from distinct groups occurs in a unique block.

The group type of the GDD is the multiset {|G| : G € G}. A GDD
(X, G, B) will be referred to as a K-GDD if | B| € K for every block B in B.
A TD(k,n) is a GDD of group type n* and block size k. An RTD(k,n) is a
TD(k,n) where the blocks can be partitioned into parallel classes. It is well
known that the existence of an RTD(k, ) is equivalent to the existence of
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a TD(k + 1, n), or equivalently, k - 1 MOLS(n). We wish to remark that a
special GDD with all groups of size one is essentially a pairwise balanced
design (PBD), denoted by (X, B). Let B(K) denote the PBD closure of K.
We use [6] as our standard design theory reference.

We can apply Wilson’s fundamental construction for GDDs [14] to obtain
a similar construction for HSOLSSOM. The following is Construction 2.3.3
in [5].

Construction 2.8 (Weighting) Suppose (X,G,B) is a GDD and let w :
X — ZTUu{0}. Suppose there exists an HSOLSSOM of type {w(z) : = € B}
for every B € B. Then there exists an HSOLSSOM of type {3, cq w(z) :
G e G}.

Lemma 2.9 Suppose v € B(K) and K is a set of some odd integers each
> 5. Then there ezists an HSOLSSOM of type (1°~*k!) for every k € K.

Proof: Consider the PBD as a GDD of type (1 ~*k!) and give each point
weight one. Apply the Weighting construction. O

We need a variation of the above weighting construction. First, we intro-
duce the concept of holey GDD or GDD with holes. A holey group divisible
design (or HGDD), is a quadruple (X, G, H, B) which satisfies the following
properties:

(1) G is a partition of a set X (of points) into subsets called groups,

(2) H={Hy,..., Hp}, Hy, ..., H, are disjoint subsets of X called holes,

(3) B is a set of subsets of X (called blocks) such that a block intersects
a group or a hole in at most one point,

(4) every pair of points from distinct groups occurs in a unique block if
they are not in the same hole.

The type of the hole H € H is the multiset {|GN H|: G € G}. If we
apply the Weighting Construction to an HGDD, we get an HSOLSSOM
with some additional holes which come from the holes in the HGDD. If the
holes can be filled in, we may get an HSOLSSOM. We state the variation
of Construction 2.8 as follows.

Construction 2.10 Suppose (X,G,H,B) is an HGDD and let w : X —
Z* U {0}. Suppose there exists an HSOLSSOM of type {w(x) : z € B} for
every B € B. Suppose there is an HSOLSSOM of type {3 cony w(x) :
G € G} for every H € H. Then there exists an HSOLSSOM of type

{Xzecwlz) : GG}

The following product construction is essentially Lemma 3.4 in [11].
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Construction 2.11 Suppose there exists an HSOLSSOM of type h™. Let
m > 4 and m # 6,10. Then there exists an HSOLSSOM of type (mh)™.

To apply the above constructions the following known results are useful,
which are taken from [7].

Theorem 2.12 For any prime power p, there exists a TD(k,p), where
3<k<p+1l.

Theorem 2.13 (1) There is a TD(5, m) if m > 4 and m & {6,10}. (2)
There is a TD(6, m) if m > 5 and m ¢ {6,10,14,18,22}. (8) There is a
TD(7, m) if m > 7 and m & {10, 14, 15, 18, 20, 22, 26, 30, 34, 38, 39,
16, 54, 60, 69}.

3 HSOLSSOMs with type (k™)

We shall prove Theorem 1.2 by constructing 17 pairs of (h,n) in Theorem
1.1(2).

We mainly use Lemma 2.1 and some computer search to find the con-
structions. To ease the notation we shall always take G = Z, having a
subgroup H of order h. Let u = 2t and X = {zy,...,%¢,¥1, .., ¥t} Such
that z; and y; form a pair satisfying the condition 5 in Lemma 2.1 for
1 <4 <t. According to the conditions 4 and 5 in Lemma 2.1, to construct
an HSOLSSOM(A™u!) we may record half the 5-tuples instead of listing all
of them. In order to save space we write the half of 5-tuples of B vertically,
denoted by A.

Lemma 3.1 There erists an HSOLSSOM(2!4).

Proof: As mentioned above we take G = Zgg, H = {0,13}, X = {z,y},
and let A be the following set of fourteen 5-tuples:
i 2 3 5 8 9 11 12 14 17 18 19 25 ©
10 20 4 7 24 21 16 156 y 23 22 x 6 11
19 10 2 24 18 5 9 23 17 22 8 20 11 6
7 x 6 1 12 16 25 4 15 14 3 21 y 15
o o o 0 o o O O O O OO o0 o0 =x (]

Lemma 3.2 There exists an HSOLSSOM(2!8).

Proof: Let G = Z34, H = {0,17}, X = {z,y}, and let A be the following
set of eighteen 5-tuples:

0 x y 13 20 25 32 8 21 12 5 2 22 33 1 3 30 26

1 28 11 15 23 29 4 16 31 24 19 18 27 6 10 14 9 7

20 1 13 14 11 4 24 26 20 9 10 § 32 19 28 12 15 33

16 16 27 x y 3 6 22 25 2 8 29 23 30 31 18 7 21

x 0 0 0 0 0 0O 0 0 O O 0 0 0 0 0 0 O a
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Lemma 3.3 There exists an HSOLSSOM(2??).

Proof: Let G = Z34, H= {0, 14} and X = {zla Y1, %2, ¥2, 23, Y3, T4, Y4, Ts, 95}
We first construct an HSOLSSOM(2!710') with A as follows.

0 0 0 0 0 xI x2 x3 x4 x5 yl y2 y3 y4 yS
3 5 7 9 11 33 32 2 20 18 11 25 4 16 28
25 7 19 18 16 6 4 28 16 33 21 15 25 27 10
18 28 20 33 19 11 29 30 12 5 31 23 13 9 24
xI x2 x3 x4 x5 0 0 O O O O O OO o0 o

31 27 19 3 9 14 29 1 26 30 23

10 8 21 7 15 22 5 13 6 12 24

1 22 18 8 19 20 32 2 14 7 3

xI x2 x3 x4 x5 yl y2 y3 y4& y5 26

o 0 o o O O O O O o0 O
By filling in the size ten hole with an HSOLSSOM(25), we get the desired
HSOLSSOM(2%2). 0

Lemma 3.4 There exists an HSOLSSOM(h??) for h € {26, 30, 34, 38,42, 46,
54,58, 62, 66}.

Proof: Start with an HSOLSSOM(22?) and apply Construction 2.11 with
m = h/2. We get the desired HSOLSSOM (h?2). O

Lemma 3.5 There exists an HSOLSSOM(2*).

Proof: Let G = Zsg. We first construct an HSOLSSOM(21°10') with A
as follows.
0 0 O O O x1 x2 x3 x4 x5 yl y2 y3 y4& yb
3 5 7 9 11 33 37 18 23 14 35 22 20 24 28
17 25 12 6 33 20 1 10 11 7 &5 16 29 25 32
6 10 15 11 24 37 26 12 15 13 33 8 17 9 18
x1 x2 x3 x4 x5 0 0 O O O O O o0 o0 O

30 15 21 34 8 26 29 17 27 9 10 4 12

7 32 i 2 16 38 3 31 5 13 11 6 25

14 6 4 30 34 35 36 27 28 2 24 22 23

x1 x2 x3 x4 x5 yl y2 y3 y4 y5 31 21 3

o o0 o o0 0 o o o0 O o o o ©°
By filling an HSOLSSOM(2®) in the size ten hole, we get the desired
HSOLSSOM(224). 0

Lemma 3.6 There erists an HSOLSSOM(2%).
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Proof: Let G = Z4. We first construct an HSOLSSOM(223101) with A
as follows.
0 0 0 0 O xt x2 x3 x4 x5 yl y2 y3 y& y5 15
1 3 39 5 9 18 29 36 21 5 2 28 16 30 27 26
5 33 19 44 8 26 31 24 37 42 16 4 41 43 33 19
12 28 40 31 19 40 12 26 13 2 8 22 11 29 45 39
x1 x2 x3 x4 x5 0 (4] (4] (4] 0 0 0 0 0 0 0

6 40 7 1 38 33 8 10 32 45 12 35 17 3 34 39

[y

19 11 9 37 44 41 20 42 14 25 31 13 22 24 4 43
30 214 44 35 18 36 17 38 1 34 32 28 3 10 9 &
x1 x2 x3 x4 x5 yi y2 y3 y4 y56 16 27 7 20 6 14
o 0 0 0 o o o O O O 0 O O O O O

By filling an HSOLSSOM(2°) in the size ten hole, we get the desired
HSOLSSOM(2%). o

Lemma 3.7 There ezists an HSOLSSOM(232).

Proof: Let G = Zsp. We first construct an HSOLSSOM(2%14') with A
as follows.

0 0 0 0 O O O 35 28 43 x1 x2 x3 x4 x5
1 7 9 11 13 15 23 36 13 3 17 23 42 20
3 8 20 5 19 43 12 12 22 1 32 6 28 49
14 49 13 20 40 46 45 16 20 31 8 11 41 18
x1 x2 x3 x4 x5 x6 x7 o 0 0o o o0 o o

x6 x7 yl y2 y3 y& y5 y6 y7 21 41 46 37 12 15
49 33 45 1 39 44 30 9 24 8 48 27 18 11
7 43 37 44 21 24 35 9 33 27 42 17 39 36 48
34 15 5 38 29 10 19 47 23 x1 x2 x3 x4 x5 x6
0 0 0 0 0 0 0 0 0 0 0 0 O 0 ©

34 40 47 16 10 31 14 7

22 4 29 32 38 5 19 26

45 26 14 13 4 46 40 30

x7 yl y2 y3 y4 y5 y6 y7

o 0 o o O O o o
By filling an HSOLSSOM(27) in the size 14 hole, we get the desired result. O

To complete the proof of Theorem 1.2 we need only to show the existence
of an HSOLSSOM (6°), which will be done in the next lemma.

ON WO

N

Lemma 3.8 There erists an HSOLSSOM(6°).

Proof: Let G = Z3p and H = {0,5,10,15,20,25}. We construct an
HSOLSSOM(6561) with A as follows.

105



0 0 0 xt x2 x3 yl y2 y3 8 22 19 21 1 6 17 18 2
1 13 9 29 16 7 23 9 11 12 24 3 27 4 13 28 26 14
23 14 21 12 18 13 9 2 7 6 11 21 4 23 24 26 29 28
4 21 8 3 22 19 17 16 8 x1 x2 x3 yl y2 y3 14 27 1
x1 x2x3 0 0 0 0 0 0 0 0 0 0 0 0 0 o0 o O

4 HSOLSSOMs with type (1"ul!)

We shall first discuss the cases u = 3,5. With the known results we then
prove the existence for n > 5u+9 and u > 9. We shall also give the almost
complete result for the cases u =7,9,11,13 and 15.

Lemma 4.1 Suppose there exists a TD(k,m),k > 7. Then an HSOLS-
SOM (1™u!) exists for odd u < 2m + 1 and even n € [10m + 4, 2(k — 1)m].

Proof: Start with a TD(k,m). Keep the first five groups unchanged and
delete some points from each of the remaining groups such that the sixth
group has exactly (u—1)/2 points, the seventh group has at least two points
and for other groups each contains zero or at least two points. Give weight
two to each point of the GDD and apply the weighting construction. We get
an HSOLSSOM since, by Theorem 1.2, all the required HSOLSSOM(2!) ex-
ist for t > 5. Add one new point and fill in the holes with HSOLSSOM(1¢)
for odd e > 5 leaving the sixth hole empty. We get the desired HSOLS-
SOM. u]

Lemma 4.2 For odd u,3 < u < 15, there erists an HSOLSSOM(1™u!) for
all evenn > 74.

Proof: From Theorem 2.13, a TD(7, m) exists for all m > 63. Applying
Lemma 4.1 with k = 7 and m > 63 gives an interval [10m + 4,12m)].
This solves the cases n > 634. For small n we take prime powers m =
7,8,11,19 and apply Lemma 4.1 to get the intervals [10m + 4, 2m?], which
are overlapped to cover the interval [74, 634]. o

Lemma 4.3 Suppose odd g > 5 is a prime power and m > 4 i3 even, m #
6,10,14,66,70. Then there ezists an ISOLSSOM(qgm+u,u), or equivalently
an HSOLSSOM(19™w?!), for all odd u < q.

Proof: Apply Lemma 2.5 with e, =0 or 1, and Theorem 1.1(1). o

Lemma 4.4 If there is a TD(6, m), then there exists an ISOLSSOM(10m+
u,u), or equivalently, an HSOLSSOM(11%™4!), for all 0dd 3 < u < 2m+1.
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Proof: Delete some points from the last group of the TD(6, m). Give
weight two to each point and apply Weighting construction. Add one new
point and fill in the first five holes. a

To construct an HSOLSSOM(1™u!) by the direct construction, we shall
take G = Z, having a subgroup H = {0} of order 1. Let « =2t +1 and
X = {z1,..,Z¢, Y1, ---, Y, 2} Such that z; and y; form a pair satisfying the
condition 5 in Lemma 2.1 for 1 < ¢ < t. We will record about half the
5-tuples, denoted by A, as we did in the previous sections.

Lemma 4.5 There exists an HSOLSSOM(1!23!).

Proof: Let G = Z;5. We list A as follows.

o 0 1 11 4 2 8 10 9
6 11 x y =z 6 5 3 7
3 10 5 1 9 10 3 11 8
9 5§ 7 2 6 x y z 4
z x 0 O 0 o o 0 o0 o

We are now ready to handle the cases u =3 and 5.

Lemma 4.6 There ezists an HSOLSSOM(1™3!) for all even n > 10 except
possibly for n € {10,48, 54}.

Proof: From Lemma 4.2 we need only to consider even n < 72. For
n = 0 (mod 4), we first deal with n = 20 by takingg=5and m =4 in
Lemma 4.3. By taking m = 4, or 8, or 12, the other n are similar except
n = 12,16, 24, 32, 64, where the case n = 12 has been solved in Lemma 4.5.
From p.199 of [7] we have a {7, 9}-GDD of type (8%2!). Give weight one
to each point and apply Weighting construction. We get an HSOLSSOM
of the same type. Add one new point and fill in size eight holes, this solves
the case n = 64.

For the other four cases we give the direct constructions as follows using
G =2, and X = {z,y,2}.

n=16:
0O o { 4 12 15 2 8 10 13 14
8 15 x y =z 9 6 3 7 11 5
9 7 & T 10 14 12 13 2 15 4
112 3 11 9 x y =z 8 6 1
z x 0 o0 o0 o o O o0 o0 o
n=24:

0O 0 19 14 16 12 20 4 6 18 3 21 8 1 15
12 7 x y =z 13 22 7 10 23 9 § 17 11 2
3 16 17 10 18 21 2 14 11 1 20 156 7 16 19
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i5 21 8 9 22 X y z 5 12 6 13 4 23 3

z x 0 O 0o O O o0 O O o o o o o
n=232:

0 0 24 4 23 12 7 9 22 29 13 19 i8 14

16 5 x y =z 11 5 6 26 3 20 27 17 28 25

[+

24 25 12 256 13 22 10 15 21 16 7 23 6 26 27
8 10 17 19 24 x y =z 28 4 31 9 2 3 5
z x 0 o0 0O O o0 O O O o0 0o o0 o0 o

30 21 1 16
10 2 15 31
14 18 29 11
1 20 30 8
0O 0 o0 o
We next discuss the case n = 2 (mod 4). Taking m = 5,7 in Lemma
4.4 solves the cases n = 50,70. For n = 58, 62 and 66, we apply Lemma
2.6 with an initial HSOLSSOM of type 1!5 over Zi4 from [13]. Taking
t=1,5,9, we get an HSOLSSOM of type 1*15! for n = 46,50, 54. Filling
in the size 15 hole with an HSOLSSOM(1!23!), we get the desired HSOLS-
SOM of type 1"3! for n = 58,62,66. From p.196 of [7] we have a {5,
7}-GDD of type (672!). Give weight one to each point and apply Weight-
ing construction, we get an HSOLSSOM of the same type. Add one new
point and fill in six eight holes, this solves the case n = 42. The remaining
n = 14,18, 22, 26, 30, 34, 38 are directly constructed as follows.

n=14:

O o0 2 10 1 8 12 9 13 3
7 5 x y =z 4 11 T 5 6
6 3 12 1 8 9 6 4 11 2
13 2 3 13 5 x y =z T 10
z x 0O 0O 0O 0O o0 o0 o0 o
n=18:
0O 0 16 9 3 17 2 8 4 5 6 7
9 17 x y =z 1 14 12 156 13 11 10
10 14 4 12 11 3 9 10 5 2 17 6
i 11 15 14 7 x y =z 13 8 16 1
z x 0 0 o o0 0O o 0O o0 o0 o
n=22:
0O 0 6 16 1 2 18 11 3 10 14 7 21 9
11 7 x y =z 20 13 5 4 12 17 18 8 19
5 6 3 19 16 13 8 2 10 4 15 11 20 1
16 3 7 18 9 x y =z 12 21 & 17 6 14
z x 0 o0 o0 o0 0 O O O o o o o
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n=26:

0O 0 15 20 7

13 5 x y =z

1 14 4 5 11

14 11 9 15 3

z x 0 0 O
n=230:

0 0 2 10 17 20
15 7 x y =z 19
23 19 20 2 7 15

8 10 24 21 23 x

z x 0 0 8 O
n=34:

0O 0O 6 15 30
17 9 7 17 33

2 32 17 25 10
19 17 x y =z

z x O 0 O
23 12 31 28 20

i 25 11 9 2

5 30 9 15 1
26 4 33 18 6

O 0 o0 o0 o

n=238:

0O 0 32 8 11
19 5 35 10 14
13 23 3 13 19
32 26 x y =z

z x 0 0 O

3 19 28 7 25
16 33 5 23 4
20 23 6 25 2
26 36 14 37 24

o 0 o0 o0 o

n=46:

0O 0 45 10 20
23 17 27 40 12
24 20 12 22 25

1 23 x y =z

z x 0 0 O

3 22 17 8 39

5 44 32 13 33

24
23
7
x
o

o« N = W

18

12
32

36
45

21
34

15

42

LN RS

13

(=]

O W W W >

35
11

26

13
19

18
19
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13
17
12
10

5
11
18
25

10
11
27

31
37
28
27

11

20

35
14

9 10
16 18
2 20

24
0

6
14
27
29

32

29
28

29
36
i8
22

23
30

o O b

15
24
26

8

16
25
34
14

12
16
10

16
24

31

43
29
18
39

13
22
16

28

24
38

11
22
23

29
12
11

19
13
20

21
32

33

24
36
35
16

i3
25
12
19

25

12
13

15
27

29

38
42
28
43



31 17 2 7 23 40 21 10 15 26
44 1 41 29 27 32 11 5 33 37
o o o O O O O o o0 o a

Lemma 4.7 There exists an HSOLSSOM(1™5') for all even n > 16.

Proof: From Lemma 4.2 we need only to consider even n < 72. For

n =0 (mod 4) and n > 16, we write n = 4k — 4 with k > 5 and fill in the
holes of HSOLSSOM(4*) by adding an infinite point.
We next discuss the case n = 2 (mod 4). The direct construction gives
the first two.
n=18:
0O 0 O 4 7 13 14 17 2 3 6 8 16 1
9 11 17 10 12 9 11 1 xi x2 yi y2
14 9 16 1 14 5 17 16 15 11 12 13
5 12 11 x1 x2 y1 y2 =z 9 4 10 3
z x1 x2 0 0 o0 O O O O O O
n=22:
0O 0 0 10 13 7 18 17 16 19 i 8 2 21 20 15
11 7 9 9 11 4 14 12 x1 x2 yl y2 =z 5 6 3
7 5 14 12 21 11 9 13 19 8 7 17 3 16 14 5
18 4 19 x1 x1 y1 y2 =z 6 10 156 1 18 20 4 2
z x1 x2 0 o0 0O O O 0 0 0O 0 0O o0 o0 O

In Lemma 2.4 let m = 4 and ¢ = 7,9,11. This solves the cases n =
26,34,42. In Lemma 2.5 let m = 4 and ¢ = 7,9,11,13,17. This solves the
cases n = 30, 38, 46, 50, 54, 58, 70. For the remaining two cases n = 62 and
66, add one new point to a TD(5, 14), we see that 71 € B(5,15). We then
apply Lemma 2.9 to solve the case n = 66. From [15] there is a 5-GDD of
type 6!1. By adding one new point we have 67 € B(5,7). This solves the
last case n = 62. O

OOMNN
O ~Nw;n

We are now in a position to show the existence of an HSOLSSOM(1™u1)
for any even n > 5u+9 and odd u > 9.

Lemma 4.8 For odd u > 13 there ezists an HSQLSSOM(1™u!) whenever
evenn > 5u+9.

Proof: Let m and mg be both odd and m > mg, mp = (u — 1)/2 + 6,
where § = 0 or 1. Since » > 13, we have m > 7. By Theorem 2.13
there is a TD(7, m) except m = 15,39. Apply Lemma 4.1, we get an
HSOLSSOM(1%™u!) for n € [10m + 4,12m]. These intervals are overlapped
since m is odd and m > 7 except for m = 15,39. That is, the intervals
[154, 180] and [394, 468] are missing for uw € {29,31} and u € {77,79}
respectively.
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For the first interval we start with a TD(8, 13) and delete at most
five points from each of the last three groups. Give weight two to each
point of the GDD and apply Weighting construction, then add three or
five new points and fill in the holes. By Lemmas 4.5 and 4.6, we get an
HSOLSSOM(1™u?) for u = 29,31 and n € [152,182].

Similarly, we start with a TD(9, 37) for the second interval. Delete
at least 15 and at most 29 points from each of the last four groups. The
Weighting construction and the filling in holes construction give the interval
[360, 472] for u = 77, 79.

The overlapping of the intervals show that an HSOLSSOM(1™u?) exists
whenever even n > 10mg + 4 = 5u — 1+ 106. This completes the proof. O

Lemma 4.9 For u = 9,11 there erists an HSOLSSOM(1™u!) whenever
evenn > 5u+9.

Proof: From Lemma 4.2 we need only to consider even n € [5u + 9, 72].
Foru=9and 64 <n <72 writtn+u=9x84+%k 1<k <9, and
apply Lemma 2.4 or Lemma 2.5. For 54 S n < 60 writen+u =7 x 8+ k,
7 < k'< 13, and apply Lemma 2.5 using compatible 3 IMOLS(10, 2). For
the case n = 62 adjoin one infinite point z to the groups of a TD(5, 7)
and delete a point different from z so as to form a {5,8}-GDD of type
477!, Give each point weight two and then adjoin one infinite point to the
resulting HSOLSSOM.

For v = 11 and 64 < n < 72, Lemma 2.4 takes care of n = 64 if we
write 75 = 9 x 8 + 3. The case n = 66 can be done by Construction 2.11
since 77 = 7 x 11. Take an HSOLSSOM(108) from Theorem 1.2 and adjoin
one infinite point. The filling in holes construction solves the case n = 70.
Finally, Lemma 2.5 takes care of n = 68,70 since 79 = 17 x 4 + 11 and
83 = 9 x 8 + 11, where compatible 3 IMOLS(10, 2) are again needed. O

Now we are to show the existence of an HSOLSSOM(1"7?) for almost all
even n > 22.

Lemma 4.10 There exists an HSOLSSOM(177!) for all even n > 22 ez-
cept possibly for n = 58.

Proof: By Lemma 4.2, we consider only n < 72. Take an HSOLSSOM(6™)
from Theorem 1.2 and add a new point. The filling in holes construction
solves the cases when n = 6(m — 1) for 5 <m <13 and m # 7,12.

For n = 28, 36,40,44,52,56,68, apply Lemma 2.5 with n = ¢m and
u=k+1="7. For n = 22,26, 50, apply Lemma 2.5 with ¢ =7, and m and
k as follows: (m,k) = (4, 0) for n = 22, (4, 4) for n = 26 and (8, 0) for
n = 50.
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Apply Lemma 2.2 with ¢ = 9,17, m = 4 and k = 2, we get an HSOLS-
SOM of type 436! and 4!66'. The filling in holes construction solves the
cases n = 32 and n = 64. Since 77 = 7 x 11, the product construction takes
care of the case n = 70.

From p.199 of [7] we have a {5, 7}-GDD of type 8%4!. So, 53 € B(5,7,9).
Applying Lemma 2.9 solves n = 46. Take a 7-GDD of type 3!5 from p.191
of [7]. Delete one block and one group which intersect. We get a {5, 6, 7}-
GDD of type 3828. Give each point weight two and then fill in the holes by
adjoining an infinite point. This solves the case n = 66. The above 7-GDD
contains two intersecting blocks which intersect exactly 11 groups. Delete
one point from each of the 11 groups to get a {5, 6, 7}-GDD of type 21134,
The similar constructions solve the case n = 62. The remaining two cases
n = 34, 38 are done by direct constructions as follows:
n=3:

0O 0 O o0 5 28 13 15 3 21 17 29 20 9 32 2
17 11 13 15 6 30 16 19 8 27 24 x1 x2 x3 yl1l y2
5 30 14 17 18 29 23 24 11 25 20 i5 7 31 21 26
22 23 156 8 x1 x2 x3 yl y2 y3 =z 19 33 13 8 16

z x1 x2 x3 o 0 o o o0 o o 0 0O O 0 0o

23 1 10 22 4 33 12 25
y3 =z 18 31 14 11 26 7

1
14 27 9 6 1 28 10 2
17 12 3 4 30 5 32 22
0O o o0 O o O o0 o
n=238:

0 0 0O O 29 24 23 34 12 33 1

'S
[y
o

37 35 36 17

19 7 15 17 28 22 20 30 7 27 6 x1 x2 x3 yl y2
23 3 13 22 9 32 3 37 1 2 5 6 16 18 28 12
4 9 30 31 x1 x2 x3 yl y2 y3 =z 7 11 31 22 19
z x1 x2 x3 0 0 O O O O O 0o O 0 o0 O
5 1 16 9 2 3 8 18 26 31

y3 =z 256 19 13 15 21 32 4 11

29 33 4 8 27 23 24 15 30 36

256 17 34 20 3 26 14 13 10 21

o o o o O O O o o0 o O

Lemma 4.11 For u = 9,11,13,15, there exists an HSOLSSOM(1™u!)
whenever evenn > 3u+1 except possibly for the pairs (n,u) = (54,13), (58,13),
(58,15).

Proof: Most of the cases can be done routinely by Lemmas 2.4, 2.5 and
others. We then omit the details and only mention some specially treated
cases.
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For (n,u) = (42,9) and (46, 9), delete 5 points from a block in a TD(6,
5) to form a {5, 6}-GDD of type 455!. Weighting and filling in holes con-
structions solve the first case. Since 55 € B(5,7,9) from Lemma 9.4 of [2],
applying Lemma 2.9 gives the second case.

For (n,u) = (62,11), consider an RTD(6, 7) as a {6,7}-GDD of type 67
and delete one block of size 6 to form a {5,6}-GDD of type 5%6!; then use
a weighting and filling in holes construction. The case (n,u) = (58, 11) can
be done directly:

n =58 :

0 0 0 O 0 O 17 3 47 35 31 7 9 12 6 41
29 13 15 17 19 21 18 5 B0 39 36 13 16 20 15 51
13 53 B4 34 50 27 34 12 3 36 46 32 11 16 27 53
42 36 43 37 27 26 x1 x2 x3 x4 x5 yl y2 y3 yi y5

z x1 x2 x3 x4 x5 0 0 O 0 0 O O o0 0 O
48 57 40 34 4 27 38 33 28 52 2 37 56 11 29 8

1 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 =z 10 25 45 26

6 35 19 14 43 9 21 17 13 38 47 25 55 8 20 30

z 23 39 1 48 40 29 51 50 42 22 31 45 57 5 37

o 0 0 o 0 0 0 O O O O 0 o0 O0 O 0

24 32 23 19 30 53 22 14
44 54 46 43 55 21 49 42
18 4 26 52 56 24 41 7
54 2 44 33 28 10 15 49
0 0 0o 0 0 0 0 O

For (n, u) = (62, 13) and (66, 13), delete 3 or 5 points from a block of an
RTD(8, 7) to form a {5,6,7}-GDD of type 653! or a {5,6}-GDD of type
6571. Give each point weight two and then fill in the holes by adjoining an
infinite point. These solve the two cases.

For n = 15 and u = 50, 52, 54, 62, 66, applying Lemma 2.6 with an initial
HSOLSSOM(11%) gives the first three as we did in the proof of Lemma 4.5.
Truncate a TD(6, 7) to form a {5,6}-GDD of type 75m! where m = 3 or
5. Weighting and filling in holes constructions solve the last two cases. O

We now summarize the results of this section in the following theorem.

Theorem 4.12 For any odd u > 9 there exists an HSOLSSOM(1™u})
whenever even n > 5u+9. For any odd u,3 < u < 15, such an HSOLS-
SOM exists if and only if n > 3u+ 1 with the possible ezceptions shown in
Table 2.
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n u

10,48,54 | 3

58 7

54 11

58 13

58 15
Table 2
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